Fragmentation of a Magnetized Filamentary Molecular Cloud Rotating around the Axis

Tomoaki Matsumoto, Fumitaka Nakamura, and Tomoyuki Hanawa
Department of Astrophysics, School of Science, Nagoya University, Chikusa-ku, Nagoya 464-01

(Received 1993 July 26 ; Accepted 1994 February 9)

ABSTRACT

The dynamical instability of a self-gravitating magnetized filamentary cloud was investigated taking account of rotation around the axis. The filamentary cloud of our model is supported against the self-gravity in part by the magnetic field and rotation. The density distribution in equilibrium was assumed to be a function of the radial distance from the axis, $\rho_0(r) = \rho_c (1 + r^2/8H^2)^{-2}$, where ρ_c and H are the model parameters specifying the density on the axis and the length scale, respectively; the magnetic field was assumed to have both longitudinal (z-) and azimuthal (φ-) components with a strength of $B_0(r) \propto \sqrt{\rho_0(r)}$. The rotation velocity was assumed to be $v_0 = \Omega_c r (1 + r^2/8H^2)^{-1/2}$. We obtained the growth rate and eigenfunction numerically for (1) axisymmetric ($m = 0$) perturbations imposed on a rotating cloud with a longitudinal magnetic field, (2) non-axisymmetric ($m = 1$) perturbations imposed on a rotating cloud with a longitudinal magnetic field, and (3) axisymmetric perturbations imposed on a rotating cloud with a helical magnetic field. The fastest growing perturbation is an axisymmetric one for all the model clouds studied in this paper. Its wavelength is $\lambda_{\text{max}} \approx 11.14H$ for the non-rotating cloud without a magnetic field and shorter when the magnetic field is stronger and/or the rotation is faster. For a rotating cloud without a magnetic field the most unstable axisymmetric mode is excited mainly by the self-gravity (the Jeans instability) while the unstable non-axisymmetric mode is excited mainly by the non-uniform rotation (the Kelvin-Helmholtz instability). The unstable non-axisymmetric perturbation corotates with the fluid at $r = 2 - 4H$ and grows in time. When the equilibrium magnetic field is helical, the unstable perturbation grows in time and propagates along the axis. A rotating cloud with a helical magnetic field is less unstable than that with a longitudinal magnetic field.

Key Words: Instabilities — Interstellar: magnetic Field — Magnetohydrodynamics — Rotation — Stars: formation
1. Introduction

Recent observations have revealed that many molecular clouds contain elongated filamentary structures. The filamentary clouds have dense cores as their internal constituents. Most of the young stellar objects seem to be associated with the dense cores. Then the evolution, i.e., fragmentation, of a filamentary cloud, is interesting in relation to the early phase of star formation processes.

Filamentary molecular clouds are often associated with magnetic fields, which are perpendicular to the cloud in the Taurus region (Moneti et al. 1984) and parallel to the cloud in the Ophiuchus region (Vrba et al. 1976). It is suggested that the Orion A cloud has helical magnetic fields around the cloud axis (Bally 1989; Uchida et al. 1991). In some filamentary molecular clouds the velocity gradient has a component perpendicular to the filament axis, which can be interpreted as rotation around the axis (see, e.g., Olano et al. 1988; Uchida et al. 1991; Tatematsu et al. 1993). The energies of the magnetic field and rotation are likely to be comparable to the gravitational energy. These magnetic fields and rotation may influence the fragmentation of the filamentary clouds.

Since the early work of Chandrasekhar and Fermi (1953) the linear stability of a cylindrical gas cloud has been investigated extensively by Stodolkiewicz (1963), Hansen et al. (1976), Nagasawa (1987), Inutsuka and Miyama (1992), and Nakamura et al. (1993, referred to as Paper I in the following). These studies take account of the effects of magnetic fields, stiffness of the equation of state, rotation and collapse of the filamentary cloud in the radial direction. However, the stability of a rotating magnetized filamentary cloud against fragmentation has not been discussed. Among the studies referred above, only Hansen et al. (1976) took account of rotation around the axis while they took account of neither magnetic fields nor fragmentation in the z-direction. We extend the model of Paper I to include rotation around the filamentary axis. See, e.g., Bastien et al. (1991) for the rotation perpendicular to the axis. They followed the fragmentation of a finite length cloud rotating perpendicular to the cloud axis using numerical simulations.

The model and computation methods are described in section 2. In section 3 a rotating filamentary cloud with longitudinal or helical magnetic fields is discussed. In section 5 we discuss the application of our stability analysis and compare our result to the Kelvin-Helmholtz and Balbus-Hawley (1991) instabilities.

2. Model and Computation Methods

2.1. Equilibrium Model

As a model of a filamentary molecular cloud, we considered an infinitely long cylindrical gas cloud in equilibrium in which the density and the magnetic field are uniform along the z-axis in the cylindrical coordinate system \((r, \varphi, z)\). The model of Paper I was extended to include the rotation around the filamentary axis. See, e.g., Bastien et al. (1991) for the rotation perpendicular to the axis. They followed the fragmentation of a finite length cloud rotating perpendicular to the cloud axis using numerical simulations.

The hydrostatic equilibrium of the filamentary molecular cloud is described by

\[
\frac{dP_0}{dr} + \frac{d}{dr} \left(\frac{B_{0\varphi}^2 + B_{0z}^2}{8\pi} \right) + \frac{B_{0\varphi}^2}{4\pi r} + \rho_0 \left(\frac{v_{0\varphi}^2}{r} + \frac{d\psi_0}{dr} \right) = 0 , \tag{1}
\]

and

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{d\psi_0}{dr} \right) = 4\pi G \rho_0 . \tag{2}
\]

Here, \(P, \rho, v_{\varphi}, \psi, G, B_{\varphi}, \text{ and } B_z\) are the gas pressure, density, \(\varphi\)-component of velocity, gravitational potential, gravitational constant, and the \(\varphi\) and \(z\)-components of the magnetic field, respectively. Subscript 0 denotes the quantities in the unperturbed state. The magnetic field of the \(r\)-component is assumed to vanish in the unperturbed state, \(B_0 = (0, B_{0\varphi}, B_{0z})\). For simplicity, the filamentary gas cloud is assumed to be isothermal,

\[
\frac{P_0}{\rho_0} = c_s^2 = \text{const.} \tag{3}
\]

