
DPNU-97-21)l IIIllUUlliilUllll1 April 1997 
~"'" .*,,'.". o 11bO OOb130b 1 
i, typeset using JPSJ.sty .<ver.O.8> , t·''''''....,..,.. 

\J\ ~R?" 1 \<398 

Electrom~g?e.~iC.,,~i~~ ~~ Nonlinear Magnetosonic Waves 

, 'i .'...~Jh'h'''Rel~tivisticPropagation Speeds
.-..'¥' 

Shinji NAKAZAWA and Yukiharu OHSAWA 

Department of Phy$ic$, Nagoya Univer3ity, Nagoya ~6~·Ol  

(Received April 2, 1997) 

The structure of nonlinear magnetosonic waves with relativistic propagation speeds is studied 

through theory and particle simulation. First, the ma:cimum values of magnetic and transverse 

electric fields and electric potential are analytically obtained as a. function of the Alfven speed 

and Mach number, under the assumption that waves propagate nearly steadily in the direction 

perpendicular to a magnetic field. Then, one-dimensional, relativistic, electromagnetic particle 

code with full ion and electron dynamics is used to study relativistic magnetosonic waves. 

It is found that the ion currents parallel to the the wave front become comparable to the 

electron currents in magnitude. As the propagation speed is increased, transverse fields become 

dominant components in electromagnetic fields of a wave. The theoretically obtained values of 

field quantities are in good agreement with the simulation results. 
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§l. Introduction 

Nonlinear magnetosonic waves have·been studied since the early age of plasma. physics. Already 

in 1958, exact, finite-amplitude, stationary solutions were found.1-3) In the solitary wave solution, 

the maximum magnetic field Bm is related to the field Bo in the far upstream region as 

Bm/Bo = 2M -1, (1) 

where M is the Alfven Mach number; for a stationary solution, it must be in the range 1 < M < 2. 

In the 1960's, Korteweg-de Vries (KdV) equations for perpendicular4) and oblique5,6) waves were 

obtained. These studies were based on nonrelativistic treatment. In addition, charge neutrality 

was assumed. ,Particle simulations were also performed to study shock structure, plasma heating, 

and particle accelera.tion. ;-10) 

It was then pointed out that relativistic effects become important when the magnetic fields are 

rather strong, i.e., when the electron cyclotron frequency Wee is comparable to or greater than the 

electron plasma frequency Wpe.ll-131 If the ratio wce/Wpe is in the range 1 ~ wee/wpe ¢: (mi/me)1/2, 

~ J)PNU - 97- )../
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where mi is #'e ion mass and me is the electron mass, then the wave propagation speed is much 

smaller than the speed of light c (the AI£ven speed VA is given by vAle = (me/mdl/?wee/wpe)' 

Nevertheless, the electron (fluid) velocity parallel to the wave front can be close to c in the pulse 

region. It was also shown that the charge neutrality breaks down for large-amplitude waves when 

the ratio wee/w pe is much greater than unity. 

In a plasma. with extremely strong magnetic field such as around a pulsar, the ratio Wee/w pe is 

much greater than unity. Even in coronal magnetiC tubes in the Sun, its value can be of the order 

of ten, and the propagation speeds of nonlinear magnetosonic waves with high Mach numbers can 

be close to the speed of light. For such high-speed and large-amplitude magnetosonic waves, exact 

stationary solutions may not exist, and little work has been done. 

In this paper, through theory and· simulation. we study large-amplitude magnetosonic waves 

with relativistic propagation speeds. In §2, using a relativistic two-fluid model, and assuming that 

a.nonlinear pulse propagates nearly steadily, we obtain maximum values of the magnetic field, 

transverse electric field, and electric potential as a function of the propagation speed and Alfven 

speed. In §3, we carry out relativistic particle simulations. It is found that theoretically obtained 

values of electromagnetic fields are in good agreement with simulation results. It is also shown 

that, as the propa.gation speed is increased, electrostatic effects become less important; that is, the 

ratio of the longitudinal electric field component to transverse component (magnetic or transeverse 

elctric fields) become smaller. Furthermore, the the ion currents parallel to the wave front, which 

are negligible in magnetosonic waves in weak magnetic fields,ll) become comparable to the electron 

ones in magnitude. §4 gives a summary of our work. 

