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1. Introduction to Deep Inelastic Scattering and ra. ""•._ 

The precise determination of the partonic structure of the proton is important, 
since the parton densities are essential ingredients in the detailed analysis of any 
hard interaction involving a proton. Recent fixed-target deep-inelastic scattering data 
have considerably improved our knowledge of parton distributions, as we shall see in 
section 3 and, incidentally, provided an impressive confirmation of perturbative QCD. 
However it is the results that are just starting to come from the recently commissioned 
electron-proton collider, HERA, that are causing excitement. The reason is that 
HERA is probing the previously unexplored small x regime where novel perturbative 
QeD effects are anticipated. The aim of these lectures is to cover the above topics 
and if possible to convey some of the excitement. 

There are many excellent reviews of perturbative QCD and deep inelastic scat­
tering, some of which are listed in ref. [1]. The generic diagram for deep inelastic 
scattering is shown in Fig. 1. The lower or hadronic vertex is described by two in­
variant kinematic variables Q2 ;: _q2 and the Bjorken variable x = Q2/2p· q. 
"Deep" and "inelastic" refer to Q2 :> M 2 and W2 == (p + q)2 :> M2 respectively, 
which ensure that perturbative QCD is applicable and that we are above the region 
of nucleon resonance production. M is the mass of the nucleon. 

If we concentrate on the photon exchange contribution to ep -+ eX then the spin­
averaged matrix element squared has the form e~L"vW"v /Q2 where L is the known 
lepton tensor and W is the hadronic tensor associated with "IP -+ X transition. The 
general expression for W is (see, for example, [2)) 

MWI'V = F1(x, Q2) ( _g"V + q:~V)  +F2(x, Q2)p" pv (1) 

where pI' == pV _ (p' q/q2)q". It satisfies q"WI'V = 0 as required by current conserva­
tion. The structure functions F; are arbitrary functions of the kinematic variables x 
and Q2 describing the 'YP -+ X transition. The differential cross-section for ep -+ eX 
is readily shown to be 

2
tPu 4?1'a [ 2 2 ( Q2)]

dxdQ2 = xQ~ Y xF1(x,Q ) +(1 - y)F2 x, (2) 

where y = 2p· q/s. Thus the F; can be obtained from experiment with x, Q2 and y 
determined from, for example, the energies and directions of the incident and outgoing 
electrons. 

The basic idea of the original parton model was that at large Q2 the photon-proton 
interaction can be expressed as the sum of incoherent scatterings from point-like quark 
constituents, which behave as if they were free inside the proton during the interac­
tion, see Fig. 2. The argument is that the scattering occurs over a short timescale of 
order 1/vrJ'l during which the photon sees a frozen state of non-interacting quarks 
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Figure 1: Deep inelastic lepton-proton scattering, lp _ lX. The processes ep _ eX and 
lip - jJX, for example, proceed via 'Y(or Z) and W exchange respectively. 

and that the final hadronization process occurs long after. If this is the case the 
differential cross section for ep -+ eX is of the form 

({lu� ({lUiJ� 
d:cdQ2 = ~  d'/i(') d:cdQ2� (3) 

where li(') is the probability of finding quark i in the proton with a fraction' of its 
momentum. The cross section for electron-quark elastic scattering is 

2 2 
dCTi = 41rQ n (8 + ti') (4)dQ2 [2 e, 2 82 

in terms of the electron-quark subprocess variables. Using [ = t = _Q2 and ti/8 = 
u/s = (y - 1) we have 

({lCTi� 41rQ2 21
-Veii[1 + (1 - y)2Jc5(:c - C), (5)d:cdQ' = 

where the a-function arises from energy-momentum conservation and the neglect of 
the mass of the outgoing quark, that is ('p +q)2 = 0 which gives' =Q'/2p. q =:c. 
Inserting (5) into (3) and comparing with (2) gives 

F2 = 2F1 L: Jd(lq(()e~c5(x - 0 x q 

L: e~fq(x).	 (6) 
q 

The equality F2 = 2xF1 , which is only true in this naive quark model, is a direct 
consequence of the spin t character of the quarks. Also we see that in the naive model 
the structure functions Fi(x, Q2) are predicted to scale; that is they are functions of 
f\. single variable, the so-called Bjorken scaling variable, x = Q2/2p. q. 

L 

xp+q 

Figure 2: The quark parton model approximation of the hadronic vertex of Fig. 1. The sum is 
over all the quark (antiquark) constituents of the protonj p is the 4-momentum of the proton and 
the fraction' camed by the struck quark is equal to Bjorken :1:. 

In addition to the three "valence" quarks (uud) which carry its quantum numbers, 
the proton also contains an infinite "sea" of qij pairs. When probed at a scale Q all 
sea quark flavours with mq ;S Q are active. Thus we may write 

lu(X) u(x) uy(x) +usea(x) (7) 

lu(x) u(x) = usea(x) (8) 

with the constraint 
1 11(u - u)dx = 1uydx = 2,� (9) 

and analogous relations for d, d with, in this case, the sum rule constraint set equal 
to 1 valence quark. 

From (6) we see that the quark parton model predicts 

F;JI = X [~u +~d + ~s +~u +...J . (10) 

For neutrino deep-inelastic scattering lip -+ lX the virtual W+ probe measures the 
quark distributions weighted by the square of the weak charges . 

F;" = 2x[d + s + fi +c].� (11 ) 

Neutrino scattering involves a third structure function F3 , arising from the parity­
violating f/JIIOIPPOIqp term in (1), which has the expansion 

xF;" = 2x[d + s - 11 - c]� (12) 

with the antiquarks contributing with a minus sign. The expressions for the structure 
functions of the neutron are obtained from those of the proton by the interchanges 
u +-+ d and 11 +-+ J. The antineutrino structure functions are obtained from the 
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neutrino functions by the interchange q +-+ ii, together with the insertion of an overall 
minus sign for xF3• 

Experimental measurements of the structure functions for deep inelastic IJP, pD -+ 
JjX and 1/N -+ pX scattering were used to estimate the q(x) distributions and early 
on it was found 

E /1 x(q(x) + q(x»dx ~  0.5 (13) 
9 10 

which indicated that the quarks only carry about half the momentum of the proton. 
The remainder was attributed to gluon constituents of the proton and indeed was 
some of the first (early) indirect evidence for the existence of the gluon. 

2. The QeD improved parton model 

With the advent of QeD it became clear that the quarks cannot be regarded as 
completely free when struck, but couple to gluons, and that the naive quark parton 
model is the zeroth order approximation in a perturbative expansion in a.. In other 
words the proton is not simply composed of three point-like "valence" quarks but as 
Q2 increases the photon (or W) resolves more and more substructure of the proton. 
For example, the photon may scatter one of a pair of "sea" quarks which originate 
from a gluon (g -+ qii) itself radiated from one of the valence quarks. Indeed the 
resolution increases with increasing Q2 so that the apparent number of partons which 
share the proton's momentum increases, and hence there is an increased chance of 
finding a quark at small x and a decreased chance of finding one at high x. Such 
scale-violating Q2 dependence is evident in the data, see, for example, Fig. 3. 