A solution satisfying equations (1) through (3) is expressed as

\[
\rho_0 = \rho_c \left(1 + \frac{r^2}{8H^2} \right)^{-2} , \tag{4}
\]

\[
v_0 = (0, v_{0\varphi}, 0) = \{ 0, r\Omega_c (1 + \frac{r^2}{8H^2})^{-1/2}, 0 \} , \tag{5}
\]

\[
B_0 = (0, B_{0\varphi}, B_{0z}) , \tag{6}
\]

\[
B_{0\varphi} = B_c \sin \theta \frac{r}{2\sqrt{2H}} \left(1 + \frac{r^2}{8H^2} \right)^{-3/2} , \tag{7}
\]
\[B_{0z} = B_e \left(1 + \frac{r^2}{8H^2} \right)^{-3/2} \times \sqrt{1 + \cos^2 \theta \frac{r^2}{8H^2}}, \] (8)

and
\[\psi_0 = 8\pi G\rho_e H^2 \ln \left(1 + \frac{r^2}{8H^2} \right), \] (9)

where
\[4\pi G\rho_e H^2 = c_s^2 + \frac{B_e^2}{16\pi\rho_e} (1 + \cos^2 \theta) + 2\Omega_e^2 H^2. \] (10)

All of the symbols with subscript c denote the values at \(r = 0 \). The effective radius of this model is \(r = 2\sqrt{2}H \).

The density distribution of our model is the same as those of Stodłökiewicz (1963), Ostriker (1964), Nagasawa (1987), and Paper I. Among these models, our solution is the most general in the sense that our model incorporates rotation around the axis as well as helical and longitudinal magnetic fields. Our solution has five model parameters; \(\rho_c, c_s, B_c, \theta, \) and \(\Omega_c \). The \(\theta \) parameter denotes the ratio of the \(\varphi \) and \(z \)-components of the magnetic fields and is equal to the pitch angle of the magnetic fields at \(r = \infty \), \(\theta = \lim_{r \to \infty} \tan^{-1} \left(B_{0\varphi}/B_{0z} \right) \). When \(\Omega_c = 0 \), our model reduces to that of Paper I. When \(\theta = 0 \) and \(\Omega_c = 0 \), the magnetic field is parallel to the filament axis and the model reduces to that of Stodłökiewicz's (1963) solution for clouds with longitudinal magnetic fields. When \(B_c = 0 \), our solution reduces to Ostriker's (1964) isothermal solution for non-magnetized clouds. The sign of \(B_c \) is taken to be positive in this paper unless otherwise noted. In this equilibrium model, the ratios of the magnetic and centrifugal forces to the gas pressure, \(\alpha \) and \(\beta \) are spatially constant:
\[\alpha \equiv \frac{B_{0\varphi}^2 + B_{0z}^2}{8\pi P_0} = \frac{B_c^2}{8\pi\rho_c c_s^2} = \text{const}, \] (11)

and
\[\beta \equiv \frac{2\Omega_e^2 H^2}{c_s^2} = \text{const}. \] (12)

The condition for equilibrium, equation (10), thus reduces to
\[4\pi G\rho_e H^2 = c_s^2 \left[1 + \alpha \left(\frac{1 + \cos^2 \theta}{2} \right) + \beta \right]. \] (13)

In the following we take \(H \) as the unit of length and \((2\pi G\rho_c)^{-1/2} \) as the unit of time. The model can thus be specified with three non-dimensional parameters, \(\alpha, \beta \) and \(\theta \). In the subsequent sections we investigate the dependence of the growth rate on \(\alpha, \beta \) and \(\theta \).

2.2. Perturbation Equations

We considered a perturbation of small amplitude superimposed on the equilibrium cloud described above. The linearized equation of motion for the perturbation is given by
\[\frac{\partial \psi_1}{\partial t} + (\mathbf{v}_0 \cdot \nabla) \mathbf{v}_1 + (\mathbf{v}_1 \cdot \nabla) \mathbf{v}_0 = \mathbf{j}_0 \times \mathbf{B}_1 + \mathbf{j}_1 \times \mathbf{B}_0 \]
\[+ \nabla P_1 + \rho_1 \nabla \psi_0 + \rho_0 \nabla \psi_1 = 0. \] (14)

where \(\mathbf{v} = (c/4\pi)\nabla \times \mathbf{B} \) are the velocity and electric current density, respectively; all of the symbols with subscript 1 denote the changes in the quantities due to the perturbation. The equation of continuity, the Poisson equation, and the induction equation are respectively expressed as follows:
\[\frac{\partial \rho_1}{\partial t} + \nabla \cdot (\rho_0 \mathbf{v}_1 + \rho_1 \mathbf{v}_0) = 0, \] (15)
\[\Delta \psi_1 = 4\pi G\rho_1, \] (16)

and
\[\frac{\partial \mathbf{B}_1}{\partial t} = \nabla \times (\mathbf{v}_1 \times \mathbf{B}_0 + \mathbf{v}_0 \times \mathbf{B}_1). \] (17)

The perturbation is assumed to be isothermal,
\[P_1 = c_s^2 \rho_1. \] (18)

We obtained the normal-mode solutions of equations (13) through (17), in which all of the physical quantities change according to the form
\[\rho_1(r, \varphi, z, t) = \rho_1(r) \exp(-i\omega t + im\varphi + i\kappa z). \] (19)

After some manipulation equations (13) through (17) can be rewritten as
\[\frac{d^2}{dr} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & 0 \\ 0 & 0 & 0 & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}, \] (20)
where

\[
(y_1, y_2, y_3, y_4) = \left(\frac{B_{1\varphi}B_\varphi}{4\pi} + \frac{B_{1z}B_{0z}}{4\pi} - \frac{i\rho_0\nu_{|1r}}{\omega}, \frac{\rho_c\psi_1}{\rho_{|1r}} \right).
\]

The symbol \(g_{1r}(= dv_1/dr) \) denotes the change in the gravitational acceleration in the \(r \)-direction. The elements of matrix \(A \) are given explicitly in appendix 1.

The boundary conditions were set so that the perturbation is regular at \(r = 0 \) and infinitesimal at \(r = \infty \). Since the perturbation equation is singular at \(r = 0 \), we obtained regular solutions near \(r = 0 \) according to the method of Paper I. The asymptotic solutions in the region \(r \gg 4H \) were also obtained according to Paper I.

