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ABSTRACT

A method based on the discrete group of the inner symmetry of integrable
systems is used to derive explicit formulae for soliton-like solutions of the inhomo-
geneous Heisenberg ferromagnet. The solutions are given in terms of expressions

which involve ratios of two determinants.
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1. Introduction

In this paper we demonstrate how the use of the method of the. discrete
group of symmetries of integrable systems (auto-Backlund transformations) ‘ca,n
be used to derive explicit expressions for the soliton solutions of such sys&.ems.
As an example we study the Landau-Lifschitz equation (the equation for an. inho-
mogeneous Heisenberg ferromagnet) as this equation is sufficiently c.omp.hcated
to demonstrate the usefulness of our approach and at the same time is very

important because of its many applications in physics.

i i i win
All the important properties of this equation are contained in the following

chain of equations (in general, an unlimited one)

1 1 (In(¢? + (ce® +v+ ae™?))’
—_ = 9 [}
crp(bar— o)+ 1 exp(di = dim1) +1 2¢,

’

(1.1)
i i ! 98 and

where ¢; are the unknown functions, s - an independent variable, (¢; 7;), ‘
f inertia

o and v are arbitrary parameters of the model (related to the moments oA 1
of a non-axial-symmetric “rigid body”). The transformation (1.1) describes the

group of the discrete symmetries of the Landau-Lifschitz equation.

Let us add that this problem has been studied before. In fact, re.f. [lf]
considers this problem from the point of view of its Lax representation while ref.

[2] presents a discussion based on the Hamiltonian formalism.



2. Landau-Lifschitz equation

The Landau Lifschitz equation arose out of the generalisations of the Heisen-
. .. 3] .
berg model of a homogeneous ferromagnet. In its original form™ the equation
) S 32 . . .
describes the evolution of a unit vector field S ($2 = 1), which is a function of

one space variable (x) and time (t). This evolution is described by:
‘.a: =5§x§"+§x (jg), J= diag(Ji. Ja, J3), (2.1)

ES resp CLy is ni nt
i denot et rivatives res )e&.t.l\'@l). t 1S convenie
where - a.l\d ! .{CHO e the time il.l\d space de a. S resy ] 17

jecti SO Intr ce complex fields v and v
to perform a stereographic projection and so introduce complex fields u a

S 4145, o Sy =48 (2.9)
s YTy
i i : at v = ot 9 secomes
Then (disregarding the condition of reality (s.e. that v = ut)) (2.1) becomes
equivalent to the following set of two equations
? ¥) 19
1'A+1L"—-2'U'1ﬂ _-a_.—P("')::O
14 uv 20u , (2.3)
1] 19
.o v + P(v) 19 b= o
TvAvi - 14 uv 20v (v)

here P(y) = ay*+7y% +q, i denotes -‘%’-, and as before, ' denotes the derivative
i reons L= and y = L22 _ 1o Iy the case when
with respect to z. Moreover, a = =271 and y = =13 3. .
the “rigid body” is axially symmetric (i.e., when J, = Jp,or Jo = Jyor J; = 3)
we find that o =0 and v = %20 respectively.
The system of of equations (2.3) is invariant with respect to the following

i re
discrete nonlinear transformation (v — U, v — V), whe

2_ -2
1 L S Unﬂ"+“? -V )4_ (2.4)
U=;’ 1+0V 14w [(no)P+av? + v+ av

This can be verified by a direct computation, or can be checked by using, say,

REDUCE.

The transformation (2.4) plays the key role in our
it in the foﬂowing way. Instead of solvin
consider (2.4)

work. In fact we will yse
g the original equations (2.3) we will
and treat it as an iterative procedure for generating

from one set
of functions v and v another one. Then having “

solved” this iterative procedure

we will find that if we start from a given solution of (2.3) we will have many

other solutions among which we will be able to

find the ones which satisfly the
reality condition ut = .