In order to see whether the observed behaviour is in line with QeD expectations 
we must calculate the higher order (QeD) corrections to ,.q -+ q. The corrections up 
to O(a~)  are shown, and discussed in detail, in the lectures by van Neerven [3]. These 
important calculations are very involved and so here we give an introductory discus­
sion concentrating on the lowest order, O(a.), corrections. The relevant diagrams are 
shown in Fig. 4. The calculations involve loop and phase space integrals (since 
for an inclusive process we have to integrate over the outgoing parton momenta.). 
Most of these integrals are divergent and have to be regulated. It is standard to 
use dimensional regularisation in which the calculations are performed in n =4 + f, 

rather than 4, dimensions and where the singularities are identified as (l/f)'P poles 
with p =1,2 etc. Most of the singularities are no problem. The ultraviolet singulari­
ties are removed by coupling constant renormalization, leading to a running coupling. 
Infrared singularities cancel between real and virtual c~ntributions.  Final state "mass 
or collinear" singularities (which arise when the momentum of two massless outgoing 
particles become parallel) cancel in an inclusive process. This leaves the initial sta.te 
"mass or collinear" singularities. These must be removed if the parton model is to 
survive. 
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Figure 3: The BCDMS (4) and NMC [5) measurements of Fr', together with the fits by KMRS 
[6] and MRS [9]. The NMC data were not available for KMRS. The figure is taken from ref. [9]. 

5 



1=+1 
2 

( a) 

1+ V+P-+F 
2 

(b) 
Figure 4: The O(a,) corrections to .,.'1 - q. 

If the D(a.) corrections are included then the parton model formula' takes the 
modified form 

F2 dy J, (y)e 1 - :1:) + -a. { - Q2 . (:I:)}]- (14)2 [(- = E1- - (:I:) log- + R5 P:I: 
1 

Y Y Y p2q Z q, 2", Y 

where P and R are known calculable functions. The offending collinear divergence 
shows up in the log Q2/p2 term which arises when the gluon in 'Y*q -+ qg is emitted 
parallel to the incoming quark. It comes from t-channel quark exchange (the first 
diagram of Fig. 4) which gives a contribution 

q2 
a. P (=-) 1.... dkf with P(z) = ~ (1 +Z2) (15)
21r Y JJ2 kt 3 1-z 

where kT is the transverse momentum of the emitted gluon and i = -k}/(1- z) with 
z = x/Yo (At first sight we would have expected the t-channel quark propagator to 
lead to a factor 1/14 in the amplitude squared, but helicity conservation at the gluon 
vertex weakens the collinear singularity by introducing a factor kf in the numerator.) 
Thus IJ in (14) and (15) is a regulator introduced specifically to avoid the collinear 
singularity (which occurs when kT -+ 0). 

These collinear or mass singularities appear to pose a real threat to the validity 
of the parton model. However they can be removed by factorizing them out of the 
partonic subprocess and absorbing them in the "bare" parton densities Iq(Y). This 

2The fractional momentum variable ( of (6) is from now on denoted by Y. which is not to be 
confused with the deep inelastic variable y of (2) which we do not lise again. 

renormalization procedure is called "mass factorization". For the parton model to be 
useful the renormalized parton densities I,(y, Q2) must be process independent and 
so the mass singularities must be universal. That is they must be the same for F} 
and F2 and for Drell-Van, jet production etc. Indeed this proves to be the case to 
all orders in perturbation theory. Since the log Q2 terms are absorbed into I q the 
renormalized parton densities are Q2 dependent, that is Iq(y) -+ Iq(Y, Q2), or to be 
more correct I~(y) -+ !:"(Y, Q2). 

After mass factorization (14) takes the form 

""11 
dy 2 [(:I:) '(% Q2)J (16)F2 

2)-;- = 7 . y I,(y, M e, 5 1 - Y +a.C2 y' M2 

where the renormalized distributions are 
1 

1,(:1:, M2
) = 1,(:1:) +;;1~ I,(y) {p (~) log ~2 +R' (~) } . (17) 

It is easy to check that the substitution of (17) into (16) reproduces (14) with C~ 

having a logarithmic dependence on Q2/M2. The separation of the singular part of 
the partonic subprocess (that is, of [...] in (14» from the remaining finite part (the 
[...] in (16» takes place at "mass factorization" scale M (often chosen to be equal 
to Q). The scale M separates the short distance ("partonic") effects from the long 
distance ("hadronic") effects. The finite part of the partonic process remaining in 
the [...] of (16) is thus infrared safe and independent of the long distance effects 
characterised by IJ. It does not depend on which hadron is involved, but rather 
is specific to the partonic subprocess, 'Y*q -+ q with QeD corrections. In contrast 
the renormalized parton distributions 1,(:1:, M2), which have absorbed all the infrared 
sensitivity, are specific to the hadron. However the crucial observation is that they are 
universal in the sense that the same distribution enters whenever the hadron enters a 
hard interaction. Moreover the renormalized distributions Iq(:I:, M2), unlike the bare 
distributions 1,(:1:), are finite. This can be seen from (16) since the measurable F2 

is finite and [...] is finite by construction. It is clear from (17), with its arbitrary 
p2 behaviour, that there is no absolute prediction for Iq(:I:, M2). However QeD does 
give the M2 dependence. From (17) we have 

2 
dl,(:I:, M ) = a. fl dy J, (y, M2)P (=-) . (18)

dlogM2 21r Jz y q y 

The factorization scale M leading to the "running" of Iq(x, M 2 ) therefore plays an 
analogous role to the renormalization scale m, that is needed to remove the ultra­
violet divergences and which leads to the "running" of a.(m2 ). (For simplicity we 
have not shown, or discussed, the coupling constant renormalization but implicitly 
assumed that it has been done; usually m is also set equal to Q.) Eq. (18), known 
as the Altarelli-Parisi evolution equation, is the analogue of the (J function equation 
specifying the behaviour of a.(m2 ) as a function of log m2• 
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Clearly the separation shown in (16) of the singular and non-singular parts of [...] 
in (14) is not unique. As long as the collinear singularity is absorbed into f,(x,M2) 
we can add any additional finite parts we wish. We must therefore specify a "factor­
ization scheme", and use it consistently from process to process. Two schemes occur 
frequently in the literature. By far the most common is the m (or modified minimal 
subtraction) scheme in which only the (l/E)!' pole terms (and the thE -log4?1") that 
naturally accompanies these poles) are absorbed. The other is the DIS scheme in 
which all the subprocess QCD corrections to the particular structure function F2 are 
swept into f,(x, M 2 = Q2), so that we have simply 

F2(x,Q2) = Le:f,(x,Q2). (19) 
x , 

The disadvantage is that the corrections for the other structure functions, and for 
other processes, then become more complicated. 

To determine the parton distributions we must turn to experiment. The proce­
dure is to parametrize the x dependence of fi(X, Q~)  at some scale Q~  and then to 
evolve in Q2 using the Altarelli-Parisi equations, (18), to specify the fi(X,M2 =Q2) 
at all values of x and Q2 where deep inelastic and related data exist. Using (16), and 
analogous expressions, we then perform a global fit to the data to find the optimum 
value of the parameters describing the initial distributions. Important ingredients 
are therefore the (coefficient) functions CHx/y) of (16) and the (splitting) functions 
P(x/y) of (18), both of which have calculable QCD perturbative expansions in a,. 
Our outline discussion has only been to O(a,). A much more detailed and informed 
discussion, including the O(a~)  contributions, is given in the lectures by van Neer­
ven [3] in these proceedings. There he describes not only how all the leading a: 
logn(Q2fJJ.2) singular terms are absorbed, but also the inclusion of the next-to-leading 
logs, a: logn-I(Q2f JJ.2), as well. These are important calculations and the resulting 
QCD expansions for the coefficient and splitting functions up to and including O(a~) 

are used in the global analyses described in section 3. Clearly the higher the order of 
0'. that can be included the less the dependence of the results on the arbitrary choice 
of scales. 

At O(a,) we note that we need to sum and absorb the whole series of [a,(Q2) 
log(Q2/JJ.2)Jn, terms with n :; 1,2... , since, although a,(Q2) decreases like 1/logQ2, 
the series does not converge as Q2 -+ 00. We shall explain in section 4 how the 
iterative Altarelli-Parisi equations effectively "re-sum" this series of leading logs. 