2.3. Numerical Procedure

Eigenvalues and eigenfunctions were obtained essentially with the methods of Paper I. Namely, we integrated the perturbation equation both from \(r = 0 \) and \(r = \infty \) for a given \(\omega \) (= \(\omega_r + i\omega_i \)) and checked whether the integrated solutions can be connected continuously at a middle point. When a solution satisfies the boundary conditions at \(r = 0 \) and \(r = \infty \) for a given \(\omega \), we regarded the given \(\omega \) as an eigenvalue.

We searched for eigenvalues using the bisection method. When \(m\Omega \theta = 0 \), the eigenvalue \((\omega^2) \) is always real and can be obtained by a usual bisection method. When \(m\Omega \theta \neq 0 \), we extended the bisection method for a complex eigenvalue. The technical details of the extended bisection method are given in appendix 2.

Equation (20) has a singularity at \(v_{0r} = r\omega_r/m \) when \(m \neq 0 \). The result depends on the integration path (see, e.g., Lin 1945a, b; Kato 1987). We integrated equation (20) over \(r \) along the real axis. This integration path is correct only for unstable modes. Although this integration path is not correct for damped modes, we apply it for simplicity since we are not much interested in damped modes.

3. Rotating Clouds with Longitudinal Magnetic Fields

In this section we study the stability of a rotating cloud with longitudinal magnetic fields \((\theta = 0^\circ) \). The parameter \(\theta \) is fixed to be \(0^\circ \) in this section except where otherwise is stated.

3.1. Sausage \((m = 0) \) Mode

In the beginning we study the sausage mode \((m = 0) \) instability of a rotating non-magnetized filamentary cloud. The eigenvalue \((\omega) \) is purely imaginary for the unstable mode. Figure 1 shows the dispersion relation for the model of \((\alpha, \beta) = (0, 1) \) by the thick curve. The abscissa and ordinate are the non-dimensional wavenumber \((k_zH) \) and the non-dimensional growth rate \((\omega_1/\sqrt{2\pi G\rho_c}) \), respectively. There is only one unstable sausage mode for the models with \(\alpha = 0 \), although there are some unstable sausage modes for \(\alpha > 0 \) (Paper I). The sausage mode is unstable only when the wavenumber is smaller than a critical one, \(k_{z, cr}H = 0.960 \). The growth rate has its maximum, \(\omega_{1, max} = 0.606\sqrt{2\pi G\rho_c} \), at \(k_zH = 0.467 \). The dashed and thin curves denote the growth rate of the most unstable mode for \((\alpha, \beta) = (0, 0) \) and \((\alpha, \beta) = (1, 0) \), respectively. Rotation as well as longitudinal magnetic fields increase the maximum growth rate \((\equiv \omega_{1, max}) \), the wavenumber of the fastest growing perturbation \((\equiv k_{z, max}) \), and the critical wavenumber \((\equiv k_{z, cr}) \).

Table 1 lists the maximum growth rate \((\omega_{1, max}) \), the wavenumber \((k_{z, max}) \), and the critical wavenumber \((k_{z, cr}) \) for \(\alpha \) and \(\beta \) smaller than a critical one and \((\alpha, \beta) = (0, 0) \). The wavelength of the fastest growing perturbation is almost the same for \((\alpha, \beta) = (0, 1) \) and \((1, 0) \). This implies that \(k_{z, max} \) is a function of \(c_0 \) for \(\theta = 0^\circ \). The maximum growth rate is smaller for \(\beta > 0 \) and \((\alpha, \beta) = (0, 1) \) than for \((\alpha, \beta) = (1, 0) \). This means that the Parker instability increases the growth rate when the magnetic field is present.

Figure 2 shows the dependence of the growth rate on \(\beta \) for \(\alpha = 0 \). As \(\beta \) increases, \(\omega_{1, max}, k_{z, max}, \) and \(k_{z, cr} \) increase. The wavenumber of the the fastest growing perturbation is almost the same for \((\alpha, \beta) = (0, 1) \) and \((1, 0) \).

\[
k_{z, max}H = 0.72 \{(1 + \alpha + \beta)^{1/3} - 0.6\}, \tag{22}
\]

for \(\theta = 0^\circ \). Figure 3 shows the accuracy of equation (22). The upper panel shows \(k_{z, max} \) as a function of \(\alpha + \beta \). Equation (22) is drawn by the curve and the numerically obtained values \((k_{z, max}) \) are plotted with filled circles. The lower panel shows the deviation from equation (22). Equation (22) gives a good estimate for \(k_{z, max} \) with an error of 2% for \(0 \leq \alpha + \beta \leq 6 \). Equation (22) is used for a com-
pavison with a filamentary molecular cloud, Orion A, by Hanawa et al. (1993). See Hanawa et al. (1993) for the application of equation (22). The approximate dispersion relation is given by

\[\omega^2 = -4\pi G\rho_c \left(\frac{k_z H}{1 + k_z H} \frac{0.89 + 1.4\alpha}{1 + 1.25\alpha} + c_s^2 k_z^2 \right) \]

\[= -4\pi G\rho_c \left(\frac{k_z H}{1 + k_z H} \frac{0.89 + 1.4\alpha}{1 + 1.25\alpha} - \frac{H^2 c_s^2}{1 + \alpha + \beta} \right), \]

(23)

for the most unstable sausage mode for all the models of \(\theta = 0^\circ \). The upper and lower expression of equation (23) are equivalent [see equation (13)]. The second term in the right hand side of equation (23) denotes the stabilization due to thermal pressure, i.e., the dispersion relation of the sound wave. When \(\alpha \) and \(\beta \) are larger, \(c_s \) is lower and accordingly the growth rate is larger. The maximum growth rate obtained from equation (23) agrees with the numerical results with an error of 5% for 0.5 \(\leq \alpha \leq 10 \) and 0 \(\leq \beta \leq 10 \), and for \(\alpha = 0 \) and 0 \(\leq \beta \leq 2 \).