Thus, if we denote and v as u;, and v and U and v

a8 uiy) and vy,
respectively, we see that (2.4) becomes

T 1 B 1 _ (In[((Inv,))? & o+ 4+ av?))
Y Y [ Alno,) :

(2.5)
which, in what follows, we will call the Landau-Lifschit lattice.
It is in this form that the invari

ance of the inhomogeneous Heisenberg model
was first considered in ref. [4-5].

Looking at (2.5) we observe that, in

general, the chain of €quations (2.5) is
infinite except when

[(Inv) ] + av? + 4 + avt=g, (2.6)

In this singular case we Cannot express u;y; and Vit in terms of 2, and v,.

However, the transformations (2.4) and (2.5) are invertible and so (2.5) can

rewritten as
1 1 = (n[((Inuiry))? + auly v+ au 3]y
T+wv;, 14 Uig1Vigy 2u} - 0

i+1

Thus, if the equation (2.6) is also satisfied by some v,

then the Landau-Lifschitz
chain is limited from both ends. In this case we have ¢

Ur equations (2.5) together
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with the boundary conditions

[(Invg) ] + avi + v + ;1110_2 =0, [Unun) P + audy + v+ oui? = 0. (2.8)

Similar equations have been studied before. In fact ref. [5] presents solutions
of the corresponding discrete lattices for many integrable systems. The lattices
which appear in ref. [4] were all related (in a direct or an indirect form) to the
Toda lattice. The chain described by (2.5) and (2.7) is more complicated and,
as we will show, is related to the doubly periodic elliptic functions and contains

the Toda lattice as a nontrivial limiting case.

3. Solution of the linear problem as the initial

condition for the Landau-Lifschitz lattice

Our solution of the chain chain (2.5) will be presented in the next sections.
Here we will discuss the constraints on the solutions of (2.3) which arise from the
boundary conditions (2.8). Thus we want to find the initial functions ug and v

which satisfy (2.3). But let us observe that if we impose
ul 4+ Plug) =0 (3.1)

then ug + %%P(uo) = 0 and so we see that the first equation in (2.3) is satisfied
if 29 = 0. So ug is given by

g

dy

/\/’-fp—(_ﬂ = z4C, (3.2)

or we may find an expression for ug in terms of some elliptic functions.
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Let us multiply the first equation in (2.3) by vo, the second by ug and subtract.
We find
/ )
2 _ .2 1LV — Yoty
—(uovg) + (vhuo — ugwo) — 2auguo(vg — ug) — 2(uovo) T+ oave 53)
(u2o? = 1)(v} - u}) —o.

+2a 1 + ugo

. _ 1 _1 i
Then we introduce ug = e and ¥ = e — 3 and observe that Y satisfies

2 2
. . 1 anw va—u(-) —
(Y. 4+ - —2Y? 2q—2—=0 . =0, (3.4)
SV 4 (Yo 5 - 2V + 20T

. 2 2 -2} —
where Yy = -%— However, from (3.1) we see that (82 + v+ a(e* +e } =0,

s+ o(e? =) = 0 and so we find that the equation for Y can be rewritten as
SV 4 (2PYY), = (PYy)s oY (€7 -7 = 0, (3.5)

where we have replaced the variable z by s and introduced P by P = P(e™*) =

ale® + e~2%) + 4. To solve (3.5) we introduce an unknown function ¢ given by

Y = é,, &=2PY2=PY, +ale® - Y. (3.6)

i ; — 24,

and reduce the problem to a linear equation for the function x = e~ %¢:
Pxss = Axs +xt =0, (3.7)

where A = afe® —e™%).

Shortly we will show that this equation is closely related to the Lame equation
whose solutions can be given in terms of J acobi elliptic functions. First, however,
we would like to present some other forms of this equation which represent some

other familiar problems.



