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• ABSTRACT 

The dynamical instability of a self-gravitating magnetized filamentary cloud was in­
vestigated taking account of rotation around the axis. The filamentary cloud of our 
model is supported against the self-gravity in part by the magnetic field and rotation. 
The density distribution in equilibrium was assumed to be a function of the radial 
distance from the axis, po(r) = Pc (1 + r2/8H2)-2, where Pc and H are the model 
parameters specifying the density on the axis and the length scale, respectively; the 
magnetic filed was assumed to have both longitudinal (z-) and azimuthal (rp-) compo­

nents with a strength of Bo(r) ex: Vpo(r). The rotation velocity was assumed to be� 

vOtp = Oc r (1 + r2/8H2)-1/2. We obtained the growth rate and eigenfunction numer­�
ically for (1) axisymmetric (m = 0) perturbations imposed on a rotating cloud with� 

<~.l a longitudinal magnetic field, (2) non-axisymmetric (m = 1) perturbations imposed� 
.~ 

on a rotating cloud with a longitudinal magnetic filed, and (3) axisymmetric perturba­�--->"
'~,~ . tions imposed on a rotating cloud with a helical magnetic field. The fastest growing 

perturbation is an axisymmetric one for all the model clouds studied in this paper. Its 
wavelength is Amax ~ 11.14H for the non-rotating cloud without a magnetic field and 
shorter when the magnetic filed is stronger and/or the rotation is faster. For a rotating 
cloud without a magnetic filed the most unstable axisymmetric mode is excited mainly 
by the self-gravity (the Jeans instability) while the unstable non-axisymmetric mode 
is excited mainly by the non-uniform rotation (the Kelvin-Helmholtz instability). The 
unstable non-axisymmetric perturbation corotates with the fluid at r = 2 - 4 Hand 
grows in time. When the equilibrium magnetic field is helical, the unstable perturbation 
grows in time and propagates along the axis. A rotating cloud with a helical magnetic 
field is less unstable than that with a longitudinal magnetic field. 

Key Words: Instabilities - Interstellar: magnetic Field - Magnetohydrodynamics - Rotation - Stars: 
formation 
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1. Introduction 

Recent observations have revealed that many molec­
ular clouds contain elongated filamentary structures. 
The fila!l1entary clouds have dense cores as their in­
ternal constituents. Most of the young stellar objects 
seem to be associated with the dense cores. Then the 
evolution, i.e., fragmentation, of a filamentary cloud, 
is interesting in relation to the early phase of star 
formation processes. 

Filamentary molecular clouds are often associated 
with magnetic fields, which are perpendicular to the 
cloud in the Taurus region (Moneti et al. 1984) and 
parallel to the cloud in the Ophiuchus region (Vrba et 
al. 1976). It is suggested that the Orion A cloud has 
helical magnetic fields around the cloud axis (Bally 
1989; Uchida et al. 1991). In some filamentary molec­
ula!' clouds the velocity gradient has a component per­
pendicular to the filament axis, which can be inter­
preted as rotation around the axis (see, e.g., Olano et 
al. 1988; Uchida et al. 1991; Tatematsu et al. 1993). 
The energies of the magnetic field and rotation are 
likely to be comparable to the gravitational energy. 
These magnetic fields and rotation may influence the 
fragmentation of the filamentary clouds. 

Since the early work of Chandrasekhar and Fermi 
(1953) the linear stability of a cylindrical gas cloud 
has been investigated extensively by Stodolkiewicz 
(1963), Hansen et al. (1976), Nagasawa (1987), In­
utsuka and Miyama (1992), and N&kamura et al. 
(1993, referred to as Paper I in the following). These 
studies take account of the effects of magnetic fields, 
stiffness of the equation of state, rotation and col­
lapse of the filamentary cloud in the radial direction. 
However, the stability of a rotating magnetized fil­
amentary cloud against fragmentation has not been 
discussed. Among the studies referred above, only 
Hansen et al. (1976) took account of rotation around 
the axis while they took account of neither magnetic 
fields nor fragmentation in the z-direction. We extend 
the model of Paper I to include rotation around the 
axis and discuss the fragmentation of a rotating fila­
mentary cloud with longitudinal or helical magnetic 
fields. 

The model and computation methods are described 
in section 2. In section 3 a rotating filamentary cloud 
with longitudinal magnetic fields is shown to be un­
stable against axisymmetric and non-axisymmetric 
perturbations. In section 4 the stability of a rotat­
ing filamentary cloud with helical magnetic fields is 

discussed. In section 5 we discuss the application of 
our stability analysis and compare our result to the 
Kelvin-Helmholtz and Balbus-Hawley (1991) instabil­
ities. 

2. Model and Computation Methods 

2.1. Equilibrium Model 

As a model of a filamentary molecular cloud, we 
considered an infinitely long cylindrical gas cloud in 
equilibrium in which the density and the magnetic 
field are uniform along the z-axis in the cylindrical 
coordinate system (r, <p, z). The model of Paper I 
was extended to include the rotation around the fila­
mentaryaxis. See, e.g., Bastien et al. (1991) for the 
rotation perpendicular to the axis. They followed the 
fragmentation of a finite length cloud rotating perpen­
dicular to the cloud axis using numerical simulations. 

