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Abstract. This paper studies one-loop effective potential and spontaneous-symmetry­

breaking pattern for SU(5) gauge theory in De Sitter space-time. Curvature effects modify 

the fiat-space effective potential by means of a very complicated special function previously 

derived in the literature. An algebraic technique already developed by the first author to 

study spontaneous symmetry breaking of SU(n) for renormalizable polynomial potentials is 

here generalized, for SU(5), to the much harder case of a De Sitter background. A detailed 

algebraic and numerical analysis provides a better derivation of the stability of the extrema 

in the maximal subgroups SU(4) x U(l), SU(3) x SU(2) x U(l), SU(3) x U(l) x U(l) x R311 , 

SU(2) x SU(2) x U(l) x U(l) x R221b ~i'i1a.D1R22Udiscrete sy~metries select 
1 i: i i ; 
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particular directions in the corresponding two-dimensional strata. One th~s obtains a 

deeper understanding of the result, previously found with a different numerical analysis, 

predicting the slide of the inflationary universe into either the SU(3) x SU(2) x U(l) or 

SU(4) x U(l) extremum. Interestingly, using this approach, one can easily generalize all 

previous results to a mor,e complete SU(5) tree-level potential also containing cubic terms. 

* Accepted for publication in Classical and Quantum Gravity. 
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1. Introduction 

In the cosmological standard model [1], one assumes that gravity is described by Ein­

stein's general relativity, and that the observed universe is spatially homogeneous and 

isotropic. Moreover, if the energy-momentum tensor takes a perfect-fluid form, Einstein's 

equations lead in particular to the following differential equation governing the time evo­

lution of the cosmic scale factor a(t) : 

(0,) 2 k 81r - +- = -Gp (1.1)
a a2 3 

where k = +1,0, -1 respectively for a closed, flat or open universe, G is Newton's co~stant, 

and p is the energy density. In the matter-dominated era p is proportional to a- 3 
, and in 

the radiation-dominated era p is proportional. to a-4 • 

The model here outlined, however, leads to a paradox: the universe would contain 

about 1084 regions causally disconnected, although its large-scale properties are described 

by the Friedmann-Robertson-Walker geometry. Moreover, denoting by Pcr the energy-

density value separating an open from a closed universe, one would find 

IP - Per I < 10-55 (1.2)
P 

This is a severe fine-tuning problem, since condition (1.2) does not seem to arise by virtue 

of general principles, and appears as an ad hoc extra assumption. 

However, as shown in [2], one might hope to solve these problems (cf. [3,4]) if the 

cosmic scale factor a(t) grows exponentially in the early universe, rather than following the 
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f"l-behaviour of the cosmological standard model. This can be achieved if th~ right-hand 

side of Eq. (1.1) is constant, since this implies 

a(t) = aD exp ( JS; Gpo t) (1.3) 

provided the effect of ~ can be neglected in the interval Jto, to. [. One can then show that 

causally disconnected regions would no longer occur (although severe inhomogeneities can 

be shown to remain [5]). For this purpose, we n~:ed at least a (massive [5,6], or massless 

self-interacting [7]) scalar field, or a more complete theory of matter fields providing a 

large vacuum-energy density (> > Mw) which drives inflation, i.e. the evolution of a(t) 

described by Eq. (1.3). If Eq. (1.3) holds, the corresponding geometry is the one of De 

Sitter space-time, the Lorentzian four-manifold with R x 53 topology and constant positive 

scalar curvature. 

The naturally occurring candidates for a very fundamental theory which provides 

at the same time the unification of electro-weak and strong interactions, and a suitably 

large vacuum energy (see above) for symmetry-breaking are the GUTs [5,8]. Although 

the minimal SU(5) theory [9] has been ruled out by proton-decay experiments [10,11], the 

study of this 5U(5) model may be very instructive. Moreover, it is worth bearing in mind 

that 8U(5) is contained in 80(10) and E8 [8]. 