To do this let us consider the stationary case i.e. we assume that Xt = Ay
(bearing in mind that in the general case we can represent the ¢ dependence
of x by fdAe’\'x(z\)dA). Then, it is possible to reduce (3.7) to a stationary
one-dimensional Schroedinger equation " +up = 0. To do this we eliminate

the terms involving the first derivative by setting xP~% = ¢ and find that the
equation reduces to

) 1, O=3) 505

where g1a = 4 % 24,

In the cases of higher sym metry (o = 0,0r 4 = £20) (3.8) is solvable in terms
ol elementary functions. Note that if we rewrite (3.8) in terms of the original
. ° (
variable & {and not s) we find that the equation for the function ¥ = X (3.7)
a3 b
i

takes the form

)

" 29192
¥ +(A+27_T)d'=o (3.9)

where Q(z) may be expressed in terms of the Weierstrass doubly periodic RO
function, and in the case of the higher symmetry (o = 0, or g;5 = ¥ * 20=0)

(3.8) becomes the familiar heat equation.
Next we return to the stationary form of (3.7) and introduce P = afe? +

-2 .
e7**) + v as our independent variable. We obtain

1 1 1 1
+ 2 —_— 1 Ax
XpP 2(P‘91+P'-92 P)XP+

PE-)P-gy ~ " O

This equation, Heun's equation, is very close to the Lame equation. To get the
Lame equation we return to the stationary form of (3.7), differentiate it with

respect to s and introduce a new function § = Xs- The equation for 4 is already

7

the Lame equation in the variable P i.e.

1 1o, _ (A+2P-g1—9)

1 1
REAE 1Y P Rl L o e

In our future investigations we will use solutions of this equation, which can be
given in terms of elliptic functions, to obtain soliton solutions of the Landau-
Lifschitz equation. In this work we restrict our attention to the general study of

the problem and apply it to some simple cases.

4. Recurrence relations for the Landau-Lifschitz lattice

If we want to find a solution of the semi-infinite Landau-Lifschitz chain (start-
ing from one end) then it is convenient to take the first step in the following form
(bearing in mind that this form resembles the solution discussed in the previous
section)

_s1+ (Inx)

1= (inx)"”’ (4.1)

ug=¢e v =¢€

where x is an arbitrary function and, here and below, ' denotes ;f-;. Then, let us

seek solutions of (2.5) of the form

1 =031 —slto
u"=611+an T T 31_0" (4.2)
n— n

with the boundary conditions o—; =0 and oy = (Inx)"

In this notion the right hand side of the chain equation (2.5) takes the form

1-04 1-02
Onp — 2 "_B: =0n — 2 6, (4.3)
where 2
: Po, ol 402 -1
Ap = (P(o!, + 02) = Agy,)', By + 0,4, = det oo ,
n = (Ploy +07) »)'s Bu + oatn Po! ~ Ao, (ol +02-1)
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and where the functions P and A are the same as in the previous section. The

equation (2.5) itself becomes

O
Ont+1 = n Coizy
1+o, (§n - 1—‘;::‘1.7" )) (4-4)

or, after some trivial manipulations,

An = 0n-1(By + 0, 4,)

On41 = - i
(1 =20,0,- By +0,4,)+ {711—10,2,44,, . {4.5)
However, we can rewrite (4.4) in the form

. ; 1 |
2 4+ b0, = - )
nTn 1 = TnTp4 1 —(y”_'n"‘ (4.6)

ol
1 n

m = Zan—abn-—u(“l)“-}-]. (4.1_)

a=0

Using these formulae we find that

(l\ L)
N ! 1
o1 =0, Uo:’x = x L

o= X' X" = x ’ (4.8)
L P(y" -

All calculations can be carried out all way to the end so that we can obtain an

where L = L(y) = Px" - Ay,

expression for 04 in the form of a ratio of two determinants of the (n+2) order.
The calculations are simpler in the case of axial symmetry (when, for instance,
a = 0). This special case is of interest by itself and in physical applications it is
referred to as the XXY model. We will discuss this case in the next two sections.

This will serve as a “warm up” for the general case which will be discussed in
following sections.