§2. Nonlinear Structure 

In this section we analytically discuss magnetosonic waves propagating perpendicular to a mag

netic field, using a two-fluid model: 

an· 
_1 + 'V. (njvj) = 0, (2)
at 

). q'm· (-a + (11 .. 'V) (,.,,·v .) = q' E + .2.v x B (3)
1 at J 11 J 1 C 1 ' 

~ aB = -'V x E (4)
cat ' 

laE 411' 
-- = 'V x B - - "'q·n·v· (5)cat e~11J'  

J 

'V. E = 41l''''q'n'L...J 1 (6)l' 
j 

where the subscript j refers to ions (j =i) or electrons (j =e); mj is the mass, qj the charge. nj the 

number density. 11 j the velocity, and 1j the Lorentz factor. 
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We assume that the waves propagate in the x direction in a magnetic field that points in the z 

direction. Hence the field quantities Bx , By, lUld E; can be set to be zero. The velocities in the i 

direction are constant in time and are taken to be zero. 

The phase velocity of the linear magnetosonic wave is given by 

'lip =vA/[1 + (VA/C)2jl/2, (7) 

in the long-wavelength limit, where the Alfven speed VA is defined as 

vi = B6/(41l'm ino). (8) 

The subscript 0 denotes equilibrium quantities. 

If the Alfven speed is quite high and the wave amplitude is large. we do not expect that there are 

exact stationary solutions, for which we can assume that in the wave frame the time derivatives are 

exactly zero at any place, 8/Ot = O. In fact, particle simulations12 ) show that, when the magnetic 

fields are rather strong, i.e., Wee ~  Wpe , a large-amplitude pulse emits small-amplitude pulses which 

propagate faster than the original pulse. Such a system is not exactly stationary. 

However, if the amplitudes of emitted pulses are small, then their effects on the original pulse 

would also be small. We therefore assume that a large-amplitude magnetosonic pulse can propagate 

nearly steadily. Its velocity will be designated by'ush (the subscript sh stands for a shock wave); 

'Ush can be close to the speed of light c. Hence in the frame that moves with the saine velocity as 

the main pulse we can assume that a/fJt ~ 0 (we will call this system the wave frame). 

Then, from the continuity equation, it follows that 

njVjz =nwo'uwo = constant, (9) 

where nwo and VwO (= -Vsh) are the density and velocity, respectively, in the far upstream region 

in the wave frame. Multiplying the x component of eq. (3) by nj and adding over the particle 

species, we have 
d ( q'n')L mjnjvjz-d(-Yjvjz) = L qjnjEz + ..Ll.vjl/B , (10) 

, x , e 
) , ) 

where B is the z component of the magnetic field. Then, using eqs. (5), (6), and (9), we obtain 

d ( B2_E2) (11)dx 21 mj'YjnjwovjwotJ)Z + ~ = O. 

Because 'Uix and Vex are of the same order. we can neglect the tenns proportional to the electron 

mass, me. We thus have 

B(X)2 - Ex (x)2 ,} B;o 
mi'Yi(x)nwovwOuiz(X} + 87r = mi'YOnwO'u;,o + s;-' (12) 

Here 'Yo is defined as 
2'Yo = [1 - ('tI wO/c)2r 1/ • (13) 
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The right-hand side of eq. (12) is a quantity in the far upstream region. As in the nomelativistic 

case,1,2.111 we assume that the magnetic field and electric potential have thier maximum values at 

the same point (this will be confirmed later by simulations). Hence at this point the longitudinal 

electric field Ez becomes zero. Also. at this point, ion velocity in the x direction is much smaller 

than that in the far upstream region (this will also be shown by simulations); in t~e pulse region 

the velocity Viz is decelerated by the electric potential and the strong magnetic field. t , 2,11) (This is 

not the case when the amplitude is very small; in small amplitude waves, values of Viz in the pulse 

region must be close to those in the far upstream region.) We thus find the maximum value of the 

magnetic field in the wave frame as 

., 1/? 