We here study the one-loop effective potential to determine the phase to which the 

early universe eventually evolves [12,13]. Since we are interested in quantum-field-theory 

calculations, we use the Wick-rotated path-integral approach, and we work on the real, 

Riemannian section of the corresponding complex space-time manifold. Note that this 
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rotation does not affect the effective potential, while making the perturbative theory well­

defined (see below). We are thus interested in the Riemannian version of the De Sitter 

manifold, with 8 4 topology. Its metric is smooth and positive-definite, and the action of the 

non-abelian Yang-Mills-Higgs theory here studied involves elliptic, self-adjoint, positive­

definite differential operators leading to Gaussian integrals, so that the corresponding one­

loop calculations are well-defined, even though the full quantum theory via path integrals 

does not seem to have rigorous mathematical foundations. Note that we are not quantizing 

gravity, but we study quantized matter fields in a fixed, curved, Riemannian background 

geometry via Wick-rotated path integrals and perturbation theory. 

Our paper is thus organized as follows. Sect. 2 describes the minimal. SU(5) model in 

De Sitter space and the corresponding results for the one-loop effective potential. [13]. Sect. 

3 presents the basic results about the tree-level Higgs potential for 8U(5) gauge theory in 

flat space [14]. The special function A occurring in the corresponding one-loop calculation 

in a De Sitter background is then studied in detail. Sect. 4 provides the generalization
• 

of the technique used in [14] to a De Sitter background. Absolute minima are derived 

using both analytic and numerical calculations, improving the understanding obtained in 

[13]. Exact, approximate and asymptotic formulae for the one-loop effective potential. are 

shown to shed new light on the 8U(5) symmetry-breaking pattern. Finally, the concluding 

remarks are presented in Sect. 5. 
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2. SU(5) model in De Sitter space 

Following the introduction and [13], the bare Lagrangian £'0 and the renormalizable 

tree potential of our SU(5) Yang-Mills-Higgs theory in De Sitter space are taken to be 

respectively (after analytic continuation to the Riemannian manifold with 8 4 topology) 

(2.1 ) 

(2.2) 

where F~v =V~Av - VvA,.,. - ig[A,.,.,Av), and D,.,.ill! == 8~ill! - ig[A~,~]. Note that 

the covariant derivative V ,.,. differs from 8,.,. for terms involving Christoffel symbols [1], and 

Vo( (J)) is assumed to obey the symmetry Vo(ill!) = Vo(-ill!). Moreover, as usual, 9 is the 

dimensionless coupling constant and R = *is the scalar curvature of De Sitter space (r 

• 
being the four-sphere radius). 

The Higgs scalar field iJ!! is assumed to be in the adjoint representation of SU(5) [13]. 

The presence in the minimal SU(5) model of an additional representation O~.) of scalar 

fields H, necessary to break the symmetry down to SU(3)o x U(l)Q, is irrelevant for the 

inflationary scheme, due to the smaller mass value MH ~ Mw. 

The background-field method is now applied to obtain the one-loop form of the po­

tential, writing the Higgs field as ill!o +i, where ~o is a constant background field and i 
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a fluctuation around CPo (and similarly for AJJ.). As explained in [13], it is cqnvenient to 

choose t'Hooft's gauge-fixing term 

(2.3) 

and Coleman-Weinberg's theory can be used to neglect the contribution of all scalar-field 

loop diagrams. This implies that only gauge-field loop diagrams are relevant. A very 

convenient form of the one-loop potential is obtained using the gauge invariance of the 

theory which enables one to diagonalize the scalar field CPo The corresponding diagonal 

form of cP is here denoted by ~ = diag ('1'1' '1'2, '1'3, '1'4, '1'5 ), where I:~=l 'Pi = o. Thus, 

denoting by 't/J(t) the special function ~(~V' and defining 

Z2 Z l i +v'l-z ( 3)
A(z) =- + - - t t - - (t - 3)'t/J (t) dt 

4 3 2 2 

(2.4) 

the one-loop effective potential for the minimal SUeS) model is found to be [13] 

2v(i) = 6~~2 {Q + ~ (1-1og(r
2Mi») }R9 11 i II 

9 ( 2 2) 21 } 4 ... 2+ { 1281r2 1 -log(r M x ) - 3201r2 A 9 II cP II 

5 
15 12 2 2 4 4

+ 12811"2 SA+(1 -log(r M x ») }9 t; 'l'i{ 

(2.5� 
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where [13] 

(2.6) 

(2.7) 

5 

II ~ 1/= L: <p~ (2.8) 
i=l 

and M x is related to the dimensional parameter p. appearing in the (regularized) one-loop 

amplitudes [12]. Moreover,if e= i, the Higgs field is conformally coupled to gravity. 