5. Calculation of g5 and o3 when o = 0.

First we introduce the following abbreviations: The (arbitrary) function x
will be denoted by 0 (thus 0 = x) and its p** derivative will be denoted by p
(thus p = %). Moreover, in the next section we shall use the symbol p for the
expression p=p—(p-2) = %} - %’;—:—3, which, as we will see, often arises in our
calculations. Note that ¥ =(s+1)=(s—1) = (3’+\1). In this section we show

that, when o = 0, 02 and o3 are given by

0 20 31 42
1 20 31 1 31 42 53
det
det ] 2 31 42 2 42 53 64
3 42 53 3 42 53 64
o= 020 31y’ 7 1 20 31 42 (5-1)
det | 1 31 42 2 31 42 53
det
2 42 53 3 42 53 &4
4 53 64 75
From these expressions it is easy to guess the form of a general oy.
To prove (5.1) we observe that (4.4) tells us that o, is given by
_ In'[o} + (01)? = 1}(1 = 0100) + )00 (5.2)

o

i b

o1 {(1 - (710'0)[l‘nz‘+(::—)]’ + 0;00}

and a similar expression holds for o3 (the indices on all o's have to be increased

by 1). So we see that to calculate o2 (and 03) we need o} (d4), o} + (01)? — 1
(0& + (02)2 - 1),1-0901 (1 — 0102) and 0;0’0 (050'1).

Let us calculate first o} (0}). To do this we observe that if we put o; = £

then

! /
8192 — 318,
PR il o 5.3
] (32)2 ( )

To perform the differentiation of our determinants we observe that our matri-

10



i t = 2 case
ces have the property that each of their rows is the derivative of the row above. along the last row and find that, say, in the ¢

Hence, when we differentiate their determinants it is sufficient to differentiate

120 4 ‘ 0 20 4
only the last row as all the other contributions vanish. The differentiation of the d—sp=det|2 31 53 |, sh—sy=det| 1 31 53 |, (5.7)
last row increases all the integers in it by one (i.e. 2 becomes 3, 42 becomes 53 3 42 64 2 42 64
etc.) and so we find that the numerator of (5.3) (in the o, case) becomes
and so that
01 2 20 31 42
1 20 31 0 20 31 1 20 31 0 20 31 il o 3 aee] s a2 53
det {2 31 42 fdet |1 31 42| —det|2 31 42 fdetf{1 31 42 ' P 12 53 6 _ o
4 53 64 242 53 342 53 353 64 o+ () —1 = 0 20 31\.:2 Ty
0 1 2 3 det |1 31 42 ) (5.8)
20 31 1 2 3 1 5 4 o
= del det 2 42 53
31 42 2 3 45 01 20 31
3456 det{ |, [ g
5.4 2 S
{5.4) "'1 +0; - 1 = T 20 s
This result follows from the Jacobi identity for the determinants™ (the de- (d.et 2 31 )
20 31
terminants of the matrices, which have ( ) in common). Similarily we
2 In a similar way we find that
find that
2
012 o1 20 31
3 | det
(20)det {1 2 3 det| 1 2 31 42
2 3 4 2 3 4 5.9)
o= - 1 20 : (5.5) 1-0102= 0 20 31\’ (
(det )’ b 31 42
2 3 det . det | 1 2
2 42 53
Next we calculate
with a similar expression for 1 — 0100.
/ . H
o+ (o)) -1= (s~ 32)—231(3’2 - 81). (5.6) Next we calculate the derivative of log%‘f‘. which appears in (5.2), where

N @, B and 7y are defined as in (5.8). This means that we have to calculate

[} v I}
o +f ay=2y &
This time we have to calculate s, — s; and s} — s, We expand each expression - By
2 1 1 2 P

12
11



Putting in the concrete expressions for a, 8 and v in the o9 case we find that

01 2 3
! ' 0 20 1 2 3 4
o'y — ya' = —det det , (5.10)
1 31 2 3 4 5
3 4 5 6
and
0 20 31 42
20 31 1 31 42 53
By = 4" = det det . (5.11)
31 42 2 42 53 64

3 53 61 75

Finally, collecting all the terms, factoring them out efe. we find that o3 is
given by a ratio of two expressions, the numerator of which involves a product
of two determinants and the denominator a difference of two products. The

denominator is given by

0 20 31 42 0 s 12 3 , ,
det Lo 425 det] 2 31 42 |—det 34 det ;? f:; :;

2 42 53 64 3 4 5

3 53 64 75 Boa s 4 5 6 2 53 64

(5.12)
which we calculate by expanding along the last row. We find that this expression

is given by

20 31 42
0 20 31
2 31 42 53§ °
det | 1 31 42 | det : (5.13)
3 42 53 64
2 42 53
53 64 75

This is all what is required to demonstrate our claim that o3 (and o3) are
given by (5.1).