The hydrostatic equilibrium of the filamentary molec­
ular cloud is described by 

dPo 
+ d (Boli + Boz2) B Ocp 2 

dr dr 811" + 41rr 
2 

( VOcp dt/Jo ) ° + Po -r- + dr = , (1) 

and 
1 d ( dt/Jo)
;: dr r dr = 41rGpo . (2) 

Here, P, P, vcp, 'ljJ, G, Bcp, and B z are the gas pres­
sure, density, the <p-component of velocity, gravita­
tional potential, gravitational constant, and the <p­

and z-components of the magnetic field, respectively. 
Subscript °denotes the quantities in the unperturbed 
state. The magnetic field of the r-component is as­
sumed to vanish in the unperturbed state, B o = 
(0, Bocp , Boz ). For simplicity, the filamentary gas 
cloud is assumed to be isothermal, 

PolPo = Cs 
2 = const. (3) 

A solution satisfying equations (1) through (3) is ex­
pressed as 

( r
2)-2Po Pc (4)= 1 + 8H2� 

V O =� (O,vocp, O) 
= {O, rOc (1 + 7· 2 !8H2 )-1/2, O} , (5) 

Bo (0, Bocp , Boz ) , (6) 

~)-3/2Bocp = Be sin (j:Z (1 + 8H2 
(7)

2 2H 
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2r ) -3/2
Boz Be(1= + 8H2 

r 2 
2

X VI + cos () 8H2 ' (8) 

anu 
2 

r )tPo 81rGpeH2ln (1 + (9)
8H2 ' 

where 

H 2 2 B e2 ( 2()) 2H2r\41rGPc = Cs + -16 1 + cos + 2ae .
1rpc 

(10) 
All of the symbols with subscript c denote the values 
at l' = O. The effective radius of this model is 
r = 2V2H. 

The density distribution of our model is the same 
as those of Stod61kiewicz (1963), Ostriker (1964), Na­
gasawa (1987), and Paper I. Among these models, 
our solution is the most general in the sense that our 
model incorporates rotation around the axis as well 
as helical and longitudinal magnetic fields. Our so­
lution has five model parameters; Pc, cs, Be, (), and 
ne. The () parameter denotes the ratio of the ep- and 
z-components of the magnetic fields and is equal to 
the pitch angle of the magnetic fields at r = 00, 

() = lim tan- 1 (Bocp / Boz ). When ne = 0, our 
r~oo 

model reduces to that of Paper I. When () = 0 and 
nc = 0, the magnetic field is parallel to the filament 
axis and the model reduces to that of Stod61kiewicz's 
(1963) solution for clouds with longitudinal magnetic 
fields. When Be = 0, our solution reduces to Os­
triker's (1964) isothermal solution for non-magnetized 
clouds. The sign of Be is taken to be positive in 
this paper unless otherwise noted. In this equilib­
rium model, the ratios of the magnetic and centrifu­
gal forces to the gas pressure, a and f3 are spatially 
constant: 

B Ocp 2 + Boz0= 2 

= = const, (11) 
81rPo 

and 
2 H 22ne

f3 = 2 = const. (12)
Cs 

The condition for equilibrium, equation (10), thus re­
duces to 

In the following we take H as the unit of length and 
(21rGPc) -1/2 as the unit of time. The model can thus 
be specified with three non-dimensional parameters, 
a, f3 and (). In the subsequent sections we investigate 
the dependence of the growth rate on a, f3 and (). 

2.2. Perturbation Equations 

We considered a perturbation of small amplitude 
superimposed on the equilibrium cloud described above. 
The linearized equation of motion for the perturba­
tion is given by 

{aV i 

Po 7ft + (vo • V)vi + (Vi' V)Vo } 

jo X B i + ji X B o 

C 

+ VPl + PI Vt/Jo + Po Vt/Jl = 0, (14) 

where V and j = (c/41r)V X B are the velocity 
and electric current density, respectively; all of the 
symbols with subscript 1 denote the changes in the 
quantities due to the perturbation. The equation of 
continuity, the Poisson equation, and the induction 
equation are respectively expressed as follows: 

aPI 
at + v· (POVI + PI VO) = 0, (15) 

l:::.'l/Jl = 41rGpl , (16) 

and 

The perturbation is assumed to be isothermal, 

(18) 

We obtained the normal-mode solutions of equations 
(13) through (17), in which all of the physical quan­
tities change according to the form 

pl(r,<p,z,t) = Pl(r)exp (-iwt + imep + ikzz). 
(19) 

After some manipulation equations (13) through (17) 
can be rewritten as 

A12 A13 
Yl)~ Y2 = A21 A22 A23 

dr ( Y3 0 o 0 

(AU 
;~;) nD ' 

Y4 A41 A42 A43 

(20)
(13) 
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where 

(YI, Y2, Y3, Y4) 
B1<pBo<p + B1zBoz= (PI + 411" ' 
ipOVl r )-w-, Pct/JI, Pc9lr .(21) 

The symbol 91 r (= dt/JI / dr) denotes the change in the 
gravitational acceleration in the r-direction. The el­
ements of matrix A are given explicitly in appendix 
1. 