Even at D(a,) our discussion is incomplete. We have only included the corrections 
to "Y*q --+ q coming for "Y*q -+ q9. To O(a,) we must also include contributions where 
a gluon in the initial state produces a quark-antiquark pair which the virtual photon 
then probes, that is the process "Y·9 -+ qq. The evolution equation (18) then becomes 

dq(X,Q2) 1

a,;~2) 1; [pqq (;) q(y,Q2) + Pqg (;) 9(y,Q2)] (20)
dlogQ2 

8 

where, to lowest order in a" we find (cf. (15» 

Pgg(Z) = ~ 1 +Z2 P,g(Z) = ~[Z2  +(1 - z)2].
3 1-z' 

We have been cavalier about the running of a, and it might cause concern to see 
that a,(Q2) suddenly appears in (20). We may trace the origin of this back to (15) 
which, for running a,(m2) = 21r/blog(m2/A2), should read 

x) j"'Q2 dk} a,(k}) P ( Q2) (21)"blogP ( Y kt ~ = log A2 . 

Following this through we have 

dq 1 j O',(Q2) J... 
dlogQ2 = blog(Q2/A2) ... 211" 

as in (20). 
To complete the description, there is also an equivalent equation to (20) giving 

the evolution of the gluon distribution 

1 
dg(x, Q~) = a~~~2) 1'; [p,g (~) g(y, Q2) +~ Pa, (~)  q(y, Q2)J (22) 

with 

Z l-z )
Pgg(z) = 6 ( 1 _ Z +-z- +z(1 - z) , (23) 

Equations (20) and (22) suggest a classical interpretation of evolution where as Q2 
increases a parton i splits into partons j and Ie carrying fractions z and (1 - z) of 
its momentum respectively with probability a,Pii(z)/211", per unit of log(Q2/Q5). Of 
course this classical probabilistic interpretation is simply a verbal description of the 
leading order QCD evolution and such an intuitive picture cannot be maintained at 
higher orders. 

We see that Pqq and P"~  have infrared singularities at z = 1 corresponding to the 
emission of soft gluons. These singularities are cancelled by virtual graphs (Fig. 4(b», 
which are proportional to 6(1- z) since a virtual gluon cannot change the momentum 
of a parton. We can implement this cancellation by replacing the singular factor by 
a distribution 

1 
---+ (24)

I - z (1 - z)+ 

defined such that for a smooth function f( z ) 

fl dz~ = fl dzf(z) - f(I). (25)
Jo (l-z)+ Jo (1-z) 
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In terms of this "plus prescription" we may write 

4 1 +Z2 

P,,(Z) = 3(1 _ Z)+ +~5(1 - z) (26) 

where the coefficient c, can be found by explicitly evaluating the virtual contributions. 
More simply we can determine c, by noting that the probability P,,(z) must satisfy 
the constraint II P,,(z)dz = 0 (27) 

which expresses the fact that the total number of quarks minus antiquarks is con­
served. This requires c, =2. Similarly using overall momentum conservation we can 
show that the coefficient of the 5(1 - z) term in P,,(z) is c, = 11/2 - nJ/3. 

3. Determination of parton distributions 

As mentioned above, the parton distributions at some scale mU'st be determined 
by experiment. The basic procedure is to parametrize the %dependence of /.(%, Q~) at 
some low Q~ but where Q~  is sufficiently large for perturbative QCD to be applicable. 
Then we evolve up in Q2 using the next-to-Ieading order Altarelli-Parisi equations to 
determine /i(X, Q2) at all values of % and Q2 where deep-inelastic and related data 
exist, and in this way we are able to perform a global fit to the data. 

There is a long history of determining parton distributions from deep-inelastic 
data. Table 1 lists just the next-to-Ieading order analyses, together with the data 
fitted. The most significant recent (pre-HERA) experimental developments are the 
new NMC measurements [5] of Ff' and Ff" (or rather F~)  and the CCFR measure­
ments [11] of F;N and xF;N. They have had a profound impact on our knowledge 
of parton distributions, especially for % ~ 0.1. Only the MRS('92) and CTEQ('93) 
analyses (that is the last three in Table 1) were able to incorporate these new data, 
and so should be able to provide a more reliable basis for extrapolation to smaller 
x. Figure 3 serves to highlight the problems associated with the extrapolation. It 
shows (dashed curves) an earlier KMRS global fit [6] which included the BCDMS 
data, together with the new MRS('92) fit to both BCDMS and the new NMC data 
sets. We see that extrapolations of the old solutions considerably undershoot the new 
data at small x. The new quark distributions are therefore much larger at small x. 
On the other hand for x ~ 0.1 there is no changej we see both the "old" and "new" 
ItP data and the partons are all in excellent agreement with each other. 

As is apparent from Table 1, the parton distributions, Ii, are determined from 
global fits to a wide range of deep inelastic and related data. The deep-inelastic 
muon and neutrino data pin down the valence and sea quark distributions, but hardly 
constrain the gluon distribution, which only enters directly at next-to-Ieading order; 
essentially the only constraint is the momentum sum rule which shows that the gluon 

carries just less than 50% of the proton's momentum at Q~.  On the other hand the 
gluon enters at leading order in prompt photon production. Indeed for "large" PT 
photons produced by pp -+ 'YX, the dominant QCD subprocess is gq -+ 'Yq, in contrast 
to pp -+ 'YX where the annihilation process qij -+ 'Yg is much more important. The 
relevant data are from the WA70 collaboration [12] which determine the gluon in the 
region % '" 0.35. Combined with the momentum sum rule constraint, this gives an 
input gluon behaviour (1- %)6.3 at large %. Data for the Drell-Yan pN -+ p+p-X 
process, which is mediated at leading order by qyij_ -+ 'Y., constrain the (1 - x )'1' 
behaviour of the sea quark distributions. Finally data on W production at pp colliders 
impose tight constraints on the u and d distributions, particularly when the accurate 
NMC measurements of it'/Ff' have to be fitted simultaneously. 

To be specific we discuss the MRS('92) analysis. The input parametrizations at 
Q2 = Q~ (= 4 GeV2

) of the gluon (g), valence (uy , dy ) and sea (u = d ~ 205) quark 
distributions each are assumed to have the form 

X/i(%, Q~) = Ai x->"(1 - x)P'(I + 'Yixt +5i %) (28) 

where u == Iv. = U y +u_, u =Uaea etc. and where the parameters Ai, ~it Pi, "'/i, 8i are 
to be determined by the fit to the data. Not all the parameters Ai are free since we 
require 

4=JX/i(%) = 1 (29) , 
by momentum conservation, and 

J(u - u)dx = 2, J(d- d)dx = 1 (30) 

due to the flavour content of the proton. Moreover we have some idea of the values 
of the parameters ~i  and Pi from the expected behaviour of the parton distributions 
as % -+ 0 and % -+ 1 respectively. Naive counting rule estimates suggest 

/i "'J (1 - X )2n.-l (31) 

as x -+ 1, where n. is the minimum number of spectator partons accompanying the 
probed parton. So for valence quarks, gluons and sea quarks we expect Pi ~ 2n, - 1 
to be 3, 5 and 7 respectively. Naive Regge arguments suggest Ai=y ~ aM(O) -1 ~  -~  

since in this model the x -+ 0 (i.e. p' q -+ (0) behaviour of valence quark distributions 
are controlled by the intercept aM(O) of the p - a2 - w - h meson Regge trajectory. 
On the other hand Asea ~  A, ~ ap(O) -1 ~  0 if we assume the Pomeron has intercept 
about 1. 