13

6. The case of arbitrary n, when &« = 0

Here we use the induction method to prove our general formulae for oy (k >
0). As the calculations of this section repeat what we have done in the previous
one they can be skipped during the first reading of this paper. In our general
proof we will use the notation of the previous section i.e. we put 0 for y and
p for and its p** derivative. The matrices which arise in our calculation have
the property that all their rows can be obtained from a row of functions by
differentiating them a certain number of times. So, we will denote them by
llav,aay .o yani sy, s2, ... 8] with the understanding that the " row of such a
matrix is given by aj al . af, where a; are some functions of s and s, some

nonnegative integers,

.

The determinants of such matrices will be denoted by

det|lay,az, ... an; 81,82, ., 8al| = (a1,02, ...y @n; 81, 82,000 80). (6.1)

In this notation, the general form of the solution of the Landau-Lifschitz

chain is given by

(1,2,3,...,20 + 1;0,1,...,2n) _ sb.

020 = = = =5
(0,2,...,2711—\1;0,1,...,271) $2n (6.2)
(0,2,3,...,2n 4+ 2;0,1,...,2n + 1) 3%n+1

Ointl =——=x — =3
(1,2,3,...,2n+ 2;0,1,...,2n + 1)  S3p4q»

where n > 0,1 =1, and (=1) = 0.

To prove this we observe that our general formulae for ¢i41 (4.5) involve of,
o!+0?~1 and 1-0i-10;. We shall calculate them in an explicit form; afterwards,

the checking of the final expression reduces to a very simple problem.

14



For definiteness we shall limit ourselves to the case of odd i (the case of even

¢ is very similar). First we calculate o, ,,. We find

[=)
o)
)
5
2
+
1)

i0,1,...,20, 20+ 2)(1,2,..., 20 + 2;0,1,...,2n + 1)
(5§n+l):)

(0,2,3,...,20 £ 2;0,1,..., 20+ 1)(1,2, ..., 20 + 20,1, ..., 2n, 2n + 2)

(33n+1)2
00420, 4 2)(2 8, 20 £ 20,1, 20)
(S?én+l)2
(6.3)

The last equality, again, follows from the Jacobi inl#nlily;’] .

o caleulate a) + 67 = 1 and | = 4,010, we use the following property of

determinants {which can be checked by a direct caleulation)

detf|li;al,. .., an—1;01]|det|llr;ay, . .., an-1;bs]|
—det||l;ar, ..., an-1;b1]|det|}li;an,. .., an—1;b2|| (6.4)

= detllly, ba; a1, ..., an—ylidet|a, . .., an—1, by, bal],

where a,, by, b, {} and I, denote arbitrary (n + 1) dimensional column vectors.
Next, using the notation of (6.2) we observe that, like in (5.6)
2
_ s = sh) = sl((s)) - 8D

ol+ol-1= TIL . (6.5)

We calculate the differences of the terms in the numerator of (6.5). Thus for

15

1 ' 2
(82n41) = S3p41 We have

(3’5114-1)," 3§n+l = (0,5,3,...,2n+2;0,1,...,2n,2n+2)
~(1,2,..., 20+ 2;0,1,...,2n + 1) =

02,3,..., 20+ 2;1,..., 2+ 20+ 2) = 1[(2,.. ., 20 + 2;0,2,...,2n,2n + 2)
+2,.. 2 251,204 1))

+
35
o
)