The boundary conditions were set so that the per­
turbation is regular at r = 0 and infinitesimal. at 
r = 00. Since the perturbation equation is singular 
at r = 0, we obtained regular solutions near r = 0 
according to the method of Paper I. The asymptotic 
solutions in the region r » 4H were also obtained 
according to Paper I. 

2.3. Numerical Procedure 

Eigenvalues and eigenfunctions were obtained es­
sentially with the methods of Paper I. Namely, we in­
tegrated the p.erturbation equation both from r = 0 
and 00 for a given W(= Wr + iWi) and checked whether 
the integrated solutions can be connected continu­
ously at a middle point. When a solution satisfies 
the boundary conditions at r = 0 and 00 for a given 
w, we regarded the given W as an eigenvalue. 

We searched for eigenvalues using the bisection 
method. When mfUJ = 0, the eigenvalue (w2

) is 
always real and can be obtained by a usual bisection 
method. When mno :I 0, we extended the bisection 
method for a complex eigenvalue. The technical de­
tails of the extended bisection method are given in 
appendix 2. 

Equation (20) has a singularity at vO<p = rwr/m 
when m :I O. The result depends on the integra­
tion path (see, e.g., Lin 1945a, b; Kato 1987). We 
integrated equation (20) over r along the real axis. 
This integration path is correct only for unstable 
modes. Although this hitegration path is not correct 
for damped modes, we apply it for simplicity since we 
are not much interested in damped modes. 

3. Rotating Clouds with Longitudinal Mag­
netic Fields 

In this section we study the stability of a rotating 
cloud with longitudinal magnetic fields (0 = 0°). The 
parameter 0 is fixed to be 0° in this section except 
where otherwise is stated. 

3.1.� Sausage (m = 0) Mode 

In the beginning we study the sausage mode (m = 
0) instability of a rotating non-magnetized filamen­
tary cloud. The eigenvalue (w) is purely imaginary 
for the unstable mode. Figure 1 shows the disper­
sion relation for the model of (a, (3) = (0, 1) by 
the thick curve. The abscissa and ordinate are the 
non-dimensional wavenumber (kzH) and the non­
dimensional growth rate (Wi/~), respectively. 
There is only one unstable sausage mode for the 
models with a = 0, although there are some un­
stable sausage modes for a > 0 (Paper I). The 
sausage mode is unstable only when the wavenumber 
is smaller than a critical one, k z crH = 0.960. The 
growth rate has its maximum, Wi,~az = 0.606~, 
at kzH = 0.467. The dashed and thin curves de­
note the growth rate of the most unstable mode 
for (a, (3) = (0, 0) and (a,f3) = (1, 0), respec­
tively. Rotation as well as longitudinal magnetic 
fields increase the maximum growth rate (= Wi,maz), 
the wavenumber of the fastest growing perturbation 
(= kz,maz), and the critical wavenumber (= kz,cr). 
This is because both rotation around the axis and 
longitudinal magnetic fields support the gas against 
gravity in the radial direction but do not operate in 
the z-direction. The gas temperature is lower for fixed 
Pc and H when a and f3 are larger [see equation (10)]. 
Accordingly the Jeans length, the typical length scale 
for fragmentation due to self-gravity, is shorter. The 
wavenumber of the fastest growing perturbation is al­
most the same for (a, (3) =(0, 1) and (1, 0). This im­
plies that k z , maz: is a function of Cs for 0 = 0°. The 
maximum growth rate is smaller for (a, (3) = (0, 1) 
than for (a, (3) = (1, 0). This means that the Parker 
instability increases the growth rate when the mag­
netic field is present. 

Figure 2 shows the dependence of the growth rate 
on f3 for a = o. As f3 increases, Wi, max, k z, max, and 
k z , cr increase. The wavenumber of the the fastest 
growing perturbation can be approximated by 

k z , maxH = 0.72 {(I + a + (3)1/3 - 0.6} , (22) 

for 0 = 0°. Figure 3 shows the accuracy of equation 
(22). The upper panel shows k z,max as a function of 
a + (3. Equation (22) is drawn by the curve and 
the numerically obtained values (kz,max) are plot­
ted with filled circles. The lower panel shows the 
deviation from equation (22). Equation (22) gives 
a good estimate for k z,max with an error of 2% for 
o :::; a + {3 :::; 6. Equation (22) is used for a com­
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parison with a filamentary molecular cloud, Orion A, 
by Hanawa et al. (1993). See Hanawa et al. (1993) 
for the application of equation (22). The approximate 
dispersion relation is given by 

kzH 0.89 + 1.40 2 2 
= -� 411"GP + Cs k z 

c 1 +� kzH 1 + 1.250 
kzH 0.89 + 1.40 

= -411'"GPc ( 1 + kzH 1 + 1.250 
2 2 

H kz ) (23)- 1+0+,8 , 

for the most unstable sausage mode for all the mod­
els of () = 00

• The upper and lower expression of 
equation (23) are equivalent [see equation (13)]. The 
second term in the right hand side of equation (23) 
denotes the stabilization due to thermal pressure, i.e., 
the dispersion relation' of the sound wave. When 
o and ,8 are larger, Cs is lower and accordingly the 
growth rate is larger. The maximum growth rate ob­
tained from equation (23) agrees with the numerical 
results with an error of 5% for 0.5 :5 0 :5 10 and 
o :5 ,8 ~ 10 , and for 0 = 0 and 0 :5 j3 :5 2. 