Figure 4 shows the fastest growing perturbation for \((\alpha, \beta) = (0, 1)\). The density distribution in the \(r-z \) plane is shown with the grey scale and the velocity field is denoted by arrows. The amplitude of the perturbation is taken to be \(\rho_1/\rho_0 = \varepsilon \cos(k_z z) \) at \(r = 0 \). To emphasize the density contrast we have taken \(\varepsilon = 0.65 \) in figure 4. The relative density perturbation \(|\rho_1/\rho_0|\) has its maximum on the axis \((r = 0)\). The velocity perturbation is dominant in the \(z \)-direction. The velocity perturbation in the \(z \)-direction has its maximum, \(v_{1z} = -0.941 c_s \cos(k_z z) \), on the axis when \(\rho_1/\rho_0 = \varepsilon \cos(k_z z) \). The velocity perturbation in the \(r \)-direction has its maximum, \(v_{1r} = -0.175 c_s \cos(k_z z) \), at \(r = 2.87 H \). The change in rotation velocity is at most, \(v_\varphi = 0.101 c_s \cos(k_z z) \), at \(r = 1.63 H \). The characteristics of the most unstable sausage mode for \((\alpha, \beta) = (0.5, 0.5)\) are in between those for \((\alpha, \beta) = (1, 0)\) and \((0, 1)\) except for the generation of \(B_\varphi \). When \(\alpha \beta \neq 0 \), the magnetic field is twisted by the change in rotation velocity \([B_\varphi = -0.249 \varepsilon \sin(k_z z)] \) at \(r = 1.51 H \) at most while \(B_{az} = 3.545 (1 + r^2/8H^2)^{-1} \).

3.2. Kink (\(m = 1 \) Mode)

Rotating filamentary clouds are also unstable against non-axisymmetric perturbations. We found five modes, three of which are pure oscillations \((\omega = 0)\) for any \(k_z \). The remaining two modes have complex conjugate eigenfrequencies. Figure 6 shows the dispersion relation of the unstable kink mode \((m = 1)\) for \(\alpha = 0 \) and \(\beta = 1 \). The real and imaginary parts of the eigenfrequency are denoted by the dashed and solid curves, respectively. The dispersion relation is symmetric with respect to \(k_z \), i.e., \(\omega(-k_z) = \omega(k_z) \). We thus restrict ourselves to \(k_z > 0 \) in the following. The three horizontal dotted lines in the figure denote the angular velocities, \(\Omega_0 \), at \(r = 2, 2\sqrt{2} \) and 4 respectively. The unstable modes have a corotation point where the phase velocity coincides with the fluid velocity \([\omega_r/m = \Omega(r)]\). The corotation point is located near the effective radius, \(r \approx 2\sqrt{2}H \) when the growth rate is large. The growth rate is very small \((\omega_i < 1 \times 10^{-4} \sqrt{2\pi G\rho_c}) \) in the region of \([H k_z] < 0.04 \) and large in the region \(0.1 \leq H k_z < 0.477 \). Because of the analytical and numerical difficulty at the corotation point \([\omega_r = m\Omega(r)]\), we could not find whether \(\omega_i = 0 \) in the region \([H k_z] \leq 0.04 \). When \(k_z \) is larger than the critical value \((k_z, cr = 0.477 H^{-1})\),
the growth rate is again small ($\omega_i < 10^{-2} \sqrt{2\pi G \rho_0}$).

The mode having $m = -1$ is physically the same as that having $m = 1$ except for the sign of ω_r. When $m = -1$, a mode with $\omega_r < 0$ becomes unstable and a mode with $\omega_r > 0$ is a pure oscillation. Only when the fluid velocity (= Ω) and the phase velocity of the wave (= c_ν) have the same sign, can the mode be unstable.

Figures 7 and 8 are the same as figure 6 but for $(\alpha, \beta) = (0, 0.5)$ and $(0, 2)$, respectively. The growth rate is larger when β is larger. The non-rotating filamentary cloud without magnetic fields ($\alpha = \beta = 0$) has two neutrally stable kink mode with positive and negative real frequencies (see also Nagasawa 1987). Only the mode having the corotation point becomes unstable and the other mode remains pure oscillatory. We can thus conclude that this instability is due to the resonance of wave to the fluid rotation and accordingly the Kelvin-Helmholtz type. Note that non-rotating magnetized filamentary clouds are unstable against the kink mode because of the Parker instability (Paper I).

When $|k_z|$ is small, the growth rate is very small (even if it is positive) and the oscillation frequency is almost independent of β. In the long wavelength perturbations v_z has a large amplitude in the region very far from the axis ($r \gg 10 \mathcal{H}$). For $|k_z| \geq k_{z, cr}$ the growth rate of the kink mode is very small ($\omega_i < 1 \times 10^{-2}$). The critical wavenumber $k_{z, cr}$ is 0.301, 0.477, and 0.788 for $(\alpha, \beta) = (0, 0.5), (0, 1)$, and $(0, 2)$, respectively. The growth rate has its maximum, $\omega_i/\sqrt{2\pi G \rho_0}$ = 0.0564, 0.135, and 0.255 at $H k_z = 0.225, 0.323$, and 0.478, for $(\alpha, \beta) = (0, 0.5), (0, 1)$, and $(0, 2)$, respectively.

Figure 9 is the same as figure 4 but for the unstable kink perturbation for $(\alpha, \beta) = (0, 1)$. Figures 9(a) and (b) denote the cross section in the $r - z$ plane and that of $z = 0$, respectively. The growth rate and wave number are $\omega_i = 0.135 \sqrt{2\pi G \rho_0}$ and $H k_z = 0.323$, respectively. The amplitude of the perturbation is normalized so that the density perturbation is at most $\rho_1/\rho_0 = 0.5$. When the kink mode is excited, the density ridge is twisted as seen in figure 9.

Figure 10 is the same as figure 6 but for $(\alpha, \beta) = (0.5, 0.5)$. This model is intermediate between those of $(\alpha, \beta, \theta) = (1, 0, 0^\circ)$ and $(0, 1, 0^\circ)$, the former of which is excited by the Parker instability. For a fixed value of $\alpha + \beta$ the kink mode has a larger growth rate when α is larger.

4. Rotating Cloud with Helical Magnetic Fields

In this section we discuss the sausage mode instability of rotating filamentary clouds with helical magnetic fields ($\alpha \beta \neq 0$).

