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ABSTRACT

We solve a relativistic Hamiltonian theory where we treat the ampli-
tudes of definite isospin and angular momentum obtained from a chiral
SU(2) x SU(2) invariant Lagrangian as separable potentials. We find that
the constraint of quantum mechanical completeness, which is built into
the Hamiltonian model, finds a natural expression in well known Lorentz-
invariant and crossing-symmetric sum rules. In particular, by way of the
Adler sum rule, we show that the lowest order effective potentials yield a
solution for 7-7 scattering that treats the I=0 amplitude in an inconsistent
way. By including the next-to-leading order contributions in the effective
potentials, we find solutions that satisfy the Adler sum rule and in the pro-
cess fix the crossed-channel renormalization constants to values that are
consistent with experiment. As a more speculative application, we con-
sider the line shape of the Higgs resonance in the standard model, and the
modifications that result from the presence of a a techni-rho meson. This
formalism provides a powerful parametrization of Goldstone boson scatter-
ing in the presence of resonances. In a more general sense, the constraints
implied by completeness sum rules serve to delimit the class of models that
yield a consistent parametrization of Goldstone Boson scattering in the
resonance region. We consider the method of Padé approximants as an

example of a model that fails to satisfy these constraints.



1. Introduction

In the limit where the u and d quark masses are set equal to zero, the Q. C. D.
Lagrangian is invariant under the chiral group SU(2) x SU(2). This symmetry is assumed
to be spontaneously broken by the Q. C. D. vacuum to the diagonal subgroup of isospin
transformations. The resulting three pseudoscalar Goldstone bosons are identified with
the pions. Fortunately, the strong interaction dynamics of the pions is accessible to an
expansion in powers of momenta and quark masses. This expansion can be obtained in
a systematic and elegant fashion from an effective Lagrangian involving only the pion
fields [1]. The non-renormalizable character of the Lagrangian is manifest in the need to
introduce new undetermined parameters at each non-leading order in the expansion. These
scale dependent parameters are unconstrained by chiral symmetry and represent the low
energy effect of the underlying theory. Presumably they depend on the quark masses and
the Q. C. D. scale, and in principle can be derived from the Q. C. D. Lagrangian. However,
no one knows how to do this and so these parameters are obtained phenomenologically

near threshold [2,3]. This method constitutes a powerful test of chiral symmetry.

~ In the resonance region, for obvious reasons, it is no longer meaningful to keep only
the first few terms in the chiral expansion. This poses no apparent setback since one can
couple any fields to the pions in a chiral invariant way [4]. However, these fields appear in
the scattering amplitudes as zero width particles, and the couplings of these fields to the
pions, which are related to the decay width, are in general unknown. Furthermore, it is
not clear how to generate imaginary parts of propagators associated with higher order loop
diagrams within chiral perturbation theory. These difficulties can be circumvented by using
a simple unitarization scheme, however, as will be seen below, this will not always yield the
correct width. If the resonance is integrated out, its effect is felt at low energies through
the renormalization constants associated with loop diagrams involving Goldstone bosons
alone. In the case of 7-7 scattering, the low energy constants are completely saturated by
p exchange [2,5,6]. This is reminiscent of vector meson dominance [7] and has been refered
to as “chiral duality” in ref. [6]. In general, one expects the resonance with the lowest

mass to have the greatest effect near threshold. Of course, the resonance spectrum itself is




not fixed by chiral symmetry; although the Lagrangian incorporates all of the symmetries
that the S-matrix is known to satisfy, the particle content is unconstrained.

There have been many attempts to go beyond chiral perturbation theory and make
definite statements regarding the resonance spectrum [8-13]. Recent interest in this ap-
proach 1s in part due to the “equivalence theorem” which relates the Goldstone boson sel-
interactions with the interactions of the longitudinal components of the standard model
gauge bosons [14]. In particular, the Higgs boson should occur in the custodial-isospin
I = 0 S-wave channel of longitudinal gauge boson scattering. The complete lack of ex-
perimental data in this energy region renders the effective Lagrangian approach academic.
Moreover, there is reason to believe that, even if there is an observed enhancement in the
yield of longitudinal gauge boson pairs in the energy region that will be probed by the
SSC, it will prove difficult to make use of chiral Lagrangians in relating the data to an
underlying theory [15].