3., +20,1,3,...,20,20 4 2) + (2,...,20 4 2;0,2,...,2n + 1)]
F-DF[(3,. 20 F 250, k= 1,k +1,...,20,20 + 2)
H2, M ER0, k= 2k, 2+ D] +...
(6.6)
The simplest way to calculate the sums of determinants in square brackets
in (6.6) is to represent the functions M by their Laplace transforms, i.e. put
7= / M N)d N, 3= fr\eA'(ﬁ(A)d)\ ete. Then each of the determinants may be
represented by an (22 + 1) dimensional integral over dA;...dA2,41 with the in-
tegrand being proportional to the Vandermonde determinant W(Ay, ... Anq1),
which is antisymmetric with respect to the permutation of any pair of its argu-

ments.

Let us calculate, for example, the sum of the two determinants which multi-
plies (1) in (6.6). We find

/ A ddanar dADB(A2) . $ Ot )MIAT L AT A A] L ATnH

xW(A... Aoper) = ‘/d)‘l*--d’\2n+1¢’()‘1)"-¢(’\2n+1) (6.7)
2n
X A3AS AT + Agnar + Z AW (A1 Asa),
=2
as each of the terms of the added sum corresponds to an expression which is
symmetric with respect to the permutation of any two indices of X’s and so

vanishes after the integration with the Vandermonde determinant.



But the last step of (6.7) can be rewritten as

/ AAr o a1 $() - (hans1) AN . AL

2n+1
D VD LR Y

2 Az . /\%" ,\gn+2 (6.8)

1 A 2n 2n+2
Il ee AMnel Al

=(2,3,...,2n 4+ 1,20 + 3;0,1,2,...,2n + 1).

If)erf M o ~ alenlaty
orming such a calculation for each term in (6.6) and in (6.5) allows us to

prove our formula (6.2).

I . same wav we cale
1 the same way we caleulate all the other terms in (6.6) and find

g2 55 —
) ('5'.'n+l) = S+l =(0,2,3,.... 20+ 2,0, 1, ..., 20, 20+ -
(1,3, 20+ : (093 T LF
n+2;0,1,. ., 20+ 1)=(0,2,3,... 20 +1,2043;0,1,..., 20, 2n+1).
(6.9)

The « . X .
he calculations of the second term in the numerator are the same and we obtain
2 1l — {153 —— —
($3n+1) = Saa+1 = (1,2,3,...,204+ 1,20+ 3,0,1,...,2n,2n + 1). (6.10)
In this way we find that

o Ons1 + O3pyy =1 =
1L,2,... ; 73 n+2, 0+
L2002+ 150,1,..,2r + 1)(23,...,2n+ 2,204 3;0,1,...,2n+1) -

)
S3n+1
6.11)
T . . (
he calculations of o] + a? —1in the case of even i are very similar. In the case
when ¢ = 2n we find

0,1,...,2n,0,1,...,20)(2,3,...,27 + 2;0,1,...,2n)

1 2
09+ 03, = 1=
2
52n

. (6.12)

When we calculate 1—0;-0; it is necessary to use the definition (6.2), expand

the determi jth
rminants of the i** order along the last row, use (6.4) and then observe

17

that

—

oo (0,1,...,i;0,1,...i)(§,§,...i+1;0,1,...,i—1)
—0i-10i = == : A - —~.
' (1,2,...,i;O,l,...,z~1)(0,2,...,z+1;0,2,...,z+l,0,1,...(,1)

Finally, repeating, step by step, all the calculations (5.10-5.13) of the previous

section we have convinced ourselves about the validity of our recurrant formulae

(6.2).

Let us add that as a result of our formulae we can make the following state-

ment:
A general solution of the following one-dimensional chain system

1 1 : 5
PR SU——— AS 42 (6.14)
i ((‘v’xu“l"+l e¥iTF-1 +1) (¢4 + 27),

¥

22 and on which the following boundary

tl

where 4 is an arbitrary constant, @
0, is given by the expressions

conditions are imposed -1 = @n+l =

140 (6.15)

Tt = ——

1-o0;

Here o, are defined by (6.2), x are given by x = =0 C,e!, where C are

arbitrary constants, and where ), satisfy the following relation:

S et T dadsdyt S Aaehy = 0. (6.16)

odd number of indices.