Of course the above arguments only give estimates of the parameters Ai and Pi. In 
fact, as we shall see, there a.re theoretical reasons from perturbative QCD to believe 
that A.ea ~  A9 ~ 0.5. We thus must distinguish a "soft" pomeron (applicable in the 
Regge domain, Q2 ~ 0) which would suggest a small x behaviour X9, xij "'J X-A with 
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p-DIS v-DIS Prompt '1 D-Yan W,Z 
MRS '88 EMC+ .. CDHSW AFS(+J/t/J) - -

DFLM '88 (EMC + ..) CHARM + .. - E288+ .. -

ABFOW'89 BCDMS - WA70 - -

HMRS '90 EMC CDHSW WA70 E605 -
BCDMS 
NMC(nJp) 

MT '90 EMC CDHSW - E288 -
BCDMS E605 

KMRS '90 BCDMS CDHSW WA70 E605 -
(sets Bo,B_) NMC(nJp) 

MRS (Apr '92) BCDMS CDHSW WA70 E605 (UA2, 

(sets Do,D_) NMC(p, n)t CCFRt I CDF) 

MRS (Nov '92) BCDMS CCFR WA70 E605 (UA2, 
(sets D~,D'-)  NMC(p,n) CDF) 

CTEQ ('93) BCDMS CCFR WA70 E605 
NMC(p,n) E706,UA6 

Table 1: NLO determinations of parton distributions [8, 6, 7, 9, 10] together with the 
data used in the various analyses. Data marked t were used in preliminary form. 

A~ ap(O) -1 ~  0, or to be more precise 0.08, from a "hard" or "QCD" or "Lipatov" 
pomeron (applicable at Q2 values where perturbative QCD is valid) which implies 

_ _1 
xg,xq ,..., X 2 (32) 

for small x (see section 6). To illustrate the difference we will obtain parton sets with 
Ag = AHA =0 (sets Do and So) and a set with Ag = AHA = 0.5 (set D_). 

Let us return to the input assumption that the sea quark distributions3 satisfy 
il = d = 28. First the evidence that the strange sea is about half as weak as the 
non-strange seas comes from observations [14] of deep-inelastic dimuon production, 
vN --+ p+p-X, for which the dominant subprocess is vs --+ p-(c --+ p+). Secondly, 
although until recently all analyses assumed u = d, the new NMC data [5] indicate 
that this equality may not be exact. This is best seen in terms of the Gottfried sum 
rule 

(I dx (Fr _ Fr)lasR. 10 x 

fol[~(u  + u) + l(d +d) - ~(d + d) -l(u + u)]dx 

r (I_i 10 dx(uy - dy ) +i 10 dx(u - d) 

i if u=J. (33) 

On the other hand NMC find [15] 

o.8 dx
L -(Ff" - Fr) = 0.227 ± 0.007(stat.) ± 0.014(sys.) (34) 

0.004 x 

at Q2 = 4 GeV2• A straightforward comparison of (l0) and (11) implies fi =1= J. To 
allow for this MRS [7] parametrize 

d- u = Ax-a(l - x)P. (35) 

where a ~ aM(O) since the difference may be associated with the lack of Regge p - a2 

exchange degeneracy. When this is done (sets Do,D_) it is found J > fi and that 
lasR. of (10) is about 0.26. It is interesting to note that it is still possible to maintain 
fi = J and obtain an equally good global description of deep-inelastic and related 
data but at the expense of a somewhat contrived small x behaviour of the valence 
distributions, see set So of [7]. However it is more physical to allow fi i= d and so the 
discussion will concentrate on sets Do and D_. Fig. 5 summarizes this Gottfried sum 
rule discussion. 

In addition to the parameters describing the input distributions there is the final 
important parameter, AQCD, which specifies the running of a. and which determines 

3CTEQ [to] use freely parametrized input distributions for il, J and s. A critique of this approach 
is given in Ref. [13]. 
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Figure 6: The description of the NMC data [5J for the structure function ratio F:n 
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by the S~,  D~  and D~  sets of partons of ref. [9]. The mean Q2 of the data varies with z as shown 
10-3 10-2 10-1 by the uppermost scale. The curves take this Q2 dependence into account. The values of Fr' have 
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Figure 5: The upper curves give the accumulated contribution. f;. to the Gottfried sum rule, 
(33), as a function of z, the lower limit of integration. Predictions are shown for seta So. Do and 
D_ of partons of ref. [7]. The lower curves compare the integrand, F:P - Ff", with NMC data [16]. 
The figure is taken from ref. [7), see also [17J. 
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the rate of evolution in Q2. We use the m scheme. Thus, in summary, MRS fit to 
deep inelastic and related data with a total of about 15 parameters. The quality of 
the fit to the recent high precision deep-inelastic data is shown in Figs. 3,6,7 and 8. 
Only data with Q2 > 5 GeV2 are fitted. The value of A is found to be [9} 

AQ'S"(nl = 4) = 230 ± 55MeV (36) 

which corresponds to 
a,(M;) = 0.112,,:g:::, (37) 

to be compared with a, = 0.120 ± 0.006 which is the average of the LEP determina.­
tions. 

We note that to determine !i(X, Q2) from the evolution equations, (20) and (22), 
we only integrate over y from x up to 1. Thus the fits to the data do not involve, 
or determine, !i(X, Q2) for values of x below that for which data exist. However 
the precision of the data means that we should now have reliable sets of parton 
distributions at least in the region x z: 0.05. Extrapolations outside the region of the 
data are notoriously unreliable. All we can do is to use the input parametric forms, 
together with the evolution equations, to extrapolate the various sets to small x to 
show the general trends. 

Fig. 9 shows parton sets D~  and D~  where the latter set incorporate the singular 
"Lipatov-like" forms xg, xq "" x-l at small x. These two sets are essentially identical 
for x ;:;: 0.02 (though there is some difference in the gluon that is necessary to conserve 
momentum), but they are dramatically different at small x. In particular Fig. 10 
shows that they lead to very different predictions for F;P in the HERA regime. 

4. Summing LL(Q2) via the Altarelli-Parisi equations 

In preparation for the study of the small x region4 it is useful to return to the 
Altarelli-Parisi equations and to show how they effectively resum the leading log 
Q2 (LL(Q2» terms (see also ref. [21)). For simplicity consider a non-singlet quark 
distribution (e.g. u - u), since it decouples from the evolution of the gluon distribution 
so that the (leading order) Altarelli·Parisi equation is simply 

dq(x, Q2) a,(Q2) rl 
dy Pqq (~) q(y, Q2) 

dlogQ2 21r J:& Y Y 
l 

a,(Q2) r dy rl 
dz~(x _ yz)Pqq(z)q(y, Q2), (38)

21r Jo Jo 
which can be pictured as a "quark" of momentum fraction y splitting up into a 
"quark" of momentum fraction x = zy and a gluon of momentum fraction 

4Recent reviews of small x physics include those listed in ref. (19). 
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(1 - Z)Yi note that Y > x. The Altarelli-Parisi equations can be solved either by 
direct numerical integration step-by-step in logQ2 or by inverting the moments of the 
x distribution. The first method is usually used in global analyses of the data of 
the type that were described in section 3. However here it is useful to introduce the 
moment analysis. 