The one-loop potential V(~) is then used to determine broken-symmetry phases and 

curved-space phase diagrams as shown in [13). As a result of his numerical analysis, the 

author of [13) found what follows : 

(1) In the SU(5) theory, the universe, in addition to the right SU(3) x SU(2) x U(l) 

direction, is also likely to end up in the wrong SU(4) x U(1) phase; 

(2) The SU(2) x SU(2) x U(l) x U(l) x R2211 and SU(3) x U(l) X U(1) x R 311 phases 

are unstable for any values of the parameters appearing in the model. 

As we said in the introduction, the aim of this paper is to provide a better understand­

ing of the results obtained in [13]. For this purpose, we recall some basic results about 

spontaneous symmetry breaking of SU(n) [14), and about the A function [13] defined in 

Eq. (2.4). 
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3. Polynomial potentials and the A function 

To study the spontaneous-symmetry-breaking directions of the potential in Eq. (2.5), 

it is convenient to define the variables 

(3.1) 

For our purpose, it is not strictly needed to study the part of the potential depending on 

the norm of the a field : II a 1/ =~~=1 ai. The relevant part of the potential is instead 

given by (up to the multiplicative constant ~;::) 

VM =bL
5 

a1- L
5 

A[(ai -a;)2] (3.2) 
i=l i t ;=1 

5 ( 2 2) b == 6A + 2" 1 - loger M X ) (3.3) 

As a first step, it is useful to recall the exact results [14] holding for a theory where VM is 

only given by the first term on the right-hand side of Eq. (3.2). In that case, since L~=l ai 

is set to zero, and 2::=1 a~ equals" a 1/ by definition, the Lagrange-multipliers technique 

can be used to study the third-order algebraic equations leading to the calculation of the 

minima [14]. 

The corresponding results yield, for the minima with the residual symmetry: 

I/, a I/! . 
a = a321 == J30 dzag(2, 2,2, -3, -3) (SU(3) x SU(2) x U(l)) (3.4)

30 
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II a IIi . 
a=a2211 = 2 d~ag(1,1,0,-1,-1), (SU(2)xSU(2)xU(1)xU(1)xR221l ) ,(3.5) 

II a Iii . 
a = a311 = v'2 d~ag(O, 0, 0, 1, -1) , (SU(3) x U(1) x U(l) x R311 ) , (3.6) 

II a lit . 
a = a41 = v'2O d~ag(1, 1, 1, 1, -4) (SU(4) x U(l» (3.7)

20 

the hierarchy 

(3.8) 

if b > 0, and the reversed inequalities if b < o. Thus, when the Higgs field is in the 

adjoint representation, the SUeS) symmetry breaking leads only to the SU(4) x U(l) or 

SU(3) x SU(2) x U(l) symmetric minima. 

Since the complete VM potential is in our case given by Eqs. (3.2-3), we need to study 

in detail the contribution of the A function. While performing this analysis, it is useful 

to supplement definition (2.4) by the Taylor expansion of A as z -+ 0, and its asymptotic 

expansion as z -+ 00, which are given respectively by [13] 

A(z) =2 (.., - ~) z + (..,; 1) z2 + ~ ( - 5 + 4«3») 

(3.9) 

19) 3A(z) "J -
( 

-

Z2 + z + - log(z) + _z2 + z (3.10)
4 30 8 
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where i is Euler's constant and , is the Riemann zeta-function [12]. Using Eqs. (2.4) and 

(3.9-10), we have found inequalities analogous to (3.8). In other words, defining 

(3.11) 

and similarly for the other phases, one finds 

(3.12) 

where 

A(a31l) = -12A (-2-II a II) - 2A(211 a II) 

_ (II a II) ( )A(a221l) - -SA -4- - SA II a II 

A(a321) = -12A Gil a II) (3.13, 14, 15, 16) 

The inequalities appearing in Eq. (3.12) are illustrated in Figures 1-3. 