Figure 4 shows the fastest growing perturbation 
for (0, (3) = (0, 1). The density distribution in 
the r - z plane is shown with the grey scale and 
the velocity field is denoted by arrows. The am­
plitude of the perturbation is taken to be PI/po = 
c cos (kzz) at r = O. To emphasize the density 
contrast we have taken c = 0.65 in figure 4. The 
relative density perturbation (lpI!Pol) has its max­
imum on the axis (r = 0). The velocity per­
turbation is dominant in the z-direction. The ve­
locity perturbation in the z-direction has its maxi­
mum, VIz = -0.941.~ Cs sin (kzz), on the axis and 
monotonically decreases as r increases. The veloc­
ity perturbation in the r-direction has its maximum, 
'VIr = -0.128ccscos(kzz),atr = 2.73H. The<p­
component of the velocity is shown in the right panel. 
The solid and dashed curves denote the velocity in 
the perturbed state and in equilibrium, respectively. 
The change in the rotation velocity is small with a 
maximum, VIcp = 0.193ccs cos (kzz), at r = 1.76H. 

The eigenfunction shown in figure 4 is similar to 
that of the the fastest growing perturbation for a mag­
netized non-rotating cloud (see figure 8 of Paper I). 
A filamentary cloud supported in part by either rota­
tion or longitudinal magnetic fields fragments mainly 
in the z-direction. We expected in Paper I that a 
disk perpendicular to the rotation axis is formed by 

the nonlinear growth of the perturbation. Tomisaka 
(1993) and Nakamura et al. (1993, private commu­
nication) showed this with numerical simulations for 
magnetized filamentary clouds. We also followed the 
nonlinear evolution of a rotating filamentary cloud 
with numerical simulations and confirmed the forma­
tion of a small disk perpendicular to the axis. The 
results of these numerical simulations will be reported 
in a future paper. 

Figure 5 is the same as figure 4 hut for (0,,8) = 
(0.5, 0.5). The velocity perturbation is dominant in 
the z-direction. The velocity perturbation in the z­
direction has its maximum, Vlz = -0.886ccs sin (kzz), 
on the axis when PI/PO = c cos (kzz). The ve­
locity perturbation in the r-direction has its maxi­
mum, VIr = -0.175ccs cos (kzz), at r = 2.87 H. 
The change in rotation velocity is at most, VI<p = 
0.101 c Cs cos (kzz), at r = 1.63 H. The characteris­
tics of the most unstable sausage mode for (0,,8) = 
(0.5,0.5) are in between those for (0, j3) = (1,0) and 
(0, 1) except for the generation of B<p. When 0,8 :f:. 0, 
the magnetic field is twisted by the change in rotation 
velocity [B1<P = -0.249 c sin (kzz) at r = 1.51 H at 
most while Boz = 3.545 (1 + r2/8H2)-I]. 

3.2.� Kink (m = 1) Mode 

Rotating filamentary clouds are also unstable against 
non-axisymmetric perturbations. We found five modes, 
three of which are pure oscillations (Wi = 0) for any 
k z • The remaining two modes have complex conjugate 
eigenfrequencies. Figure 6 shows the dispersion rela­
tion of the unstable kink mode (m = 1) for 0 = 0 
and ,8 = 1. The real and imaginary parts of the 
eigenfrequency are denoted by the dashed and solid 
curves, respectively. The dispersion relation is sym­
metric with respect to k z , i.e., w(-kz ) = w(kz ). We 
thus restrict ourselves to kz > 0 in the following. The 
three horizontal dotted lines in the figure denote the 
angular velocities, n, at r = 2, 2../2 and 4,respec­
tively. The unstable modes have a corotation point 
where the phase velocity coincides with the fluid ve­
locity [wr/m = nCr)]. The corotation point is lo­
cated near the effective radius, r = 2V2H when the 
growth rate is large. The growth rate is very small 
(Wi < 1 X 10-4 ~ in the region of IHkz I < 
0.04 and large in the region 0.1 ~ Hkz < 0.477. 
Because of the analytical and numerical difficulty at 
the corotation point [wr = mn(r )], we could not find 
whether Wi = 0 in the region IHkz I ~ 0.04. When kz 
is larger than the critical value (kz , cr = 0.477H-1 ), 
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the growth rate is again small (Wi < 10-2~. 

The mode having m = -1 is physically the same 
as that having m = 1 except for the sign of W r • When 
m = -1, a mode with W r < 0 becomes unstable and 
a mode with W r > 0 is a pure oscillation. Only when 
the fluid velocity (= 0) and the phase velocity of the 
wave (= mwr ) have the same sign, can the mode be 
unstable. 