Bwm = (1 + mil?,nwov;.o) (14) 
Bwo (B;'o/87r) 

By virtue of the Lorentz transfonnation between the wave frame and laboratory frame (the 

quantities in the laboratory frame will be denoted by the subscript 1) 

Bw(xw) =Bl(xdho + (-yo - "Yo1)BIO, (15) 

nwo ="YontO, (16) 

we have the maximum magnetic field in the la.boratory frame 

2 _.') 1/2Blm 2 1 2('Yo - 1) c- 1 2
-B = 'Yo + --2-::2 + - 'Yo· (17)

(10 'Yo VA 

As is evident from the derivation, this relation is not valid when the amplitude is quite small. 

Also, from the Lorentz transformation 

Ell/(x!) = 'Yo[Ewo - (vsh/c)Bw(xw )], (18) 

we obtain the maximum electric field in the y direction (parallel to the wave front) in the laboratory 

frame 

Etllrn = (vsh/e)BIO(Blm/Blo - 1). (19) 

This relation is also satisfied in the exact stationary solution.1, 2. 11) Substitution of eq. (17) in eq. 

(19) yields 

? 2( 'Yo2 - 1) C2)1/2 ]
Ell/m = (vsh/c)Blo'Yo 1 + ---:rr-vi -1. (20)[( 

Next, we will obtain the electric potential formed in a nonlinear pulse. The y component of eq. 

(5) (with a/at = 0) reads 
8B 47r� ax = 7(eneV ey - QinrUil/)' (21)� 

The electron velocity parallel to the wave front. Vey' can be approximated by the drift velocity 

Vey = -eErIB. (22) 
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When the wave propagation speed is much lower than the speed of light, the electron velocity is 

much greater than the ion velocity,u) Iveyl »IViyl. For such a. case. ion currents can be neglected. 

and eq. (21) can be written as 
aB ne 
ax =-41refjEz .� (23) 

From Faraday's Ia.w, (4), and the continuity equation. (2). we find that the ratio ne/ B is constant: 

ne nwo 
(24)Ii = Bwo' 

because the electron velocity in the x direction is given by 

Vex = cEy/B.� (25) 

The longitudinal electric field Ex is related to the electric potential through Ex = -arp/ ax. Equa

tion (23) can therefore be integrated to give 

_ Bwo(Bwm - Bwo)� (20) 
erpwm - 41rTlwo ' 

where ipwm is the maximum value of the potential in the wave frame. Because the electric potential 

in the laboratory frame can be given by 

rpl =1'orpw,� (27) 

we obtain the maximum value of the potential in the laboratory frame 

.)(Blm )
erplm = mj'Ul Bl0 - 1 .� (28) 

In deriving eq. (28), we have neglected the ion currents in the direction parallel to the wave front. 

However, as will be shown by simulations in the next section, the ion currents can be comparable 

to the electron currents in magnitude for large-amplitude magnetosonic waves with relativistic 

propagation speeds. Therefore, to have a more accurate relation, we have to include effects of ion 

currents in Ampere's law; instead of eq. (23) we calculate the following equation 

8B = -41r (e!:!.Ex + QiniViY) .� (29) 
ax B c 

In the wave frame, ion speed (..., Vsh) is quite high, of the order of the speed of light. Thus, in the 

pulse region where the magnetic field sharply rises, the ion motion is described by the gyro-motion 

with Ewo x B drift; when the speeds of gyration and of drift are equal, we ha.ve a cycloid. As 

in the motion of heavy ions in a magnetosonic pulse with a nonrelativistic propagation speed. 14) 

the longitudinal electric force is less important. When an ion particle enters the pulse region with 

'(lix ::: 'Ush, then Viz is rapidly converted to 'Uiy by the Lorentz force. When Viy becomes sufficiently 

large. this acceleration in the y direction cea.'les. Figure 1 shows a simlified schema.tic diagram of 

an ion orbit in the wave frame (see also a pha.'le space plot in Appendix). For a particle motion 

I� I� 

Fig. 1. Schematic diagram of an ion orbit in the (x. y) plane in the wave frame. 

similar to a cycloid, eq. (29) can be integrated to give 

4( I 2 .� erplm = (Blm _ 1) _ A 21'0 Vsh v..d.) . (30) 
mivx B\o (Blml Blo) + 21'0 - 1 

The quantity A is a numerical factor of the order unity (strictly speaking, it also depends on the 

amplitude). The details of the calculation are found in Appendix. 