4. Absolute minima 

For fixed values of the bare parameters e, A2 , A4 and Mx (cf. Eqs. (2.6,7) and (3.3)), 

b depends on r as shown in Eq. (3.3). Thus in the early universe, at small values of r, i.e. 
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when the scalar curvature is very large, b is positive, whereas it may become negative as r 

increases. 

As shown in Sect. 3, when b > 0, the two terms of the VM potential in Eq. (3.2) 

follow the inequalities (3.8) and (3.12). This implies that in the very early universe the 

only possible phase transition is SU(5) -+ SU(3) x SU(2) x U(1). 

By contrast, for suitably large values of r, b becomes negative, and th~ polynomial 

part of the VM potential is then dominant. In this case the analysis in (14] holds, and 

the phase transition occurs in the SU(4) x U(1) direction (i.e. the previous hierarchy is 

inverted). 

A more detailed analysis is however in order when b < 0 but I b I is not too large. For 

this purpose, using the Taylor expansion (3.9) up to third-order, we begin by studying the 

range of validity of the inequalities 

(4.1) 

Thus, defining n =(-5+:(3» < 0, one finds 

[VM(a41 ) - VM(a321 )] > 0 <===> 12b + 60(1-,) > -250 In I II a II (4.2) 

[VM (a311 ) - VM(a321 )] > 0 ¢=? 12b + 60(1 -,) > -475\ n I II a II (4.3) 

[VM(a2211 ) - VM(a321 )] > 0 ~ 12b + 60(1 -,) > -850 I n I II a II (4.4) 

r -(a41) - VM(a'l1)] > 0 ¢=} 12b + 60(1 -,) > 150 In I II a II (4.5) 

[VM ( a41) - VM ( a 2211 )] > 0 {::::::> 12b + 60(1 - ,) > -225 In I II a II (4.6) 

12� 
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[VM(a31l ) - VM(a221l )] > 0 {:::::> 12b + 60(1-,) > -450 In I II a II " (4.7) 

In light of Eqs. (4.2)-(4.7), if Eq. (4.5) is satisfied, this ensures that all remaining conditions 

hold. One thus obtains the inequality 

(4.8) 

which is a necessary and sufficient condition for the validity of Eq. (4.1) when the Taylor 

expansion (3.9) is a good approximation. Note that the term in square brackets on the 

r.h.s. of Eq. (4.8) is a small correction of the value 5(,-1) < 0 provided II a II ~ 0, as one 

would expect, when the Taylor expansion makes sense. Interestingly, the inequalities (4.1) 

still hold for negative values of b providedEq. (4.8) is satisfied, whereas the flat-space 

A A 5 
tree-level potential VM = b L:i=1 a1 used in [14] leads to the value bo= O. 

Moreover, the reversed hierarchy (cf. (4.1)) 

(4.9) 

holds provided the following necessary and sufficient condition is satisfied (cf. (4.4)) : 

(4.10) 

Again, the De Sitter background leads to a value bi f= 0 with respect to the flat-space 

tree-level-potential result bi = bo = O. 

This preliminary analysis should be supplemented by a more detailed numerical study. 

The aim of this investigation is to prove that, for all values of " a " and b, the phase 
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transition occurs only in the SU(3) x SU(2) x U(l) or SU(4) x U(l) directions. From 

our previous discussion (see also Figures 4-6), when b -+ +00 the absolute minimum is in 

the SU(3) x SU(2) x U(l) direction. However, if we compute for fixed II a II the negative 

-:-0 -1� -2 
b ,b ,b values of b such that 

(4.11 ) 

(4.12) 

(4.13) 

we find -,;0 > 1/ and r: > r/, V 1\ a II. This means that the continuous transition to (4.9) 

leads to the interchanging of the SU(3) x SU(2) x U(1) with the SU(4) x U(l) absolute 

minimum. Of course, similar interchanges also occur for the relative minima, but they do 

not affect the phase transition of the universe. 