Figure 11 shows the dispersion relation of the most unstable sausage mode for $\theta = 30^\circ, 60^\circ$, and 90°, while $\alpha = \beta = 0.5$. The real (figure 11a) and imaginary (figure 11b) parts of the eigenfrequency, are shown as a function of k_z. The sausage mode grows and propagates with the phase speed of ω_r/k_z in the z-direction. The eigenfrequency of the damped mode is the complex conjugate of that of the unstable mode. The eigenfrequency is antisymmetric with respect to k_z, i.e., $\omega(-k_z) = -\omega(k_z)$. The phase velocity is thus always positive for both the unstable and damped modes. When $\theta < 0$, the real part of the eigenfrequency is negative, $\omega_r < 0$. Note that Ω_c is taken to be positive in our computations. The phase velocity is $\omega_r/k_z \simeq 0.025 \mathcal{H} \sqrt{2\pi G \rho_0}$ for $\theta = 30^\circ$. The phase velocity is faster for a larger θ.

As θ increases, $\omega_{z, max}, k_{z, max}$, and $k_{z, cr}$ decrease and accordingly the cloud becomes less unstable. This is due to the increases in the sound speed, c_s, for fixed α and β [see equation (13)]. Both when the magnetic field is longitudinal and helical, the most unstable mode is mainly excited by self-gravitational instability. The eigenfrequency ω is complex for $\alpha \beta \neq 0$ while it is pure imaginary or real for $\alpha \beta = 0$. Then the perturbation grows in time and propagates in the z-direction, only when the cloud rotates and is threaded by a helical magnetic field.

Figure 12 shows the fastest growing perturbation for $(\alpha, \beta, \theta) = (0.5, 0.5, 60^\circ)$. Figure 12 is similar to figure 5 but for the phase shift in the z-direction: The density perturbation is proportional to $\rho_1 \propto \cos(k_z z - \omega_t t + \delta_\rho)$, where the phase shift, δ_ρ, is a function of r and taken to be $\delta_\rho = 0$ at $r = 0$. The phase shift is large for the azimuthal components of the velocity and magnetic fields, e.g., $v_{1, \phi} = 0.141 \cos(k_z z - \omega_t t + 0.561)$ at $r = 1.73 \mathcal{H}$ and $B_{1, \phi} = 0.682 \sin(k_z z - \omega_t t + 0.356)$ at $r = 1.25 \mathcal{H}$. The upper panel of figure 12 shows the z-dependence of $v_{1, \phi}$ (the dashed curve) at $r = 1.73 \mathcal{H}$ and $B_{1, \phi}$ (the solid curve) at $r = 1.25 \mathcal{H}$, both of which have their maximum amplitudes there.

The phase shifts are related to the propagation of the wave. Consider a velocity perturbation propor-
tional to \(v_{1r} \propto \cos(k_z z) \) and \(v_{1z} \propto \sin(k_z z) \). The velocity perturbation changes \(v_{\phi} \) and \(B_\phi \) according to the azimuthal components of the equation of motion and the induction equation. When \(\theta = 0 \), the changes in the azimuthal components have the dependence, \(B_{1\phi} \propto \sin(k_z z) \) and \(v_{1\phi} \propto \cos(k_z z) \) (see section 3). When \(\beta = 0 \), they have the dependence, \(B_{1\phi} \propto \cos(k_z z) \) and \(v_{1\phi} \propto \sin(k_z z) \) (see Paper I). When \(\beta \neq 0 \), both types of the above mentioned perturbations are produced. These changes in \(v_{\phi} \) and \(B_\phi \) modify \(v_r \) and \(v_z \) according to the equation of motion. As a result, velocity perturbations given by \(v_{1r} \propto \sin(k_z z) \) and \(v_{1z} \propto \sin(k_z z) \) are also induced and the velocity perturbations apparently propagate.

5. DISCUSSION

As seen in the previous sections a rotating magnetized filamentary cloud suffers from various instabilities. This is in part because our model includes rotation as well as magnetic fields and the self-gravity of the gas. In this section we shall discuss the relationship of our model to other theoretical studies on the instability of a rotating gas cloud. In the last paragraph we also discuss the application of our model to TMC–1 (Taurus Molecular Cloud 1).

5.1. Relationship to the Kelvin-Helmholtz Instability and the Balbus-Hawley Mechanism

Since the angular velocity is non-uniform in our model, we suppose that the Kelvin-Helmholtz instability may be involved in the stability of our model cloud. As discussed by Glatzel(1987a,b), the resonant interaction of two neutral modes makes a couple of growing and damped modes and makes an angular momentum transfer across the corotation point. These characteristics are shared with the unstable kink mode for a rotating cloud without magnetic field. As shown in subsection 3.2 the growing and damped modes appear in pairs. We confirmed that the angular momentum is transferred from the region inside the corotation point to that outside the corotation point when the unstable kink mode is excited. In the growing mode, \(\rho_1 \) and \(v_{1\phi} \) are anti-correlated (\(\rho_1^* \cdot v_{1\phi} < 0 \)) inside the corotation point and is positively correlated (\(\rho_1^* \cdot v_{1\phi} \)) outside the corotation point, where \(\rho_1^* \) denotes the complex conjugate of \(\rho_1 \). This means that the central region loses angular momentum and the outer part receives it. The angular momentum transfer produces energy excess, which grows the perturbation.

The energy excess due to the angular momentum transfer is proportional to the difference in the angular velocity across the corotation point. Correspondingly the growth rate of the Kelvin-Helmholtz instability is bounded by the angular velocity gradient, \(\omega_i \leq \max \left(\frac{1}{2} \left| \frac{d\Omega}{dr} \right| \right) \) (Sung 1974; Hanawa 1986, 1987; Fujimoto 1987) when the self-gravity of the gas and magnetic fields are negligibly small. In our model, the angular velocity gradient,

\[
\frac{d\Omega}{dr} = -\sigma \frac{c_s^2}{8H^2} \left(1 + \frac{r^2}{8H^2} \right)^{-3/2},
\]

has its maximum, 0.385\(\sigma \) at \(r = 4H \) and some what smaller value 0.355\(\sigma \) at the effective radius, \(r = 2\sqrt{2}H \). It may be not a chance coincidence that the growth rate of the kink mode is large when the angular velocity gradient is large at the corotation point.