§3. Particle Simulation of Nonlinear Waves 

To further discuss the propagation of large-amplitude magnetosonic waves in plasmas with high 

Alfven speeds, we will use a one-dimension (one spatial coordinate and three velocity components), 

fully electromagnetic particle code with full ion and electron dynamics. The total grid size is 

Lx = 10246.g , where 6.g is the grid spacing. All lengths and velocities in the simulations are 

normalized to 6.9 and wpe6.g , respectively, where wpe is the spatially averaged pla.'lma frequency. 

The simulation particles are confined in the region 100 < x < 924, being specularly reflected at 

x = 100 and x = 924. Outside the plasma region, electromagnetic radiation leaving the pla.c;ma 

region is absorbed; thus we can avoid the interactions between the left and right sides of the 

pla.'lma regions through the vacuum region. IS) The momentum components p'jtT (0' = x, y, or z) are 

initially distributed according to an isotropic Maxwellian with average momentum zero. However, 

for particles in the region 100 < x < 180, the x-component of the momentum, Pjx, ha.'l a shifted 

Maxwwellian distribution function with a positive average value; these particles act as a piston 

that pushes the neighboring pla.'lma and excites a shock wave.9 ) 

The number of simulation particles are Nj = Ne = 65536. The ion-to-electron mass ratio is 

m;jme = 100, and the light speed is c = 4. The electron and ion thermal velocities are VTe =0.8 

and VTi = 0.08. The electron skin depth is c/wpe = 4. The strength of the external magnetic field 

was chosen so that wce/Wpe = 3.0 or 5.0. For wcelwpe = 3.0, the beta value, which is defined as the 

ratio of the plasma pressure to the magnetic energy. is /3 =0.019, and the Alfven speed is VA =1.2. 

The ion gyro-radius is Pi = 2.7. On the other hand. for wce/Wpe = 5.0, these values are /3 = 0.0067. 

VA = 2.0, and Pi = 1.6. 

The time step 6.t was taken to be very small" for each run. In the far upstream region, it was 
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WceC:.t "" 0.02. Even at a region of the strongest magnetic field, t.herefore, it was wce t:':1t .:s 0.2. 

First, we show in Fig. 2 snapshots of a. perpendicular magnet080nic pulse (quasi shock wave). 

From the top panel to the third one. plotted are the ma.gnetic field B, transverse electric field Ey , 

I I 

Fig. 2. Profiles of B. E" <.p. and phase space plots (Z,Pi.) and (Z,Pi,) for ions and electrons. 

and the electric potential r.p at wpet = 180. The lower four panels show phase space plots (x, Pi"') and 

(x.Pjy) for the ions and electrons. In the figure. the quantities B. Ey, 'P, and Pi are normalized to 

Bo, Bo, mjvX!e, and mie, respectively. Because in the simulations all the quantities are observed 

in the laboratory frame (except for Fig. 4), the subscript 1 is omitted. The field quantities B, 

Ey , and cp have similar profiles and have their maximum values at nearly the same point. As 

mentioned in the previous section. even though the magnetosonic pulse propagates nearly steadily, 

small-amplitude pulses are emitted from the main pulse and move a.wa.y from it;12l see the upper 

two panels. 

This is a case with wcelwpe = 3.0. If we define the Mach number M as the ra.tio of shock speed 

Vsh to phase velocity of linear magnetosonic wave vp 

M = Vsh/Vp, (31) 

then M is observed to be 2.8. Because vp/e =0.29, the speed ratio Vsh/C is 0.81, and the Lorentz 

factor for this speed ratio is 1'0 = 1.7. 

Figure 3 shows spatial profiles of plasma current densities in the direction parallel to the wave 

front, jy (normalized to the quantity eC:.iWpe), at the same moment as Fig. 2; in the upper panel 

we show ion current density jiy and electron current density iey. while in the lower one we show 

the total current density, jy = jiy + ley. Certainly, the magnitude of the ion current density is 

comparable to that of the electron current density in magnitude. 