If we take the moments of (38) then the Altarelli-Parisi equation factorizes and 
the resulting differential equation can be solved to give their Q2 evolution. From (38) 
we have 

rt dx x" dq(x, Q2) = a,(Q2) (1 dy rt dz rt dx x"S(x _ yz)Pqq(z)q(y, Q2)
10 X dlogQ2 2'lr 10 10 10 x 

= a,(Q2) (1 dz Z" Pqq(z) rt dy y"q(y, Q2), 
2'lr 10 z 10 y 

which gives 

dM,,(Q2) _ 1 / 2)A"M,,(Q2) (39)
dlogQ2 - ~log(  Q2 A 

where 
11dx 2)M,,(Q2) == 0 -;-x"q(x, Q , (40) 

1 
dxA == 1-X"Pqq(x), (41 )

" 0 x 
1 

(42)a.(Q2) = blog(Q2/A2)' 

Eq. (39) can be readily solved giving 

M (Q2) _ (Q2)AR/b" - en log- (43)A2 

where en cannot be calculated from perturbation theory and so its value, via Mn(Q~),  

must be determined by experiment. In other words we only know the evolution 

(44)M.(Q') = M.(@ [:~~:r"  

and not the absolute values of the moments. It is straightforward to evaluate (41) 
and to show that At = 0 and An < 0 for n ~ 2. The first result follows from (27) 
and the second simply reflects the expectation that as Q2 increases the distribution 
q(x, Q2) decreases at large x and increases at small x. 

Incidentally we note that we can recover the parton x distributions from the mo­
ments by taking an inverse Mellin transform. We analytically continue the moments 
into the complex n plane and use the inverse relation to (40) 

1 jC+iOO
q(x, Q2) = -2. M(n, Q2)x-n dn (45)

11"2 c-ioo 
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Figure 11: O(a,) real gluon emission contributions to F,(z, Q'). 

where c is chosen such that the contour lies to the right of the singularities of M in 
n. However here the result we wish to use is (43). 

To gain insight into how the Altarelli-Parisi equation sums the leading log Q2 
terms we return to Fig. 4(a). The resulting contribution to F2 is shown in Fig. 11. 
While the sum of these graphs is gauge invariant, their relative importance depends 
on the choice of gauge. Dokshitzer [22] showed that in an axial gauge the log Q2 
term comes from the first graph, and that the LL(Q2) sum comes from the sum of 
ladder graphs. An axial gauge is one in which the gluon has only the two physical 
polarization states. (In such a gauge we do not need unphysical ghost contributions 
which in general would be required to cancel the scalar polarization component of the 
gluon). 

Here we shall use (43) to give a heuristic discussion of how the Altarelli-Parisi 
equation is equivalent to the LL(Q2) sum of ladder diagrams. We write (43) as 

Mn (Q2) = Cnexp (~nlOg (log ~:)  r 
1 (An ( Q2))r (46)Cn ~;:r Tlog log A2 

and show that the rth term is equivalent to the ladder diagram with r rungs. 
We begin with the I-rung ladder of Fig. 12(a). This contribution was given in 

(14) which, with the help of (21), may be expressed as 

F2(x, Q2) _ "11 dy ( ) '2 P. (.:) JQ2 dk} a,(k}) (47) 
x - 7 s y q y eq qq y kt 21r • 

Working to leading order, we rewrite the various factors in the form 

t r1 1 ( Q2) (48);;= e~q(x, Q2) = ~ e~ 1 dz 1 dyq(y)e5(x - yz)Pqq(z) blog log A2 
0 0 

x,k~ 2
X, kT2 

y x, ,k~1
 

y� 

(0) 1- rung (b) 2- rungs 

Figure 12: O(a,) and O(a~)  "ladder" diagram contributions to F2(z, Q2). 

and so 

Mn ( Q2)I_l'UIII An ( Q2) (50)CnTlog log A2 ' 

where An is defined in (42) and 

en == rl 
dy ynq(y). (51 )10 y 

We have therefore identified the I-rung contribution, (50), with the r = 1 term of 
(46). 

We evaluate the 2-rung contribution in the same way, but now we have to integrate 
over the variables shown in Fig. 12(b). The LL(Q2) contribution comes from the 
region of phase space that is "strongly ordered" in k} 

Q2 ~ kf2 ~ kfl (52) 

so that we effectively have the nested integrations 

Q2 dk}2 a,,(kh) J/c}, dktl a,,(ktd
J kh~  k}l~ 
 

1 JQ2 (kh ) 1 (k}2)�
27l"b dlog log"'j\2 27rb log log"'j\2 

1 1 [ ( Q2)J 2 = 211'b 2' log log A2 (53) 

which on taking moments gives 

r
The integration over the longitudinal momenta, which we denote L(X), must satisfy 

l dx rl dy r1dz 1 ( Q2) the physical constraint 
Jo -;-xnq(x, Q2) = 10 yynq(y) 10 ~zn Pqq(z) blog log A2 ' (49) 

1 > Y > Xl > X, (54) 
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which reflects the degradation of the proton momentum along the ladder. Thus we 
have 

1 

L( x) == 1dXl Pqq (~) [11 

dy Pqq (Xl) q(y)] 
:II Xl Xl :111 Y Y 

1 1 

= 10 dz 10 dXI6(X - XlZ)Pqq(z) [1: ; Pqq (:1) q(y)] . (55) 

We take moments so that the z and Xl integrations factorize 

J ~ xnL(x) = 11 
d: zn Pqq(z) tc d~1 x~ [1: ~ Pqq (:1) q(y)]} 

= An {enAn} = CnA~  (56) 

where {...} has precisely the form of the moments which occur in the I-rung case and 
so can be factorized to give <:nAn exactly as in (47) to (50). Combining the results 
of the integrations over the transverse and longitudinal momenta, (53) and (56), we 
have 

2 1 [An ( Q2)]2Mn(Q h-nms = Cn2i 211'b log log A' (57) 

which is precisely the r =2 term of (46). It is straightforward to extend the argument 
and to verify that the LL(Q2) resummation implicitly embodied in the Altarelli-Parisi 
equation, (38), is equivalent to summing ladder diagrams (in an axial gauge), with 
each additional rung giving an extralog(Q2), or rather log(logQ2). 

5. Summing double leading logs at small x and large Q2: 
DLL(Q2,1/x) 

In the small X regime we encounter new logarithmic effects associated with log(1/ x) 
contributions. These will need to be resummed. For simplicity we take a. fixed. First 
we consider the case when 

1 Q2 
a" log-logQ2 ,." 1 (58) 

X 0 

but where a"log(1/x) and 0"log(Q2/Q~) are both small. At small X the gluon dom­
inates and so we keep only g(x, Q2). The Altarelli-Parisi equation which sums the 
double leading logs (i.e. the [a"log(l/x)log(Q2/Q~)]nterms) is 

1
dg(x, Q2) = a, 1dv p (:.) g(y, Q2). (59)
dlogQ2 211' V gg Y:II 

We speak of the double leading log (DLL) approximation based on the small X be­
haviour Pgg(x) ~ 6/x (see (24». Then (59) becomes 

d(xg(x, Q2» = 30, 11 dy ( Q2) (60) 
Q2 Vg V,dlog 7r Y:II 

2
X, kTn 

xn_1 k~n-1I 

X1 I k~ 
y 

Figure 13: The n-rung gluon ladder diagram. 

which can be solved directly to give the asymptotic behaviour 

30 1 Q2) t)xg(X,Q2) ,." exp 2 710g;logQ~ . (61)( [ 

Thus as X - 0 we see that the DLL summation implies xg grows faster than any 
power of log(1/x). 