The unstable kink mode might be excited in part by another effect of large \(\beta \). When \(\beta \) is large, sound speed \((c_s) \) and thermal pressure are low [see equation (13)]. The low gas pressure strengthens the effect of the self-gravity relatively and suppress the Jeans instability less effectively. This effect is appreciable in the axisymmetric mode when \(\beta \geq 1 \). To investigate this effect on the kink mode, we made an experimental model in which the right-hand side of equation (16) was multiplied by a factor of 0 \(\leq \varepsilon \leq 1 \), \(\Delta \psi_1 = 4\pi G\rho_1 \). By decreasing \(\varepsilon \) from unity, the change in the gravitational potential was reduced artificially. As \(\varepsilon \) decreases, \(\omega_1 \) increases and \(\omega_i \) decreases. The increase in \(\omega_r \) is ascribed to the reduction in the self-gravity since the self-gravity lowers the propagation of the sound wave. The increase in \(\omega_r \) shifts the corotation point inward and accordingly decreases the angular velocity gradient thereof. The decrease in \(\omega_i \) may be in part due to the decrease in angular velocity gradient at the corotation point. Thus unfortunately we could not decouple the effect of low thermal pressure on the Jeans instability from other effects of large \(\beta \).

When \(\alpha \beta \neq 0 \), the unstable sausage mode is in part due to the Balbus-Hawley (1991) mechanism although it is mainly due to the Jeans instability. Balbus and Hawley showed that a differentially rotating disk is highly unstable if it is threaded by a vertical magnetic field. In such a disk, an outwardly displaced fluid element tried to enforce a rigid rotation and rotates too fast for its new radial location. Then the excess centrifugal force derived the element still
faster outward. As seen in subsection 3.1, the unstable sausage mode generates B_r and B_{cp}. The twisted magnetic fields transfer angular momentum along the field line. We confirmed that the fluid element displaced inward loses angular momentum by the magnetic drag when the unstable sausage mode is excited for $\alpha \beta \neq 0$. Because of the angular momentum gain, the fluid element contracts further by the decrease in the centrifugal force. In order to evaluate the contribution of the Balbus-Hawley mechanism to the unstable sausage mode, we computed again artificial models in which the change in the gravitational potential was attenuated by the factor of ε. The growth rate, ω, decreases with decrease in ε and diminishes at $\varepsilon = 0$. We thus conclude that the unstable sausage mode is excited mainly by the self-gravity. When $\varepsilon = 0$, the increase in the magnetic pressure near the axis ($r = 0$) stabilizes our model cloud against the Balbus-Hawley mechanism for $m = 0$. We confirmed that the sausage mode is stabilized against the Parker instability by the same mechanism for $(\alpha, \beta) = (1, 0)$ when $\varepsilon = 0$.

5.2. Comparison with Habe et al.'s Simulation

Here we comment on the collapse of a self-gravitating cloud triggered by torsional Alfvén Waves. Habe et al. (1991) showed with a numerical simulation that a cloud with helical magnetic fields collapse more easily than one with longitudinal magnetic fields. In their simulation, helical magnetic fields are generated by rotation and cause the rotating cloud to collapse by magnetic pinching. It looks as if our stability analysis contradicts with their simulation, since a rotating cloud with helical magnetic fields is less unstable than that with longitudinal magnetic fields in our analysis. The apparent contradiction comes from the difference in the initial models. While our initial model is in equilibrium, Habe et al's (1991) started their numerical simulation from a cloud threaded by helical magnetic fields. Their initial model is not in equilibrium. And our stability analysis cannot be applied directly to their initial model.

5.3. Application to TMC-1

Finally we discuss the application of our model to a filamentary molecular cloud, TMC-1 (Taurus Molecular Cloud 1). TMC-1 contains 5 dense cores which are more or less regularly spaced with an average separation of 4'. Since the apparent diameter is 2', the ratio of the average separation to the filament diameter is estimated to be ≈ 2. Substituting this value into our model, we obtain $H_{k_{max}} \approx 0.63$. This means that the magnetic and/or centrifugal forces are comparable to the gravitational force ($\alpha + \beta \approx 1$). This is consistent with the velocity structure of TMC-1. Olano et al. (1988) found a velocity gradient across the filament axis, which can be interpreted as rotation around the axis. The rotation velocity is comparable to the velocity dispersion. This implies that the cloud is supported against gravity in part by the rotation and that the centrifugal force is as strong as the turbulent pressure, $(\beta \approx 1)$.

The authors thank Professors Takenori Nakano and Satoshi Yamamoto for discussion and comments. This work is financially supported in part by the Grant-in-Aid for General Scientific Research (05640308).

Appendix 1. The Matrix Elements of A

Matrix A is expressed as

$$\frac{d}{dr} y = Ay,$$

$$y = (y_1, y_2, y_3, y_4) = (R_1 + \frac{B_0 \cdot B_i}{4\pi}, \frac{i \rho_0 \nu_1 r}{\omega}, \rho_c \psi_0, \rho_c \rho_0),$$

$$A = R + ST^{-1}U,$$

$$R = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ R_{21} & R_{22} & R_{23} & 0 \\ 0 & 0 & 0 & 1 \\ R_{41} & 0 & R_{43} & R_{44} \end{pmatrix},$$

$$R_{11} = \frac{1}{c_s^2} \left(\frac{v_{\theta \varphi}^2}{r} - \frac{\rho_0}{r} \right) + \frac{2v_{\theta \varphi}}{r} \frac{m}{r \xi},$$

$$R_{12} = \frac{\omega \xi - k \cdot B_0}{4\pi \rho_0} \frac{\omega}{\xi} - \frac{2v_{\theta \varphi}}{r} \frac{\omega}{r} \frac{d}{dr} (r v_{\varphi}) \right),$$

$$R_{13} = \frac{2v_{\theta \varphi}}{r \xi} \frac{m}{r} \frac{\rho_0}{\rho_c},$$