Figure 4 shows ion momenta Piz in the wa.ve frame. The vertical line at Xw = 322 represents 

the x position where the potential takes its maximum value. X w = X wm ' The values of Pi~  around 

this point are much smaller than those in the far upstream region. This ascertains the assumption 

that. in eq. (12). the first term on the right-hand side can be neglected at Xw = Xwm compared to 

the first tenn on the left-hand side. 

I I� 

Fig. 3. Profiles of current densities parallel to the wave front. In the upper panel, the ion and electron current 

densities are shown. In the lower panel. tile total current density is plotted. 

I I� 
Fig. 4. Ion momenta in the wave frame. 

Here we obtained Piz by the Lorentz transformation of the ion momenta Piz at wpet = 180 in 

Fig. 2 in the laboratory frame. Thus the times at different x positions in Fig. 4 are not the same. 

However, the a.verage value (fluid velocity) of Piwz at Xw = 00 is independent of time. Hence the 

difference between the average values of Piwz at Xw = Xwm and at Xw = 00 should be independent 

of time, if the wave propagation is steady. 

Carrying out simula.tions with different values of propagation speed of pulse, 'Ush, we can observe 

the dependence of the magnetic field amplitude on the pulse speed Vsh; it is plotted in Fig. 5. The 

upper panel is for the case with VAle = 0.3 (we/wpe = 3.0), while the lower one is for VAle = 0.5 

(we/Wpe = 5.0). The circles and triangles show simulation results measured at around wpet ~ 120 

and a.t wpet ~ 180, respectively. The solid lines are the theoretical prediction given by eq. (17). 

The dotted lines are the nonrelativistic theory given by eq. (1); even though this equation is not 

applicable to these parameters, for comparisons. we extrapolated the theory. In both the new 

theory and simulation results, the maximum value Bml Eo rapidly increases with Mach number M 

(or the propagation speed Vsh) in the high Mach number region. 

In Fig. 6 are shown maximum values of the transverse electric field E y as a function of the pulse 

speed Vsh (or the Mach number M). As in the previous case. the Alfven speed in the upper panel 

is VAle = 0.3. and that in the lower panel is VAle = 0.5. The circles and triangles are simulation 

results at Wpet ~ 120 and at wpet ~ 180. Also, the solid lines are theoretical prediction. eq. (20). 

For both the magnetic and the transverse electric fields. the theory and simulation are in good 
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I ,� 
Fig. 5. Magnetic field amplitude versus pulse speed. The Alfyen speed is vAle = 0.3 for the upper panel and is 

vAle = 0.5 for the lower panel. The circles and triangles show simulation results. The solid lines are theoretical 

prediction. The dotted lines are extrapolation of nonrelativistic theory. 

agreement. 

I I� 
Fig. 6. Amplitude of transverse electric field as a function of the pulse speed. 

Figure 7 shows ma.xim.um values of the electric potential as a function of the pulse speed Vsh (or 

the Mach number M). The dotted lines are the theory neglecting the ion currents, which gives 

larger values than the observations. The solid lines are the theory including ion currents. The 

theory taking ion currents into account gives a. better fit than the theory without ion currents. 

This is consistent with the direct observations of plasma currents shown in Fig. 3. 

I I� 

Fig. i. Electric potential versus pulse speed. 

We show in Fig. 8 how the amplitude ratios change as a function of the pulse speed 'Ush; the ratios 

Eym/{Bm- Bo} and Erm/{Bm- Eo} are plotted. The open a.nd closed circles are simulation results 

for Eym and Erm , respectively. The thick straight line represents the theory, eq. (19). As the 
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theory predicts, the amplitude ratio Eym/{Bm - Bo} increases with pulse speed. However, the ratio 

of the longitudinal electric field to the magnetic field, Erml (Em - Bo), decreases with increasing 

pulse speed. As the pulse speed increases, the transverse fields, Ey a.nd B, become the dominant 

components in electromagnetic fields in a shock wave. 16) 

I I� 
Fig. 8. Amplitude ratios E,m/(Bm- Bo) and E.m/(Bm - Bo} as a function of the pulse speed. The straight line 

is the theory for E,m. 