Figures 7 and 8 are the same as figure 6 but for 
(a, {3) = (0, 0.5) and (0, 2), respectively. The 
growth rate is larger when {3 is larger. The non­
rotating filamentary cloud without magnetic fields 
(a = {3 = 0) has two neutrally stable kink mode 
with positive and negative real frequencies (see also 
Nagasawa 1987). Only the mode having the coro­
tation point becomes unstable and the other mode 
remains pure oscillatory. We can thus conclude that 
this instability is due to the resonance of wave to the 
fluid rotation and accordingly the Kelvin-Helmholtz 
type. Note that non-rotating magnetized filamentary 
clouds are unstable against the kink mode because of 
the Parker instability (Paper I). 

When Ikz I is small, the growth rate is very small 
(even if it is positive) and the oscillation frequency is 
almost independent of {3. In the long wavelength per­
turbations V z has a large amplitude in the region very 
far from the axis (r ;<: 10 H). For Ikz I ~ kz , cr the 
growth rate of the kink mode is very small (Wi < 1 x 
10-2 ). The critical wavenumber is Hkz , cr = 0.301, 
0.477, and 0.788 for (a, /3) = (0, 0.5), (0, 1), and 
(0, 2), respectively. The growth rate has its max­
imum, w;j~ = 0.0564, 0.135, and 0.255 at 
Hkz = 0.225, 0.323, and 0.478, for (a, {3) = (0, 0.5), 
(0, 1), and (0, 2), respectively. 

Figure 9 is the same as figure 4 but for the most un,. 
stable kink perturbation for (a, /3) = (0, 1). Figures 
9(a) and (b) denote the cross section in the r - z 
plane and that of z = 0, respectively.. The growth 
rate and wave number are Wi = 0.135 ~ and 
Hkz = 0.323, respectively. The amplitude of the 
perturbation is normalized so that the density per­
turbation is at most PI/PO = 0.5. When the kink 
mode is excited, the density ridge is twisted as seen 
in figure 9. 

Figure 10 is the same as figure 6 but for (a, {3) = 
(0.5, 0.5). This model is intermediate between those 
of (a, {3, (J) = (1, 0, 0°) and (0, 1, 0°), the former of 
",..hich is excited by the Parker instability. For a fixed 
value of a + /3 the kink mode has a larger growth rate 

when a is larger. 

4. Rotating Cloud with Helical Magnetic 
Fields 

In this section we discuss the sausage mode insta­
bility of rotating filamentary clouds with helical mag­
netic fields (af30 1= 0). 

Figure 11 shows the dispersion relation of the most 
unstable sausage mode for 0 = 30°, 60°, and 90°, 
while a = {3 = 0.5. The real (figure l1a) and 
imaginary (figure lIb) parts of the eigenfrequency, 
are shown as a function of k z. The sausage mode 
grows and propagates with the phase speed of wr/kz 
in the z-direction. The eigenfrequency of the damped 
mode is the complex conjugate of that of the unsta­
ble mode. The eigenfrequency is antisymmetric with 
respect to k z , i.e., w(-kz ) = -w(kz ). The phase 
velocity is thus always positive for both the unstable 
and damped modes. When 0 < 0, the real part of the 
eigenfrequency is negative, W r < O. Note that Oc is 
taken to be positive in our computations. The phase 
velocity is wr/kz ~ 0.025H~ for (J = 30°. 
The phase velocity is faster for a larger 8, 

As 0 increases, Wi maz, kz maz, and kz cr decrease 
and accordingly the ~loud be~omes less un~table. This 
is due to the increases in the sound speed, cs , for 
fixed a and f3 [see equation (13)]. Both when the 
magnetic field is longitudinal and helical, the most 
unstable mode is mainly excited by self-gravitational 
instability. The eigenfrequency W is complex for f3() :f:­
o while it is pure imaginary or real for f38 = O. 
Then the perturbation grows in time and propagates 
in the z-direction, only when the cloud rotates and is 
threaded by a helical magnetic field. 

Figure 12 shows the fastest growing perturbation 
for (a, f3, 0) = (0.5, 0.5,60°). Figure 12 is sim­
ilar to figure 5 but for the phase shift in the z­
direction: The density perturbation is proportional 
to PI ex cos(kzz - wrt + 8p ), where the phase shift, 
8p , is a function of rand taken to be 8p = 0 at 
r = O. The phase shift is large for the azimuthal 
components of the velocity and magnetic fields, e.g., 
Vlrp = 0.1416COS (kzz - wrt + 0.561) at r = 1.73H 
and Blip = 0.6826 sin(kzz - wrt + 0.356) at r = 
1.25 H. The upper panel of figure 12 shows the z­
dependence of Vlrp (the dashed curve) at r = 1.73 H 
and B lrp (the solid curve) at r = 1.25 H, both of 
which have their maximum amplitudes there. 

The phase shifts are related to the propagation of 
the wave. Consider a velocity perturbation propor­
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tional to VIr ex: COS (kzz) and VIz ex: sin (kzz). The 
velocity perturbation changes vI{) and BI{) according 
to the azimuthal components of the equation of mo­
tion and· the induction equation. When () = 0, the 
changes in the azimuthal components have the de­
pendence, BII{) ex: sin (kzz) and VII{) ex: cos (kzz) (see 
section 3). When {3 = 0, they have the dependence, 
B I ex: cos (kzz) and VII{) ex: sin (kzz) (see Paper I).