$$R_{14} = \frac{\rho_0}{\rho_c},$$

$$R_{21} = -\frac{1}{c_s^2} \frac{\xi}{\omega} + \left| k \right|^2 \frac{\omega}{\omega \xi}.$$
\[R_{22} = -\frac{1}{r} \]
\[\frac{k \cdot B_0}{4\pi \rho_0 \xi^2} \left[\frac{m}{r} \frac{d}{dr} \left(r B_{0\varphi} \right) + k_z \frac{dB_{0z}}{dr} \right] \]
\[- \frac{m}{r} \frac{1}{\xi} \frac{d}{dr} (r v_{0\varphi}), \]
\[R_{23} = \frac{|k|^2 \rho_0}{\omega \xi \rho_c}, \]
\[R_{42} = -\frac{1}{r}, \]
\[R_{44} = -1, \]
\[S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \\ 0 & 0 \\ S_{41} & S_{42} \end{pmatrix}, \]
\[S_{11} = -\left[\frac{1}{2\pi} + \frac{1}{4\pi c_s^2} \left(\frac{v_{0\varphi}^2}{r} - g_0 \right) \right] B_{0\varphi} \]
\[\frac{-2v_{0\varphi} k \cdot B}{r \xi} \frac{k^2}{4\pi}, \]
\[S_{12} = -\frac{1}{4\pi c_s^2} \left(\frac{v_{0\varphi}^2}{r} - g_0 \right) B_{0z}, \]
\[S_{21} = \frac{1}{4\pi c_s^2} \omega B_{0\varphi} - \frac{m}{r} \frac{k \cdot B_0}{4\pi}, \]
\[S_{22} = \frac{1}{4\pi c_s^2} \frac{\xi}{\omega} B_{02} - k_z \frac{k \cdot B_0}{4\pi}, \]
\[S_{41} = -\frac{G}{c_s^2} B_{0\varphi}, \]
\[S_{42} = -\frac{G}{c_s^2} B_{0z}, \]
\[T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \]
\[U = \begin{pmatrix} U_{11} & U_{12} & U_{13} & 0 \\ U_{21} & U_{22} & U_{23} & 0 \end{pmatrix}, \]
\[U_{11} = \frac{B_{0z}}{c_s^2 \rho_0} - k_z \frac{k \cdot B_0}{\rho_0 \xi^2}, \]
\[U_{12} = \left(\frac{B_{0z}}{\rho_0} \frac{d\rho_0}{dr} - \frac{dB_{0z}}{dr} \right) \frac{\omega}{\rho_0 \xi} \]
\[+ \frac{\omega(k \cdot B_0)}{4\pi \rho_0 \xi^2} \frac{dB_{0z}}{dr}, \]
\[U_{21} = \frac{B_{0\varphi}}{c_s^2 \rho_0} - \frac{m}{r} \frac{k \cdot B_0}{\rho_0 \xi^2}, \]
\[U_{22} = \left(\frac{B_{0\varphi}}{\rho_0} \frac{d\rho_0}{dr} - \frac{dB_{0\varphi}}{dr} + \frac{B_{0\varphi}}{r} \right) \frac{\omega}{\rho_0 \xi} \]
\[+ \frac{\omega(k \cdot B_0)}{4\pi \rho_0 \xi^2} \frac{1}{r} \frac{d}{dr} \left(r B_{0\varphi} \right), \]
\[+ \frac{k \cdot B_0}{\xi \rho_c}, \]
\[U_{23} = -\frac{k \cdot B_0}{\xi \rho_c}, \]
\[\xi = \omega - \frac{m}{r} v_{0\varphi}, \]
\[k = \begin{pmatrix} 0, \frac{m}{r}, k_z \end{pmatrix}, \]
\[B_0 = \begin{pmatrix} 0, B_{0\varphi}, B_{0z} \end{pmatrix}, \]
\[g_0 = d\psi_0/dr, \]
\[B_{1r} = \frac{i \omega}{\xi \rho_0} k \cdot B_{0y}, \]
\[\left(\begin{array}{c} B_{1\varphi} \\ B_{1z} \end{array} \right) = T^{-1} \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right), \]
\[v_{1r} = \omega \frac{i \rho_0}{y_1}, \]
\[\left(\begin{array}{c} y_{1\varphi} \\ y_{1z} \end{array} \right) = \left[W - \frac{k \cdot B_0}{4\pi \rho_0 \xi} \right] T^{-1} U \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array} \right), \]
\[W = \begin{pmatrix} W_{11} & W_{12} & W_{13} & 0 \\ W_{21} & W_{22} & W_{23} & 0 \end{pmatrix}, \]
\[W_{11} = \frac{m}{r} \frac{1}{\rho_0 \xi}, \]
\[W_{12} = -\frac{\omega}{\xi \rho_0 r} \frac{d}{dr} (rv_{0\varphi}) \]
\[+ \frac{k \cdot B_0}{4 \pi \rho \xi \rho c} (r B_0 \varphi) \], \quad (67) \]

\[W_{13} = \frac{m}{r \xi \rho c}, \quad (68) \]

\[W_{21} = k \frac{1}{\rho_0 \xi c}, \quad (69) \]

\[W_{22} = -\frac{\omega k \cdot B_0 dB_0}{4 \pi \rho_0^2 \xi^2 c} d^2, \quad (70) \]

and

\[W_{23} = k \frac{1}{\xi \rho c}. \quad (71) \]

Appendix 2. The Bisection Method for Complex Eigenvalues

In this appendix we describe the method to search for a complex eigenvalue. According to Paper I, the condition for an eigenvalue is expressed as

\[\chi(\omega) \equiv \det \begin{pmatrix} y_1^{(1)}(r; \omega) & y_1^{(2)}(r; \omega) & y_1^{(3)}(r; \omega) & y_1^{(4)}(r; \omega) \\ y_2^{(1)}(r; \omega) & y_2^{(2)}(r; \omega) & y_2^{(3)}(r; \omega) & y_2^{(4)}(r; \omega) \\ y_3^{(1)}(r; \omega) & y_3^{(2)}(r; \omega) & y_3^{(3)}(r; \omega) & y_3^{(4)}(r; \omega) \\ y_4^{(1)}(r; \omega) & y_4^{(2)}(r; \omega) & y_4^{(3)}(r; \omega) & y_4^{(4)}(r; \omega) \end{pmatrix} = 0, \quad (72) \]

where \([y_1^{(i)}, y_2^{(i)}, y_3^{(i)}, y_4^{(i)}]\) for \(i = 1, 2, 3, 4\) denote independent solutions satisfying either of the boundary conditions at \(r = 0\) or \(\infty\). We first evaluate \(\chi(\omega)\) for \(\omega = \omega_1, \omega_2, \text{and} \omega_3\). The points \(\omega = \omega_1, \omega_2, \text{and} \omega_3\) are on the vertexes of a right isosceles triangle on the complex \(\omega\) plane [see figure (13)]. Next we compute the

\[\eta(\omega_1, \omega_2, \omega_3) \equiv \log[\chi(\omega_1)/\chi(\omega_2)] + \log[\chi(\omega_2)/\chi(\omega_3)] + \log[\chi(\omega_3)/\chi(\omega_1)], \quad (73) \]

where each logarithm operation takes the principal value. The value of \(\eta(\omega_1, \omega_2, \omega_3)\) can take either of 0 or \(\pm 2\pi i\). When \(\eta = 2\pi i\), there is a zero point of \(\chi(\omega)\) inside the triangle. Note that \(\eta = \int (1/\chi) d\chi\).