§4. Summary 

Through theory and particle simulation, we have studied the structure of a large-amplitude 

magnetosonic wave propagating perpendicular to a magnetic field with a relativistic speed. First, 

on the basis of the relativistic two-fluid model, we analytically obtained the strengths of magnetic 

and transverse electric fields and the magnitude of electric potential in a nonlinear pulse, assuming 

that the pulse propagates nearly steadily; the charge neutrality was not assumed. Then, using a 

one-dimensional, relativistic, electromagnetic particle code with full ion and electron dynamics, we 

investigated the propagation of large-amplitude magnetosonic waves in plasmas with high Alfven 

speed; the propagation speeds of shock waves we studied were 0.5 .$ vshlc .$ 0.9. It was found 

that the magnitudes of electromagnetic fields obtained from the theory are in good agreement with 

the simulation results. Also, both theory and simulation show that the transverse components 

(magnetic and transverse electric fields) become predominant over the longitudinal ones when the 

magnetosonic waves have highly relativistic propagation-speeds. 

Unlike the weak magnetic field case, the ion currents parallel to the wave front are comparable 

to the electron currents in magnitude. The theory including the ion currents gives potential values 

closer to simulation results than the theory neglecting the ion currents. 

The ion currents were obtained from simple physical considerations. Thus further investigation 

on the ion motions is desirable to obtain more accurate ion currents and potential in large-amplitude 

magnetosonic waves with relativistic speeds. The investigation of ion orbits is also needed to develop 

the research of t>article acceleration in strong magnetic fields. 
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Appendix: Estimation of Ion Current 

It is quite difficult to accurately and rigorously estimate the ion currents in the pulse region; to do 

this we need to know precise information of ion motions. Here we will obtain the ion currents from 

a. simple physical. picture; our treatment will not be fully relativistic. Figure 9 shows a snapshot of 

ion phase space (x, Vy) obtained from a. particle simulation; the simulation parameters are the same 

as those in Fig. 2. From this. we see that, when the ions penetra.te the pulse region, vy increases 

I I� 
Fig. 9. Ion phase space plot (x, uy ). 

up to a certain maximum value; next it quickly decreases to a negative maximum value and then 

becomes zero. Thus in the (x, y) plane in the wave frame, the ion orbits can be schematically 

drawn as in Fig. 1. 

For a large-amplitude magnetosonic wave with a relativistic speed, the ion velocity is quite high 

(much higher than the thermal speed) in the wave frame. Also. the magnetic field is strong in the 

pulse region. Hence, the ion motion is similar to a cycloid; gyro-motion with Eyo x B drift, which 

is consistent with the motion shown in Figs. 1 and 8. That is, the ion velocity is given by 

v" - cEyo/B = Vl. cos( -Weit + 71'), (A·l) 

v y = V.1. sin( -Wcit + 11'), (A·2) 

where t = 0 is the time when a particle enters the pulse region. If we define a as av.1. =-cEyO IB, 

then we have a relation 

(a + l)v.1. =Vsh, (A·3) 

beca.use the ion velocity in the upstream region is given by VJ: :::: -Vsh. When a = 1, we have a 

cycloid motion. Then the integration of the ion current is 

11f1""t. 
wm qinwviydx:::: - <. qinwO(V; + v;)1/2dt = -AqjnwOV;h/ < Wei> . (A·4)i. 'Xl 0 

Here, < Wei > is the average cyclotron frequency during the integra.tion; thus, rougWy. it is given 

by < Wei >=::: qi(Bwm + Bwo)/(2mnoc). The numerical factor A is given by 

A:::: (1 (1 + a2 _ 2~)1/2d~  = (a + 1)3 -11 ~  a13 , 
(A'5)i-I 3a(a + 1)2 

where ~  is introduced by { = cos( -weit + 11'). The quantity A is 2/3 for a = 1 and is 0.96 for 

a =0.5. Using this, we obtain eq. (30). 
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