[ a#p#y all dafferent
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7. An example

the case when o = 0. We leave the discussion of the generality of these solutions

to a further publication. Here we just want to show that our procedure is

sound
i.e. that we can find nontrivial solutions of the Lan

dau Lifschitz equation with all
the reality conditions properly imposed. So, here,

we look for simple nontrivial
solutions of (2.3).

To find such solutions we have to solve first the equation (3.7) for the function

\. However, for o = ¢ this equation is Jjust the heat equation and it is easy to

write down its solutions. The simplest solution (apart from \ = 0) ig probably

A t)= A exrp(id), (7.1)
where 8 = ;2 4 s and where

wand A are arbitrary complex numbers. Here,

for simplicity, we have chosen, ¥ = 1 in the definition of P(y)in (2.3), which gave

us s = 4z,

With this choice we find that Jo=constant and so we see that we have ob-
tained a time independent solutjon for the Landau-Lifschitz field . To find a

time dependent field we need to start with a more complicated y.

To do this we consider a slightly more general solution of (3.7); namely

3
X =) Apezp(ify), (7.2)
k=0
where 6, = p2¢ 4 #kx?, and where Ay and py are,

at this stage, some arbitrary
complex numbers. With this choice of y we find th

at

oo = Lokzo Ak ik exp(if)
= &ek=0 Ak ki ezp(ify)

2 (7.3)
Tieo Ak ezp(ify)
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and .
' _ 22:0 AL,‘(;L" - ﬂj)z(ﬂi + 15) “P(""ek) ’ k#i#] (7.4)
7 Theo 7 (s = 121 + pinsy) ezp(—i6)

. . ire that
Next we impose our conditions of reality of u. To do this we require tha

that
vg = ug. This will be true if 02 = 0. When we calculate o3 we find tha

p1+p2 4 op3+ prp2us (7.5)
2= +ppr + pips + pops

- .
and so we see that we have a condition on p’s:

7.6
py + pz + pa+ prpzps = 0. (7.6)

Wev this is t (0] ruar (] e leallty of our solution of the
Howe ©r, his is not en Ugl\, to gual ante th ))
Landau- schitz e we have t 5S¢ also = - ver 1.2) we see
ldc u-Lif: hl Z e llldll()ll 2 h« ¢ Lo Impo als Uq &) C (
d

i i i - solution is given by u = u.
that this requires aé = —oy. In this case our s g

i 7 t= -6 To
It is easy to see that there exist many solutions of (7.6) and of o, 1

i resultant
see this we expand all the terms in ag = —¢¢ and find that many of the

; Y or
7 i .e. ftg = ;) or
conditions are satisfied if pj satisfy (7.6) and either all are real (i.e. g = p;)

j other.
one p is real and the remaining two are complex conjugates of each

iti .. In the
The remaining conditions can then be treated as conditions on Ay

first case (when all py are real) Ay have to satisfy:

! #2
! pry Ay + 1-2)=0
2~ s) o + )1 = ) e = )+ )1 - 2 =0,
1

! U3, _ 77)

__1 by, As 2 1-=)=9, (7
A ol 9 - 2+ I»‘S)(
A;(m = p2)(p + p2)(1 - M) +2 (B2 — #3)*(n o

! 13

! B2 A3 2 1- _) =0,

__A Lal3 — - + u3)(
Az(‘“ = p2)?(u1 + w2)(1 — AW CRIDRC -



while in the second case (when g = ;L;, 1= ug) we have

Al 2 Al
Z;(uz = 13)*(1 + paps) =A~§(/t1 = 12)2(1 + pipg),
Al 2 Al
TQ(I‘I = u3) (1 + pp3) =2§(/M - 12)%(1 + pypa), (7.8)
t
t

Al , A
:‘E(M = u3)"(1 + paps) =74';'("" = 13)* (1 + papes).