I{)� . d
When {3() =F 0, both types of the above mentlone 
perturbations are produced. These changes in vI{) and 
BI{) modify V r and V z according to the equation of 
motion. As a result, velocity perturbations given by 
VIr ex: sin (kzz) and VIz ex: sin (kzz) are also induced 
and the velocity perturbations apparently propagate. 

5.� DISCUSSION 
As seen in the previqus sections a rotating magne­

tized filamentary cloud suffers from various instabili­
ties. This is in part because our model includes rota­
tion as well as magnetic fields and the self-gravity of 
the gas. In this section we shall discuss the relation­
ship of our model to other theoretical studies on the 
instability of a rotating gas cloud. In the last para­
graph we also discuss the application of our model to 
TMC-l (Taurus Molecular Cloud 1). 

5.1. Relationship to the Kelvin-Helmholtz Instability 
and the Balbus-Hawley Mechanism 

Since the angular velocity is non-uniform in our 
model, we suppose that the Kelvin-Helmholtz insta­
bility may be involved in the stability of our model 
cloud. As discussed by Glatzel(1987a,b), the reso­
llant interaction of two neutral modes makes a couple 
of growing and damped modes and makes an angu­
la.r momentum transfer across the corotation point. 
These characteristics are shared with the unstable 
kink mode for a rotating cloud without magnetic field. 
As shown in subsection 3.2 the growing and damped 
modes appear in pairs. We confirmed that the an­
gular momentum is transferred from the region in­
side the corotation point to that outside the corota­
tion point when the unstable kink mode is excited. 
In the growing mode, PI and VI I{) are anti-correlated 
(PI * . VII{) < 0) inside the corotation point and is 
positively correlated (PI *. VII{) outside the corotation 
point, where PI * denotes the complex conjugate of 
Pl. This means that the central region loses angu­
lar momentum and the outer part receives it. The 
angular momentum transfer produces energy excess, 
which grows the perturbation. 

The energy excess due to the angular momentum 
transfer is proportional to the difference in the angu­
lar velocity across the corotation point. Correspond­
ingly the growth rate of the Kelvin-Helmholtz insta­
bility is bounded by the angular velocity gradient, 
Wi ~ max 1(1/2)rdO/drl (Sung 1974; Hanawa 1986, 
1987; Fujimoto 1987) when the self-gravity of the gas 
and magnetic fields are negligibly small. In our model, 
the angular velocity gradient, 

dO r 2 ( r 2 
) -3/2 

(24)r dr = - Oc 8H2 1 + 8H2 ' 

has its maximum, 0.3850c at r = 4H and .some­
what smaller value 0.355 Oc at the effective radius, 
r = 2V2H. It may be not a chance coinddence that 
the growth rate of the kink mode is large when the 
angular velocity gradient is large at the corotation 
point. 

The unstable kink mode might be excited in part 
by another effect of large {3. When f3 is large, sound 
speed (cs ) and thermal pressure are low [see equation 
(13)]. The low gas pressure strengthens the effect of 
the self-gravity relatively and suppress the Jeans in­
stability less effectively. This effect is appreciable in 
the axisymmetric mode when {3 ~ 1. To investi­
gate this effect on the kink mode, we made an exper­
imental model in which the right-hand side of equa­
tion (16) was multiplied by a factor of 0 .:5 € :5 1, 
!:It/JI = 47rGpI. By decreasing € from unity, the 
change in the gravitational potential was reduced arti­
ficially. As € decreases, wrincreases and Wi decreases. 
The increase in W r is ascribed to the reduction in the 
self-gravity since the self-gravity lowers the propaga­
tion of the sound wave. The increase in W r shifts the 
corotation point inwards and accordingly decreases 
the angular velocity gradient thereof. The decrease 
in Wi may be in part due to the decrease in angular 
velocity gradient at the corotation point. Thus un­
fortunately, we could not decouple the effect of low 
thermal pressure on the Jeans instability from other 
effects of large {3. 

When a{3 =F 0, the unstable sausage mode is in 
part due to the Balbus-Hawley (1991) mechanism al­
though it is mainly due to the Jeans instability. Bal­
bus and Hawley showed that a differentially rotating 
disk is highly unstable if it is threaded by a verti­
cal magnetic filed. In such a disk, an outwardly dis­
placed fluid element tried to enforce a rigid rotation 
and rotates too fast for its new radial location. Then 
the excess centrifugal force derived the element still 
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faster outward. As seen in subsection 3.1, the unsta­
ble sausage mode generates B r and Bcp. The twisted 
magnetic fields transfer angular momentum along the 
field line. We confirmed that the fluid element dis­
placed inward loses angular momentum by the mag­
netic drag when the unstable sausage mode is excited 
for o.f3 =F o. Because of the angular momentum gain, 
the fluid element contracts further by the decrease in 
the centrifugal force. In order to evaluate the contri­
bution of the Balbus-Hawley mechanism to the unsta­
ble sausage mode, we computed again artificial mod­
els in which the change in the gravitational potential 
was attenuated by the factor of c. The growth rate, 
Wi, decreases with decrease in c and diminishes at 
c = O. \Ve thus conclude that the unstable sausage 
mode is excited mainly by the self-gravity. When 
c = 0, the increase in the magnetic pressure near the 
axis (r = 0) stabilizes our model cloud against the 
Dalbus-Hawley mechanism for m = O. We confirmed 
that the sausage mode is stabilized against the Parker 
instability by the same mechanism for (a, (3) = (1, 0) 
when c = O. 