Here it is useful to identify the DLL behaviour (61) with the sum of ladder dia­
grams. The n-rung diagram is shown in Fig. 13. Each additional rung, say rung 
i, brings in Cl. factor (cf. (14) and (15» 

J 
dXi_l Jdkfi {a. +Pgg (~)}  ~  30. J dXi-l J d7i (Xi-I) (62)
Xi-l 211' kTi Xi-1 1f Xi-1 kTi Xi 

where the factor (Xi-t!Xi) will be absorbed to translate the result for g(x, Q2) into one 
for xg(x, Q2). As before we treat the integrations over the transverse and longitudinal 
momenta separately. Again the LL(Q2) terms come from the strongly-ordered region 

Q2 > k}n > ... > k}1 (63) 

so that we have nested integrations 

( 3a,,)nJQ2dkfnJk~ndkfn-l 

2 k2'" 
7r kTn 'Tn-l 

Jkhdkfl 
2kTt 

_ 
-

..!..(3a'l Q2)n 
I og 2 

n. 7r Qo 
()
64 

In a similar way the LL(1/x) terms arise from the strongly-ordered region� 

x «: Xn-l ~ ... Xl ~ Y (65)� 
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so we also have the nested integrations 

1
1 1 

1 dX"_l 1dXl 1 dy (Q2) 1(1 1)" G--... - -yg y, 0 = ,og- 0 (66) 
7: X,,-l Z'2 Xl 7:1 Y n. X 

where Go is the small X limit of xg(x, Q~).  

The DLL approximation for xg(x, Q2) is the sum of ladder diagrams, each of which 
is given by a product of forms of the type of (64) and (66), 

1 )2 (3a. )1xg(x, Q2) = Go E,( -log-logQ2. (67)
"n. 11' X 

The sum may be evaluated using the identity 

2

1 )2 (Z2)" e~(;r 4" = Io(z) = ~ as z -+ 00, (68) 

where fo is a modified Bessel function, which gives 

( [3a. 1 ]1-)xg(X,Q2) '" Goexp 2 -;:-log;logQ2� (69) 

in the DLL limit. 

6. The LL(l/x) sum and the BFKL equation 

Fig. 14 summarises our discussion so far. The figure shows the strongly-ordered 
momentum configurations that gave rise to the LL(Q2) and DLL(Q2,1/x) approxi­
mations, which were discussed in sections 4 and 5 respectively. Recall that the DLL 
approximation only includes the LL(I/x) terms that are accompanied by LL(Q2). 
For HERA we need QeD predictions for small X but moderate Q2. Starting from a 
knowledge of g(xo, Q2) (with say Xo ~ 0.01) we wish to predict g(x, Q2) at smaller x, 
that is to evolve in the upwards direction in Fig. 14 at moderate Q2. For moderate 
Q2 we must sum the LL(I/x) terms but keep the full Q2 dependence, not just the 
LL(Q2) terms. Clearly we must relax the strong ordering of the kT's which gave the 
LL(Q2) behaviour and integrate over the full kT phase space. 

As in the other cases, we can picture the LL(I/x) behaviour as a sum of "ladder" 
diagrams, but now the QCD calculation is much more involved. The resulting struc­
ture does indeed look like a summation of ladder diagrams but actually they are only 
an effective representation for a whole set of Feynman diagrams, most of which are 
of non-ladder form, which were originally5 summed by Fadin, Kuraev, Lipatov and 

5More recently an alternative approach, based on the introduction of a non-Sudakov form factor, 
has been proposed by Marchesini et al. (24). In this way they have managed to derive an equation 
which reduces to the DFKL equation at small z and to the Altarelli-Parisi equation at large x. 
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log(l/x) X ¢: x" ... ¢: Xl ¢: 1� Q2 ~ k~T'" ~ kh ~  Q5 
X « X" ... < Xl < 1 

t 
Lipatov / 

evolution /DLLA 

IXo 

Altarelli - Parisi Q2 :» k~T'" ~ k~T j> Q~  ... 
r' 

evolution 

logQ2Q~  

Figure 14: The three different limits of g(z,Q2) in the logQ2, log(l/z) plane: (i) the LL(Q2) region 
where a,logQ2 .... I but a,log(l/z) is small, reached by Altarelli-Parisi evolution from g(z, Q~),  (ii) 
the DLL(Q2, I/z) region where a,logQ210g(l/z) .... I but a,logQ2 and a,log(l/z) are both smail, 
and (iii) the LL(I/z) limit where a,log(l/z) .... I but a,logQ2 is small, reached by evolution from 
g(zo, Q2) using the Lipatov or BFKL equation. We also indicate the regions giving the dominant 
contributions in the integrations over the phase space of the emitted gluons; these are strongly­
ordered in the longitudinal and/or transverse momenta of the gluons along the chain. 



X, kT 
2 - - --,

I 

X' k,2 , T ---j 
I 
I 

I 
I fn 

fn- 1 
I 
I 

I I 
I 

Figure 15: Diagrammatic representation of the BFKL recursion relation (70). 

Balitsky [23]. It turns out that one set of diagrams, which must be included, can 
be shown to collectively reduce to the reggeization of the t-channel (Le. "vertical") 
gluons in the ladder. H you are willing to take this ingenious L1(1/%) summation of 
BFK1 on trust, then the result may be written in the form of a recursion relation 
(see Fig. 15) which relates the n-rung contribution In to the (n -I)-rung contribution 

/"-1 
1 

fn(x,k}) = 1d;' Jdk~ J«kT,k~)f"-I(X',k!f), (70) 

where the BFKL or Lipatov kernel is 

K(kT,kT) = 3;·14{k~lk}I_k!JI-,8(kf)c5(kf-k!f)} (71) 

with 

,8( 1.2 ) _ Jdk!} { 1 _ I} (72) 
"'T - k!f Ik}-kll (4k1i+kf)f' 

Here we work in terms of the unintegrated gluon distribution, f(x, k}), in which we 
unfold the "last" kf integration of the gluon distribution g(x, Q2) that we have been 
using hitherto; 

2 JQ2 dk} 2)xg(x,Q) = Vf(x,kT . (73) 
T 

The two terms in (71) correspond to real gluon emission and virtual corrections respec­
tively; the apparent singularity at k} = k!f cancels between these two contributions. 

Let US check that we reproduce the DLL approximation if we constrain the kT's 
to be strongly ordered, Le. kt ::> 14. Then (71) becomes 

K(kT,kT) = (74)3;. ~. 
In this case the recursion relation (70) effectively becomes 

3a. 1 (1) 1 (Ie})fn ~ --log - -log - fn-l (75) 
'K n % n Q~ 

and, on summing over n, we reproduce (69). 
The BFKL kernel, (71), is much more complicated than (74) and it is not so simple 

to find the small %behaviour arising from the summation of the 11(1/%) terms. The 
result is found to be 

f(x, Ie}) ,.., h(kf)x-.\ (76) 

as x -+ 0, where). is the maximum "eigenvalue" of the kernel. 
Insight into the %-.\ form may be obtained from a toy model [6] in which it is 

assumed that the kernel has a factorized form 

K(kT1kT) = u(hr)v(kT) (77) 

although of course, we see the BFKL kernel (71) has a more complicated structure. 
Substitution into the recursion relation (70) then gives 

1 

fn(x,kf) = U(kT) 1 ~' Jdk!fv(kT)fn-l(X',k~), (78) 

which itself is of factorizable form 

f,,(x,k}) = u(kT)t,,(x). (79) 

Rewriting the recursion relation (78) in terms of tn we obtain 

1 dx' 
tn(x) 1=). -tn- 1(x') 

% x' 
(80) 

where 
). = 100 

dk}ti(kT)v(kT ). (81) 

The nested integrations of (80) give 

tn(x) '" ).n (1 ),log - I 
n. x 

(82) 

which on summing over n generate the small x behaviour 

f(x,k}) '" h(k~)exp  ()'log~)  = h(k~)x->'.  (83) 
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The exponent A, defined in (81), can be seen to be a eigenvalue of the kernel, viz., 

K ~ U == J U(kT)V(~)u(~)d~ = AU. (84) 

Clearly the maximum eigenvalue will dominate the small x behaviour of the gluon 
distribution f. 