When \(\eta = 2\pi i\) for the triangle \(\omega_1 - \omega_2 - \omega_3\), we integrate the perturbation equation for \(\omega_4 = (\omega_2 + \omega_3)/2\) and compute \(\chi(\omega_4)\). Either of \(\eta(\omega_1, \omega_2, \omega_4)\), \(\eta(\omega_1, \omega_4, \omega_3)\), and \(\eta(\omega_3, \omega_4, \omega_2)\) is identical to \(\eta(\omega_1, \omega_2, \omega_3)\),

\[\eta(\omega_1, \omega_2, \omega_3) = \eta(\omega_1, \omega_2, \omega_4) + \eta(\omega_1, \omega_4, \omega_3) + \eta(\omega_3, \omega_4, \omega_2). \quad (74) \]

In most cases, we get \(\eta(\omega_3, \omega_4, \omega_2) = 0\). [The frequency of \(\eta(\omega_3, \omega_4, \omega_2) \neq 0\) is very small when the triangle \(\omega_1 - \omega_2 - \omega_3\) is small]. Then the region containing the zero point of \(\chi(\omega) = 0\) is reduced to half in area. The reduced region is again a right isosceles triangle and can be squeezed by successive reduction. Finally we can get an eigenvalue, \(\omega\), with a sufficiently small error. Each iteration makes the estimated error smaller by a factor of \(\sqrt{2}\) in this extended bisection method.

REFERENCES

Fig. 1.— The dispersion relation for the models with $(\alpha, \beta) = (0, 1)$. The thick curve denotes the growth rate, ω_i, as a function of the wavenumber, $k_z H$. The thin and dashed curves denote the growth rate of the most unstable mode with $(\alpha, \beta, \theta) = (1, 0, 0^\circ)$ and $(0, 0, 0^\circ)$, respectively for comparison.

Fig. 2.— The dependence of the growth rate, ω_i, of the sausage ($m = 0$) mode on β for $\alpha = 0$. Each curve denotes the growth rate of the unstable sausage mode with $(\alpha, \beta) = (0, 0), (0, 1), \text{ and } (0, 2)$. The ordinate is the growth rate, ω_i, and the wave number, k_z.

Fig. 3.— The wave number of the most unstable perturbation as a function of $\alpha + \beta$ for $\theta = 0^\circ$. The ordinate and abscissa of the upper panel are the wavenumber of the most unstable perturbation, $k_{\text{max}} H$ and $\alpha + \beta$, respectively. The filled circles denote the numerically obtained data points and the curve denotes the fitting formula, equation (22). The lower panel shows the error of the fitting formula. The ordinate is $(\text{error}) \equiv (\text{fitting formula})/(\text{numerical data}) - 1.$
Fig. 4.— The main panel shows the cross section of the model filamentary cloud perturbed by the fastest growing sausage mode. The model parameters of the equilibrium model are \((\alpha, \beta, \theta) = (0, 1, 0^\circ)\). The abscissa is the \(z\)-axis and the ordinate is the radial direction. The density is shown with greyness, whose scale is shown in the left of the panel. The arrows denote the velocity field on the \(r - z\) plane. The right-hand panel shows \(v_\varphi\) as a function of \(r\) at \(z = 0.0\). The dashed and solid curves denote the values in equilibrium and in the perturbed state, respectively. The growth rate and the wave number of this perturbation are \(\omega_i = 0.606\) and \(k_z = 0.467\), respectively.

Fig. 5.— The same as figure 4 but for \((\alpha, \beta, \theta) = (0.5, 0.5, 0^\circ)\). The growth rate and the wave number of this perturbation are \(\omega_i = 0.640\) and \(k_z = 0.478\), respectively.
Fig. 6.— The dispersion relation of the kink ($m = 1$) mode for $(\alpha, \beta) = (0, 1)$. The dashed and solid curves denote, ω_r and ω_i, the oscillation frequency and growth rate, respectively. The three horizontal dotted lines denote the angular velocities, Ω, at $r = 2, 2\sqrt{2}$ and 4, respectively.

Fig. 7.— The same as figure 6 but for $(\alpha, \beta) = (0, 0.5)$.

Fig. 8.— The same as figure 6 but for $(\alpha, \beta) = (0, 2)$.
Fig. 9.— The same as figure 4 but for the most unstable kink mode with \((\alpha, \beta) = (0, 1)\). The wave number and growth rate are \(Hk_z = 0.323\) and \(\omega_{i,\text{max}} = 0.135 \sqrt{2\pi G \rho_c}\), respectively. The amplitude of the perturbation is normalized so that \(\rho_1/\rho_c = 0.5\) at maximum. (a) The cross section in the \(r - z\) plane. (b) The cross section of \(r = 0\).
Fig. 10.— The same as figure 6 but for the kink mode of \((\alpha, \beta, \theta) = (0.5, 0.5, 0°)\).

Fig. 11.— The dispersion relation of the sausage mode with \((\alpha, \beta) = (0.5, 0.5)\). The curves denote the growth rate as a function of \(k_z\) for \(\theta = 30°, 60°, \text{and } 90°\). Figures 11 (a) and (b) show \(\omega_r\) and \(\omega_i\), respectively. The dotted curve denotes \(\omega_i\) for the model with \(\theta = 0°\) for comparison.
Fig. 12.— The same as figure 4 but for the sausage mode with \((\alpha, \beta, \theta) = (0.5, 0.5, 60^\circ)\). The growth rate and wave number are \(\omega = (0.0199 + 0.594i) \sqrt{(2\pi G\rho_c)}\) and \(k_zH = 0.432\), respectively.

Fig. 13.— The search for a complex eigenvalue on a complex \(\omega\) plane. The region for search narrows by a factor of 2 in area by each iteration.