An alternative approach to the Goldstone boson interactions in the resonance region
involves using a chiral Lagrangian to calculate an effective potential, rather than the S-
matrix itself. The effective potential is subjected to a model dependent prescription which
generates the S-matrix. In this paper we treat the partial wave amplitudes of definite
isospin, obtained from a chiral Lagrangian, as effective potentials. We then obtain the
scattering amplitudes by solving a Schrédinger equation for a relativistic Hamiltonian
(R.H.) [16]. In particular, we consider a separable potential model [17] where we replace
the energy variable by the center-of-mass energy-squared, s. The positions of the poles of
the scattering amplitudes are determined by the renormalization constants associated with
subtracted dispersion integrals. We assume the absence of exotic resonances and therefore
focus our attention on the I=0 and I=1 channels. We work in the chiral limit since we are
particularly interested in physics at the p scale.

For a tree-level effective potential, the I = 1 amplitude that we derive is identical to the
Brown and Goble amplitude [8] obtained by considering an effective range expansion about
the current algebra low-energy theorem. It automatically yields the KSFR relation [18] for
the p width which is in good agreement with experiment. We find that there are distant
tachyon poles in both the I=0 and I=1 amplitudes, however we show that these occur

beyond the scale at which our effective theory breaks down [19].



In relativistic field theories, the use of completeness sum rules is complicated by the
fact that the asymptotic behaviour of cross sections renders most dispersion integrals di-
vergent, thus requiring the introduction of undetermined subtraction constants. However,
arguments based on Regge pole theory allow the derivation of a small number of sum
rules [20,21] for a given process, based on the properties of the leading Regge trajectories
that participate in that process. In particular, we find that for the R.H. amplitudes with
tree-level effective potentials, the Adler sum rule [22] is not satisfied with the p and €
contributions in the resonance-saturation approximation. We show why this is the case by
rearranging the Adler sum rule into sum rules for the direct-channel isospin amplitudes.
These sum rules display the direct- and crossed-channel resonance-exchange contributions
separately. We find that if one assumes, as in the current algebra derivation of the KSFR
relation, that crossed-channel contributions to the I = 1 amplitude are absent, then it is
inconsistent to assume the same for I = 0. This suggests that the tree-level I = 0 effective
potential is inadequate.

In order to overcome the difficulties inherent to the tree-level case, we construct the
R.H. amplitudes with one loop effective potentials [16]. We find that the p and the e widths
are modified by the crossed-channel corrections. We fix the renormalization constants that
determine the strength of these corrections by requiring the Adler sum rule to be satisfied.
The resulting parametrization of the I=0 and I=1 7-7 scattering amplitudes depends only
on the p and € masses, and is in good agreement with experiment.

The sum rule analysis is completely general, and can be applied to any SU(2) x SU(2)
symmetric theory. Of course, the analysis must be supplemented with assumptions con-
cerning the resonance spectrum. The familiar isomorphism between the -7 interac-
tions, and the interactions of the longitudinal components of the standard model gauge
bosons [14] suggests an interesting application for the sum rule analysis. Specifically, we
consider the deviations from the Higgs line shape due to the presence of a techni-rho
resonance, which presumably would exist in Q.C.D.-like theories such as Technicolor.

Several recent papers have critiqued the Brown and Goble parametrization and claimed
that the method of Padé approximants is a superior unitarization scheme since it includes
crossed-channel contributions [12]. We show, by way of our sum rule analysis, that the

Padé amplitudes do not include the crossed-channel contributions in the proper way.




The paper is organized as follows. In sect. 2 we obtain the effective potentials from
a chiral Lagrangian. In sect. 3 we introduce the separable potential model, and explic-
itly calculate the scattering amplitude for an arbitrary potential. We then consider the
special case of a tree-level effective potential for n-7 scattering in sect. 4. In sect. 5 we
construct completeness sum rules for fully crossing symmetric amplitudes and consider the
constraints that these sum rules impose on the R.H. model -7 amplitudes. In sect. 6
we construct the amplitudes with 1-loop order effective potentials and again consider the
special case of 7-7 scattering. Sect. T applies the results of sect. 6 to the scenario of
a strongly interacting Higgs sector. In sect. 8 we make use of our sum rule analysis to
critique the method of Padé approximants. Finally, in sect. 9 we summarize our results
and state what has been learned by way of this analysis. OQur n-7 conventions are given

in an appendix.