We can use the recursion relation (70) to write the BFKL equation in either 
differential or integral form. Symbolically (70) has the structure 

fn = K®fn-1 where f = L: fn (85)
,,=0 

and where the indicates that there is an x, as well as an 14, convoluti,(>n. PerformingA 

the sum from the n = 1 term, the symbolic recursion relation gives 

f-fo = K®f 

or, to be explicit, the integral equation 

1 

f(x, Jef) = fo(x, Jef) +1~' J d~K(kT, ~)f(x',~) (86) 

where fo is frequently called the driving term. Eq. (86) may be used to obtain the 
BFKL equation in differential form 

{}f(x,k}) = Jd~K(kT,~)f(x"  ~).  (87)
{}log(l/x) 

For fixed a. the BFKL equation can be solved analytically. The solution is found 
to be 

f(x, 14) (x/xo)->' (-log2(k}/kf»)T - [2'll'AIIlog(zo/x)J1 exp 2A"log(xo/x) 
(88) 

where 
A = 3a·410g2 (89) 

11' 

and A" = (3a./1r)28((3) where the Riemann zeta function ((3) = 1.202. We see 
the characteristic x->. behaviour, modulated by a (log(1/x»-t factor. If we insert 
a typical value of a. into (89) then we find A :::::l 0.5. This is the origin of the input 
forms xg, xij""" x-t for small x that were used in the global analyes of section 3 (see 
(32». 

Formula (88) shows another characteristic feature of the solutions of the BFKL 
equation. Since there is no ordering in kT there will be a "random walk" in kT as we 
proceed along the chain and evolution to smaller x will be accompanied by a diffusion 
in kT . Formula (88) displays explicitly the diffusion pattern, namely a Gaussian 
distribution in log(k}) with a width which grows as (log(l/x))t as x decreases. The 

log k; 

~'" 
 

~  X'log (~)+A log k2 
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,­
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Figure 16: The variation in the width of the Gaussian logkt distribution of j(z, kt)/(kt)t as we 
use the BFKL equation to evolve down in z from a starting distribution at z =Zo of width ..... v'A. 

position of the maximum of the Gaussian distribution (given by logk}), as well as 
the normalisa.tion of the solution, is controlled by the boundary conditions at x = Xo, 

that is by f(zo,k}). 
The approximate analytic solution (88) only applies for x < zo. For x near Xo a 

more realistic treatment modifies the A"log(zo/x) factors in (88) to A"log(xo/x) +A 
where A depends on the initiai 14 distribution. Fig. 16 shows a sketch of the diffusion 
pa.ttern. We foresee tha.t diffusion will be a problem in the applicability of the BFKL 
equation since it can lead to an increasingly large contribution from the infrared (and 
ultraviolet) region of k} where the equation is not expected to be valid. We return 
to this discussion in section 8. 

7. Shadowing and the GLR equation 

The increase f '" x->' or X9 '" x-~,  as x decreases, cannot go on indefinitely. 
If the density of gluons within the proton becomes too large they can no longer be 
treated as free partons. The growth, as x -+ 0, must eventually be suppressed by 
gluon recombination. When do we expect the "sh~dowing"  contributions to start to 
become appreciable? If we view the proton from a frame in which its momentum p 
is la.rge, but in which xp ~  Q, then a measurement of g(x, Q2) probes a gluon of 
transverse size""" l/Q, but much smaller longitudinal size""" l/px, so that the proton 
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appears as a thin disc. The number of gluons, ng , per unit of rapidity is xg(x, Q2) 
and the gluon-gluon cross section CT""'" a.(Q2)/Q2, so the crucial parameter is 

_ ngCT a.(Q2) ( 2) 
(90)W = 1rR2 '" 1r fllQ2 xg X, Q 

where R is the radius of the proton. In regions of ::c and Q2 where W <: 1 the 
interaction between the gluons should be negligible. However at sufficiently small x, 
when W "" a., we must allow for a suppression of the growth of the gluon density 
due to 2g -+ 9 recombination. By carefully considering QeD diagrams which become 
important at small x, recombination was estimated some time ago by Gribov, Levin 
and Ryskin [25], and a little later by Mueller and Qiu [26J. To a first approximation 
the normal evolution, Fig. 17(a), is corrected by including Fig. 17(b) (the so-called 
"fan" diagram) in which the gluon ladder branches into two ladders which couple to 
the proton. The triple ladder vertex (shown as a rectangle) represents the sum of 
several (non-planar) diagrams. The itera.tion of this fan diagram produces a whole 
series of fan diagrams like the one shown in Fig. 17(c). In order to make progress 
GLR assumed that the coupling of n gluon ladders to the proton is proportional to 
the nth power of the single ladder coupling and in this way they were able to account 
for these shadowing effects by including an additional term in the BFKL equation, 
(87), so that 

81(x, let) = J{ @ 1- 81a~(1q.)  [xg(::c k})]2 (91) 
8l0g(l/x) 16R2kf" 

The minus sign and the quadratic nature of the extra term reflect the suppression 
of growth of I, as ::c decreases, due to gluon recombination. The equation is known 
as the GLR equation [25J. The derivation of the GLR equation assumes that there 
are no correlations between the two gluon ladders (in Fig. 17(b» whi~h recombine. 
However Bartels [27], and subsequently Levin et a1. [28], have established that there 
is a weak interaction ('" 1/N: '" 10-2

) between the ladders. The consequences of this 
additional interaction are the subject of debate [29]. 

The GLR equation includes only the leading O(a.) shadowing corrections. If we 
were to proceed to ultra small x we would pass from the region where W;S O(a,,) 
into the region where W ~ 0(0.) where, first, higher-order shadowing effects became 
significant, but soon into a region where perturbative QeD is not applicable. We 
may thus only regard the GLR equation to be a reasonable approximation below a 
"critical line" which divides the (x, Q2) domain into regions with W;S 0(0.) from 
regions with W ~ 0(0.), see Fig. 18. From (90) it is clear that as Q2 increases 
shadowing becomes less important as Fig. 18 indicates. 

Quantitatively the crucial "shadowing" parameter in (91) is R. It says how the 
gluons are concentrated within the proton. The conventional assumption is that they 
are uniformly spread across the proton; then R is the proton radius ("" 5 GeV-1). 

However it has been advocated that they may be concentrated in <lhot-spots" within 
the proton. Analyses have therefore also been performed with R = 2 GeV- 1

• These 
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Fipre 17: (a) The ladder diagram responsible for the BFKL "linear" QeD evolution (87), at 
small Zj (b) the basic ~luon shadowing or recombination diagram, also pictured as a "fan" diagram; 
(c) the sum oHan diagrams, such as the one shown, form the basis ofthe "quadratic" GLR equation, 
(91). 
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Figure 18: The (:e, Q2) regions of validity of the various evolution equations. The gluonic content 
of the proton (as resolved by a Q2 probe) is also indicated. Perturbative QeD is applicable below 
the critical line (prOVided Q2 :> A.'). 



numerical studies [6,30,31] of shadowing effects using (91) indicate that the kinematic 
regime accessible at HERA is below the critical line, unless very small "hot-spots" 
exist. 

8. Solutions and applications of the BFKL equation 

Recently there have been several studies of the properties of the solutions of the 
BFKL equation [30, 31, 32, 33, 34]. In some cases numerical solutions have been 
obtained. The usual technique is to solve the differential form of the equation, (87), 
by step-by-step integration down in x from an input distribution I(xo,k}), at say 
Xo = 0.01, determined from one of the parton sets of section 3. Running Q. and 
the effects of shadowing have been incorporated [30, 31]. One straightforward way 
to avoid the diffusion of the solution into the non-perturbative infrared region is to 
impose a lower limit cut-off k~ on the krj integration in (87). For a given value of 
k}, the characteristic behaviour f(x, kf) ..... Cx->. soon sets in with decreasing x. The 
normalisation of the solution C is found to be much more sensitive to the choice of 
the cut-off k5 than is the value of ~  [34]. For k~ ~ 1 GeV2 we find ~ ~ 0.5 essentially 
independent of the value of 14. 