5.2. Comparison with Habe et al. 's Simulation 

Here we comment on the collapse of a self-gravitating 
cloud triggered by torsional Alfven Waves. Habe et 
al. (1991) showed with a numerical simulation that a 
cloud with helical magnetic fields collapse more easily 
than one with longitudinal magnetic fields. In their 
simulation, helical magnetic fields are generated by 
rotation and cause the rotating cloud· to collapse by 
magnetic pinching. It looks as if our stability analy­
sis contradicts with their simulation, since a rotating 
cloud with helical magnetic fields is less unstable than 
that with longitudinal magnetic fields in our analysis. 
The apparent contradiction comes from the difference 
in the initial models. While our initial model is in 
equilibrium, Habe et al's (1991) started their numer­
ical simulation from a cloud threaded by helical mag­
netic fields. Their initial model is not in equilibrium. 
And our stability analysis cannot be applied directly 
to their initial model. 

5.3. Application to TMC-l 
Finally we discuss the application of our model to a 

filamentary molecular cloud, TMC-1 (Taurus Molec­
ular Cloud 1). TMC-1 contains 5 dense cores which 
are more or less regularly spaced with an average sep­
aration of 4'. Since the apparent diameter is 2', the 
ratio of the average separation to the filament diame­
ter is estimated to be ~ 2. Substituting this value into 

our model, we obtain Hkmaz ~ 0.63. This means 
that the magnetic and/or centrifugal forces are com­
parable to the gravitational force (a + f3 ~ 1). This 
is consistent with the velocity structure of TMC-l. 
Olano et al. (1988) found a velocity gradient across 
the filament axis, which can be interpreted as rotation 
around the axis. The rotation velocity is comparable 
to the velocity dispersion. This implies that the cloud 
is supported against gravity in part by the rotation 
and that the centrifugal force is as strong as the tur­
bulent pressure, ((3 ~ 1). 

The authors thank Professors Takenori Nakano 
and Satoshi Yamamoto for discussion and comments. 
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Grant-in-Aid for General Scientific Research (05640308). 

Appendix 1. The Matrix Elements of A 

Matrix A is expressed as 

d 
drY = Ay, (25) 

A = R + S T-1U, (27) 

R12 R13 

R - R21 R22 R23 ~4) (28)en- 0 0 0 1 ' 
R41 0 R43 R44 

1 (vocp 2 ) 2vo<p m- -- - go + --- (29)= 2Cs r r€ r' 

w~ _ (k. B o)2 w = 41rpo e 
_ 2vocp .::: [.!.!£(rvo ) 

r ~ r dr rp 

k . B o 11 d 
+-4--c--d (rBorp )], (30)

1rpo ." r r� 

2vocp m Po� 
= (31)

~-;: Pc'� 
Po� = , (32)
Pc 
1 € Ikl2 

= (33)
- cs

2 ~ + w~' 
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(36) 

(37) 

(35) 

(34) 

1 
r 

_ k· B o !.- [m !~(rBo ) + kz dBoz]
41rpo ~2 r r dr cP dr 

m 11 d 
- ----(rvocp), 

r ~ r dr 

Ikl 2 Po 
w~ Pc' 

41rGpc
--2-' 

Cs 
= 

= 

= 

R'22 = 

R23 

Ul1 

(52) 

(53) 

(54) 

(51) 

= , 
r 

(38) 

(39) 

(55) 

(56) 

= 

= 

= 

= (41) 

(43) 

(40) 

(42) 

(44) 

k 

go 

Bo 

(0, ~, kz ) , 

(0, Bo,cp, B Oz ), 

= 

= 

= 

iw 
B 1r = -;- k . B o Y2 , 

~PO 

= dt/Jo/dr, 

(57) 

(58) 

(59) 

(60) 

(61) 

= (45) (62) 

T= (46) VIr 
W = -.- YI 

"'PO 
, (63) 

= (47) 
(64) 

= 

= 

( k· B O)2 
41TpOe ' 

(k· B O)2 

41rpoe ' 

(48) 

(49) 

(50) 

= 

= 

m 1 

-; poe 
w d 

--[ -(rvo )
~P07' dr cp 

(65) 

(66) 
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k· B o d 
+4€a(1'Bo<p) ], (67)

1rpo l' 

m 1 
W l3 , (68)= 

l' €Pc 
1

W 2I = (69)kze,
Po 
wk· B o dBoz

W22 = 2 
, (70)