2. Effective Lagrangian

In the chiral limit, the lowest order term in the effective Lagrangian is the non-linear

sigma model

2
Lo = 541-11« (auzaﬂz’f), (2.1)

where

T = exp (ﬁ' ﬁ) (2.2)

and has the transformation property

S —g150% ;5 91.rR€SULR(2) (2.3)

under SUL(2) x SUR(2). This lowest order term reproduces the current algebra low-
energy theorem [4]. There are no undetermined parameters at this order since all theories
invariant under SUL(2) x SUg(2) must posses this term. At next-to-leading order there

are two additional terms,



£® = ¢ e (9,505") Tr (8,50°T1) + C2 Tx (auza,sh) T (rzerst),  (24)

where C; and C» are unknown constants which characterize the underlying theory at low
energy. According to the usual power counting rules [1], the contributions of order E*
are obtained from loop graphs using £2) and tree graphs using £(). However, since the
unknown constants are associated with the real part of the amplitude, we can just as easily
dispense with £4) and use £(2) together with unitarity and subtracted dispersion relations
to obtain A®(s,¢,u) [9]. In that case, C; and C3 take the form of subtraction constants.

A direct Feynman diagram calculation using £2) and £®) yields [1] (see Appendix for

conventions)
4 1 —s? -5
A(s,t =+ —[2C Co (1) (£ + u? loa | —=
(s,t,u) = 2 F 1(#?) s+ Co (p?) (£ + u?)] +(4r)2F,,4[ AV
L 2 —t 1 2 4 42 2 —u
-1-2-(3t +u —-e)log(—#-z)——-l—z@u + 1% — s%) log =z ]

(2.5)
The logarithmic divergences resulting from loop diagrams involving £() have been ab-

sorbed into a scale dependence u for C; and Cj. In particular,

2

Ch (,uz) = Cl (l/z) - m10g (%2—) (26)
2

G2 (1) = €2 (") = my toe (4 ). (2.7

For later use we project out the amplitudes of definite isospin and angular momentum,
arj. We find,

2
S
+
167rF 2 64nF,*

2 (8 1 7 E 11
+ = (4Cy +5C5) — SN .
canFt |3 (4150 (181 g( 2) 108)} i (284)

2 F

S 1 S
a = + 2C 1
(%) = 56 F2 067 F," |~ 0 6(4m)? g(u )}

ago () =

24 (2C1 + C2) — — log (;)]




g2

[ 1 1 s 1
+ 2(Cy—4 — [ = — .
G6nF,t |22 A0+ (24 log (;ﬂ) 72)}’ (2:86)
-8 52 ( 1 —8
az (s) = 12Cy — —
0 () 327 F,? * 64mFrt ? (477)2 log (;ﬁ)

2[4 1 /11 s 25
+ Z(8C1 +T7Cy) — —= [ —=1og [ ) — 22
64m Fy ,3( 1+ 702 - 1 (36 log (,ﬂ) 216)]’ (2:8¢)

where we have decomposed the amplitudes according to the following prescription :

ary(s) = a,E-zJ) (s)+ ag“;])[) (s) + a?}c s). (2.9)

The second and third terms are contributions from direct- and crossed-channel loop dia-
grams respectively. We note that due to a cancellation between the direct- and crossed-

channel loop contributions, no logarithm appears in the I=J=1 amplitude to this order.

3. A Relativistic Hamiltonian Model with Separable Potentials

In this section we recall the Relativistic Hamiltonian model of ref. [16] for the two-
Goldstone boson interaction. Since total angular momentum and isospin are conserved, the
various spin-isospin channels do not mix with each other. For the two-Goldstone Boson
system the problem thus reduces to a single channel problem which can be treated in
terms of a series of “Hamiltonia” with the states labeled by the center-of-mass energy-
squared, s. We will employ a separable potential with an interaction obtained from chiral
perturbation theory. We choose the separable potential for two reasons : first, the structure
of the wave functions and the scattering amplitudes is relatively simple [17,23] even with
the natural constraint of unitarity; second, no generality is lost since any one channel
scattering amplitude can be reproduced by a suitable separable potential [24].

The system consists of two fields associated with N and 6 particles. The Hamiltonian

is given by

H = /ds.saJf (s)a(s)ZF/dsg (s) Ntal (s)/ds'g (s') Na(s') (3.1)

where without loss of generality, ¢g(s) may be chosen real and positive and the — or + signs

designate the potential to be respectively attractive or repulsive. The theory decomposes



into a countable set of distinct sectors labeled by the N — 6 content. The matrix element

of the Hamiltonian between the one N-one 6 sector is given by

(N6 |H|Nby) =s6(s—5')Fag(s)g (s). (3.2)

The continuum wavefunctions are determined through the eigenvalue equation

<N931H|7> = ’7(N63h’> = vy (5)- (3.3)

Explicitly evaluating this matrix element yields

(v —38)dy(s) = Fg(s) ] ds'g(s')qb.,(s'). (3.4)

The “in” solutions are

10 N ST i
526 =8 (1 =) F L2 [ adg()on(), (3.5)

A series of algebraic manipulations determines the integral on the right hand side so that