The resummation of the gluon ladders, !(x,!4), is a. uni;versal ingredient in the 
perturbative QeD predictions of all small x processes dri\l'en by the gluon. For 
example f( x, k}) occurs in the calculation of the structure functionsj of deep-inelastic 
events with jets; of heavy quark-pair[35], JIt/; and prompt photon production; as well 
as deep inelastic diffraction at small x. 

(a) QeD predictions of deep inelastic structure functions at 
small x 

At small x, say x ..... 10-3 , the deep inelastic probe dominantly interacts with a 
sea quark and so, to leading order, the structure functions Fi(X,Q2) reflect the small 
x behaviour of the sea quark distributions. Since the density of gluons increases 
rapidly with decreasing x the sea quark distributions are themselves increasingly 
dominated by the gluon distribution, via 9 -+ qq. This component may be calculated 
in perturbative QeD. The relevant diagram is shown in Fig. 19(a). According to the 
kT-factorization [36] the contribution to the deep inelastic structure functions, say 
F;P, may be written in the form [31) 

1 
p. ( Q2) _ 1 dx' Jdk} f (~  14) p,(O)( I k2 Q2) (92)2 x, x' let x" 2 x, T'-:t: 

where x/x' is the longitudinal momentum fraction carried by the gluon which disso­
ciates into the qij pair. The function FJO) can be calculated from the qua.rk box (and 
crossed box) approximation to the photon-gluon subprocess shown in the upper part 
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Figure 19: The upper diagrams show a gluon "ladder" contribution to small z for (a) deep­
inelastic scattering and (b) for deep-inelastic scattering together with an energetic jet. The quark 
box factor F(O) implicitly includes the contribution of the crossed box. The lower sketches show the 
k} diffusion patterns in the form of the variation of the width of the Jog J:t distributions of (93) as 
a function of %1 along the chain. 



of Fig. 19(a). We may regard F(O), or rather to be dimensionally correct F(O)/k}, 
as the structure function of a gluon of approximate virtuality k}. The gluon density 
function f, which denotes the sum of the gluon "ladder" diagrams, is obtained by 
solving the BFKL equation. 

The perturbative QCD predictions for F2eJ' [34J are compared with preliminary HI 
data in Fig. 20. We see the normalisation is infrared cut-off dependent (with a "cut­
off" value k~ =1 GeV2 favoured) but that the shape is in excellent agreement with 
the data. The comparison suggests that HERA may have seen the first indication of 
the BFKL growth caused by the resummation of soft gluons. 

Fig. 19 also shows the effects of diffusion in 14. Unlike Fig. 16 the diffusion pattern 
is now determined by boundary conditions at both ends of the gluon ladder. To be 
specific it is given by [33, 34} 

x-~ 

f(x1;kf)/u (:1,14) /14 --p========== x 
Jlog(xo/x1)log(xt/X ) 

log2(kf/k2) 10g'(kfIP ) ) xexp _ u (93)( 2>'''log(xof.~t) 2'x"log(xt/:.c) 

where k~ is determined from boundary conditions controlled by the quark box function 
FJO). The variation of the width of the diffusion pattern (93), as Xl varies between :.c 
and Xo, is sketched in the lower part of Fig. 19(a). Even for large Q2, the boundary 
conditions at Xo mean that the non-perturbative infrared region is penetrated, which 
is reflected in the cut-off dependence of the perturbative QCD predictions shown in 
Fig. 20. 

(b) Deep inelastic events containing a measured jet 

A major problem in identifying the characteristic BFKL :.c-~  behaviour from the 
observed shape of F2(x, Q') at small x is that the predictions depend on assuming a 
set of "starting" distributions, 111(x, Q'), as a function of x at some Q2 = Q~. The 
necessity of this input is a reflection of our lack of knowledge of the non-perturbative 
regime. As a result, we cannot be certain whether the observed steep behaviour at 
x "" 10-3 is indeed a manifestation of the BFKL perturbative QeD effects or if it is 
due to the evolution from a steep non-perturbative input x distribution. Processes 
such as heavy quark pair, J/t/J and prompt photon production encounter the same 
dilemma.. 

However Mueller [37] has indicated an ingenious way to side-step the problem. The 
suggestion is to observe deep inelastic (x, Q2) events which contain a measured jet 
(Xj) k}j) in the kinematic regime where (i) the transverse momentum of the jet satisfies 
kh ~ Q\ (ii) the jet longitudinal momentum, Xj, is as large as is experimentally 
feasible, and (iii) z == x/Xj is small. A diagrammatic representation of the process 
is shown in Fig. 19(b); since Xj is to be chosen as large as experiments allow (Xj "" 
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Figure 20: The perturbative QeD predictions for F;I'(:r, Q2) obtained from the kT-factorization 
formula, (92), for different choices of the infrared cut-off parameter k~,  compared with preliminary 
data obtained by the H1 collaboration [18] at HERA. The predicted curves contain a slowly varying 
"background" non-BFKL contribution estimated from the measured value of F2(Z, Q2) at z =O.l. 
The figure is taken from r~f. [34]. 



0.1) the strong ordering assumed at the parton a-gluon vertex should be a. good 
a.pproximation. The beauty of this measurement is that attention is focussed directly 
on the BFKL z-.\-type behaviour at small z arising from the resummation of soft 
gluon emissions. The choice kt; ~  Q2 neutralizes the ordinary gluon radiation which 
would have arisen from the Altarelli-Parisi evolution in Q2. 

It can be shown [38] that the differentia.l structure function has a leading z(== z/ z;) 
form 

X;a ~:~2.  := a.(Q2) [EZ;!a(z;,k};)] z-1, (94) 
xJ TJ • 

where EllS == 9+ i(q + it), which indeed contains the anticipated .:-1 behaviour. As 
before, Ais the maximum eigenvalue of the BFKL kernel. The parton distributions 
fa(xj, kt;) that are needed in (94) occur for z values where they are well measured 
and so, in principle, observation of the differential structure function should allow an 
unambiguous determination of A. 

Another advantage of this process is that we can choose kf; l:::l Q2 sufficiently large 
to minimize the kT diffusion into the infrared region; a choice which, incidentally, will 
also suppress the contamination from bremsstrahlung background jets. A typical 
diffusion pattern is shown in Fig. 19(b). As compared to the pattern in Fig. 19(a), 
we now have a 8(kf - kf;) distribution at the "bottom" of the gluon ladder. 

9.� Conclusions 

Once more deep inelastic scattering has become a "hot" issue, stimulated by much 
new data6 from fixed target and HERA experiments. We have seen that the former 
data now pin down the parton distributions rather precisely for z ~ 0.05. Indeed 
the wide range of data that are well described in this way provide an impressive 
confirmation of QCD. With the new HERA data it is fair to say that small :c physics 
has come of age. Novel perturbative QCD effects are expected in this regime and 
seem to be reproduced in the data. However we are a long way from having a deep 
understanding of the small z regime. From the perturbative viewpoint the higher 
order effects are far from under control. Attempts to approach the HERA regime from 
the non-perturbative or Regge domain have not been discussed in these lectures. Such 
studies present enormous, but worthwhile, challenges. Nevertheless from all points of 
view the new HERA data have already stimulated much theoretical activity, which 
will hopefully lead to a greater understanding of one of the most interesting areas of 

6This year has also seen renewed interest in the spin structure of the nucleon with the recent 
polarised neutron deep inelastic measurements 139), to complement the earlier polarised proton 
experiments [40). 

QCD. 
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