Notice that we can set, say, A1 = 1 and that, say, the last equation in (7.7)

and in (7.8) is automatically fulfilled if all the other equations are satisfied.

There are various solutions of these equations. In the case when gy are real
a natural choice is to take A real. Then (7.7) become equations for i;’ which
should have positive solutions. Thus we have to find gy, b = 1,2 and 3 Hll;'l! that
(7.6) is satisfied and A;’: are positive. It is easy to check that if we choose, say,
#1 = 0.5, po = 0.1 (and p3 is given by (7.6)) the expressions for A} are indeed

positive and we have an explicit solution of the Landau-Lifschitz equation.

In the second case the situation is even simpler as this time (7.8) are satisfied

if we take, say, A3 = 1 and

L= (o = 13) (1 + pops)

A§ (1 = 13) (1 + pypg)” (7.9)

In thi - . .
n this case it is easy to see that the solution u is of the "soliton” type - i.e. S3

(see (2.2)) is nonzero in a localised region.

We will not discuss any further properties of these solutions, nor try to con-
struct more general ones. This will be done in our further work. Our reason for
giving these examples here has been to demonstrate that the method works, i.e.
that it gives us solutions of the original equation with all the reality conditions
explicitly fulfilled.

8. The general case (&« # 0)

In this section we will present explicit formulae for the recurrence relation
for o) (4.5) in the general case (i.e. with no symmetry). We do not give a proof
of the derived expression as our method of proving it is quite involved and, in
the main, follows quite closely the steps used in the proofs given in the previous
sections except that all the calculations are much more cumbersome. We believe
that a simpler proof of our results may be found by considering in more detail
the group theoretic nature of the Landau-Lifschitz chain with two fixed ends (r.e.
limited from both ends) and given in terms of the theory of semisimple algebras

and their representations but so far we have not found it yet.
To present the explicit expression for gy in the general case we introduce the

following infinite dimensional matrix

\ - L L'-L (L
x L Rx"-x) L[* RL"-1) I
X' L L"-r (L% Lv-L" (LY
L L* RL"-L) (L% RL'-L") L
L' (L% R(L»-L") (L% L*-Lv (LY

(8.1)

The form of this matrix is, hopefully, obvious from the entries that are explicitly

given in (8.1). Then, our expression for oy is derived from (8.1) and is given by

€
detr1]ix'l]
op = [ ZEHIXY E>0 (8.2)
k (detkﬂ“X“

where the symbol ||x|| denotes the matrix of the k + 1** order which is obtained
from (8.1) by taking its submatrix consisting of entries only in rows 2,3,.k+2
and columns 1,2,...k+1 and ||x'|| denotes a similar metrix with entries from rows

1,2,...k+1 and columns 2,3,..k+2. Also ¢; = (—1)*.
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9. Conclusions

We have shown in this paper how the exploitation of the existence of a discrete
group of symmetries of a given equation can help us in determining its solutions.
In this paper we have demonstrated this on the example of the inhomogeneous
Heisenberg ferromagnet described by the Landau-Lifschitz equations. Our main

result for these equations is given by (8.1).

We would like to stress, that although in this paper we have concentrated
our attention on the Landau-Lifschitz equations our method is completely general
and could be applied to any completely integrable systems. In each of these cases
one has to take the following steps: First, one has to rewrite the equations which
describe the group of the diserete symmetries as a system of equations for the
corresponding lattice. This system of equations is completely integrable due to
the integrability of of the symmetry equations. Next one derives the solutions of
the lattice equations which arise when we require that this chain of equations is
limited from both ends. The solutions one obtains depend on severalAa.rbitmry
complex parameters. Finally, we impose the condition of reality (this we do by
requiring that vg = u}v and ug = v}v (IN-even), where we have assumed that the
finite chain stretches from 0 to N. This condition of reality fixes some of our free
parameters. Then, the solution in the middle of the chain satisfies the reality

-onditi el w : =
condition which we want our solution to possess, namely vy = Up oy
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