41rpo 2e d1' 

and 
1 

W23 = (71)kzc' 
~Pc 

Appendix 2. The Bisection Method for Com­
plex Eigenvalues 

In this appendix we describe the method to search 
for a complex eigen value. According to Paper I, the 
condition for an eigenvalue is expressed as 

yf)(1'; w) 
y~2) (1'; w) 
y~2) (1'; w) 
y~2) (1'; w) 

= 0 , (72) 

[ (i) (i) (i) (i)].c' 1 2 3 d 4 wereh YI 'Y2 'Y3 'Y4 lor z = , , ,an 
denote independent solutions satisfying either of the 
boundary conditions at l' = 0 or 00. We first evaluate 
X(w) for w = WI, W2, and W3. The points W = WI, 
W2, and W3 are on the vertexes of a right isosceles tri­
angle on the complex w plane [see figure (13)]. Next 
we compute the 

1](WI W2 W3) - log[X(WI)/X(W2)] 

+ log[X(w2)/X(w3)] 

+log[X(w3)/x(wdJ , (73) 

where each logarithm operation takes the principal 
value. The value of 1](WI w2 W3) can take either of 0 
or ±21ri. When 1] = 21ri, there is a zero point of x(w) 
inside the triangle.. Note that 1] = f (l/X) dX· 

When 1] = 21ri for the triangle WI - W2 - W3, we 
integrate the perturbation equation for W4 = (W2 + 
w3)/2 and compute X(W4)' Either of 1](WI, W2, W4), 
1](WI, W4, W3), and 1](W3' W4, W2) is identical to 1](WI' W2, W3), 

1](wt, W2, W3) = 1](WI' W2, W4) + 1](Wl' W4, W3) 

+ 1](W3' W4, W2) • (74) 

In most cases, we get 1](W3, W4, W2) = O. [The fre­
quency of 1](W3, W4, W2) i:- 0 is very small when the 
triangle WI - W2 - W3 is small]. Then the region con­
taining the zero point of X (w) = 0 is reduced to half 
in area. The reduced region is again a right isosceles 
triangle and can be squeezed by successive reduction. 
Finally we can get an eigenvalue, w, with a sufficiently 
small error. Each iteration makes the estimated error 
smaller by a factor of V2 in this extended bisection 
method. 
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Fig. 1.- The dispersion relation for the models with 
(0, /3) = (0, 1). The thick curve denotes the growth 
rate, Wi, as a function of the wavenumber, kzH. The 
thin and dashed curves denote the growth rate of the 
most unstable mode with (0, (3, 0) = (1,0, 0°) and 
(0, 0, 0°), respectively for comparison. 

Fig. 2.- The dependence of the growth rate, Wi, of 
the sausage (m = 0) mode on {3 for 0 = O. Each 
curve denotes the growth rate of the unstable sausage 
mode with (0, {3) = (0, 0), (0, 1), and (0, 2). The 
ordinate is the growth rate, Wi, and the wave number, 

k z • 

Fig. 3.- The wave number of the most unstable per­
turbation as a function of 0 + {3 for 0 = 0°. The ordi­
nate and abscissa of the upper panel are the wavenum­
ber of the most unstable perturbation, kmaxH and 
o + (3, respectively. The filled circles denote the nu­
merically obtained data points and the curve denotes 
the fitting formula, equation (22). The lower panel 
shows the error of the fitting formula. The ordinate 
is (error) == (fitting formula) / (numerical data) - 1. 
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Fig. 4.- The main panel shows the cross section of the model filamentary cloud perturbed by the fastest 
growing sausage mode. The model parameters of the equilibrium model are (0, /3, 8) = (0, 1,0°). The 
abscissa is the z-axis and the ordinate is the radial direction. The density is shown with. greyness, whose 
scale is shown in the left of the panel. The arrows denote the velocity field on the r - z plane. The right-hand 
panel shows Vcp as a function of r at z = 0.0. The dashed and solid curves denote the values in equilibrium 
and in the perturbed state, respectively. The growth rate and the wave number of this perturbation are 
Wi = 0.606 and k z = 0.467, respectively. 

cx=0.5 f3=0.5 kz=0.478 
0.5 
0.0 10 i--------------t 10 

-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
logp 

o 

5 

-5 
( 

) 
5 

o 

-5 

r 

-10.J-------------....;. -10 

o 5 10 15 20 25 2 1 o 1 2 
z Vrp 

Fig. 5.- The same as figure 4 but for (0, /3, 8) = (0.5,0.5,0°). The growth rate and the wave number of 

this perturbation are Wi = 0.640 and k. = 0.478, respectively. 
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denote the angular velocities, n, at r = 2, 2J2 and 4,respectively. 
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Fig. 7.- The same as figure 6 but for (0, {3) = (0, 0.5). 
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Fig. 8.- The same as figure 6 but for (0, {3) = (0, 2). 
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the perturbation is normalized so that PI/pc = 0.5 at maximum. (a) The cross section in the r - z plane. 
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Fig. 10.- The same as figure 6 but for the kink mode of (0, {3, 8) = (0.5, 0.5, 0°). 
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Fig. 13.- The search for a complex eigenvalue on a complex w plane. The region for search natTOWS by a 

factor of 2 in area by each iteration. 
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