Defining 

5 

vi;)� =L a1 (4.14) 
i=l 

-:-0 -1 -2 
and using Eqs. (3.13)-(3.16), it is useful to bear in mind the formulae for b ,b and b 

obtained from Eqs. (4.11)-(4.13} : 

[A(a321) - A(a41 )]t =� -::--~-------'---:- (4.15) 
[Vi;)(a41) - Vi;)(a321 )] 
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-1 [A( a321) - A(a2211)] 
b = ~--=------------=- (4.16) 

[lf~)(a2211) - 1l~)(a321)] 

-2 [A(a321 ) - A(a3U )) 
b = -=--~-------------:;- (4.17) 

[lf~)(a311) - lf~)(a321)] 

2
':':'he differences (T: - b1

) and (T: - b ) are plotted in Figures 4-6 as functions of II a II ~ 

using Eqs. (4.15)-(4.17). 

5. Concluding remarks 

This paper has shown that the results in (14] about the SU(n) symmetry breaking 

in flat space may be generalized to a curved, cosmological background such as De Sitter 

space. 

The results in (13] have been thus re-obtained, by virtue of the properties of the A 

function (Eq. (2.4) and Figures 1-3). They confirm that the absolute minimum of the 

complete one-loop potential lies either in the SU(3) x SU(2) x U(l) or in the SU(4) X U(l) 

direction. This provides a better understanding (cf. (13]) of the instability of the SU(3) x 

U(1) x U(1) x R311 and SU(2) x SU(2) x U(1) x U(1) x R2211 extrema, since very simple 

and basic algebraic and numerical techniques have been used (cf. Sect. 4). 

Interestingly, we can extend all our results to the most general and renormalizable 

tree-level potential also containing cubic terms, since the tree-level potential does not 

affect the one-loop contribution within the Coleman-Weinberg approach [12,13,15), and 
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the presence of an additional cubic term in vff> (see (4.14» favours the directions a41 

and a321 (for which Vff> < 1) with respect to a3l1 and a2211 (for which vi:) = 0). The 

SU(n) symmetry-breaking pattern for this more general class of potentials in fiat space 

can be found in [16], where the author extends and confirms the results obtained in [14]. 

The approach considered above might be used to discuss the general case of arbitrary 

directions in the adjoint representation of SU(5); one expects, however, that even in this 

more general case the absolute minimum will be in the directions found by limiting the 

analysis to the one-dimensional orbits. 

The method here described may be applied to other GUT theories, e.g. with 80(10) 

or E6 gauge groups, in De Sitter space [13]. These models appear as more realisti~ candi­

dates for a unified theory of non-gravitational interactions [8]. One would then obtain a 

physically more relevant application of the techniques used in this paper. 
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Figure captions 

Figure 1. Differences of A values corresponding to (a) full curve [A(a4d - A(a321 )] ' (b) broken 

curve [A(a311 ) - A(a321 )] and (c) dotted curve [A(a2211 ) - A(a321 )]. They are 

evalur-ted using the Taylor expansion (3.9). 

Figure 2. Differences of logarithmslo of A values corresponding to 

(b) broken curve 10glO [A(a3u)/A(a321)] and 

They are obtained using the exact formula (2.4) defining A(z). 

Figure 3. Differences of logarithmslo of A values corresponding to 

(a) full curve log10 [A(a41 )/A(a321 )] ' 

(b) broken curve 10810 [A(a3u)/A(a321)] and 

(c) dotted curve 10810 [A(a2211)/A(a321 )] • 

The asymptotic expansion (3.10) is here applied. 

Figure 4. The dotted curve corresponds to the difference (~ _1)1) ,and the full curve corresponds 

-2) -1 -2�-:-0to the difference (
~ b - b ,where b ,b and b have been obtained in Eqs. (4.15)­

(4.17). The Taylor expansion (3.9) is here used for A(z). 

Figure 5. Dotted' and full curve have the same meaning as in Figure 4. The exact formula (2.4) 

is here used for A(z ). 
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Figure 6. Dotted and full curve are defined as in Figures 4 and 5. The asymptotic eXl>an,Slonl 

(3.10) of A(z) is here applied. 
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