) = 6 ( 9(s)g(v) 1 A

These scattering-state wavefunctions, together with the wavefunction of a bound state, if
present, satisfy an appropriate orthonormality relation and are complete. The scattering

amplitude is given by [17]

+mg? (s)

92£s/2d51 -
1+ f 8—8'4-1¢

t(.s) = -7 (7 - 3) ¢"‘/ (3) {s=7 = (3-7)




4. Renormalization and Particle Content

We define our effective potential as

174 (s) = i’n’g2 (s). (4.1)

For a given V(s), we obtain an “exact” scattering amplitude #(s). In order to avoid dou-
ble counting, our effective potential consists of all direct-channel two-particle irreducible
diagrams in chiral perturbation theory. The effective potential, or numerator function,
includes all contributions associated with the left-hand discontinuity. To lowest order, the

effective potential is given by the current algebra result. Say

Vi(s)=al¥ (s) = apys (4.2)
with
1 1
= —— d = . 4.3
W0 =Tgrp 2 M M= g6 2 (4:3)
Then
tri(s) = e El . (4.4)

1 — oL o dé's’
T JO s'—s—1¢

The dispersion integral is clearly undefined. It requires some form of regularization. Define

0 1ot

! ds's

Ity (s) = = — + counterterms. (4.5)
T s —s—1e

1

With two subtractions' we obtain

oo ' (s — 3 2
fis(s) = -(3;—1 (/0 (:3_*3;(5’ -Os)o)2 ’ P(S)) 0

where P(s) is a polynomial of the first degree. Integrating and noting that so is arbitrary

and not independent of P(s) yields

1 The subtractions take place at the same point sp for the amplitude and its first

derivative.

LA
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115(6) = =222 (s (10850 ) + P (s ) (1)

where

P(s;,ug) = Rjj (u2)3+611. (4.8)
We can absorb by into a redefinition of the pion decay constant,

F2, = F? (1 4 C"IJbIJ) (4.9)
™

However, we set by = 0 since quadratically divergent loop integrals involving massless
particles vanish in dimensional regularization. That is, in chiral perturbation theory with

the Goldstone bosons alone, the pion decay constant is not renormalized. It follows that

«rjs

try(s) = — (4.10)
1+ =2 [log(ﬁz‘z) + RIJ(ﬂz)}
where independence of the amplitude on the choice of scale requires
2
RIJ (;Lz) — R]J (yz) + log (;2-) . (411)

The appearance of an undetermined parameter is a reflection of the non-renormalizability
of the chiral Lagrangian from which we derived our effective potential. We note that the
absence of the left-hand discontinuity in the tree-level effective potential implies a violation
of crossing symmetry [25].

At this point we must say something about the spectrum of the specific system that
we are considering. We specialize to the m-7 system, and we assume the existence of a
p-meson in the I=1 P-wave channel, and an e-meson in the I=0 S-wave channel. We choose
our renormalization point such that the resonance occurs “near” s = u? (i.e. when the

narrow width approximation is valid). Defining

Dis(s)=1+ "2 lo g(—) + Ryy (1%)], (4.12)

we assume that at s = u?, ReDjj(s) = 0, which gives
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-
Ry (“2) = m, (4.13)
and
S args —~5
Dij(s)=1—-— + ——log(—).
17 (s) e + ——log( 2 ) (4.14)
Finally, we obtain
, s s —3
Doo(s)=1-—
00 () mZ T Ton2p? 08 (mcz) ! (4.15)
and
s s —8
Dy1(8)=1-— —_— ]
1 (s) mp? * 9672 F2 log (mﬁ) (4.16)
We define the resonance widths as
déry(s) 1
dS Is:m2 - f;; (417)
from which we obtain
apym2\ !
I'= aIJT'n,3 (1 - L;_ ) ~ a1Jm3 (4.18)

where the last approximation follows when the narrow-width approximation is valid. For

the p we obtain

3

r,=—~"~_. 4.19
P 96n Fy? (4.19)

This relation, known as the KSFR relation for the p width, was first derived using current

m

algebra methods [18] in a calculation that implicitly assumes that left-hand cut contribu-
tions to the I=J=1 amplitude are negligible [26].

If we also treat the € in the narrow-width approximation, we find

3

m;

- . 4.20
167 F, 2 (4.20)

There is a broad enhancement in the I=J=0 phase shift in the vicinity of the p. However,

€

an € this broad should not be amenable to a narrow-width treatment. Nevertheless, we

*y
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continue to use the narrow-width approximation and hope that at least our qualitative
conclusions remain unaffected. This treatment is in the spirit of Q. C. D. in the large-
Ne-limit [27], where elastic meson-meson scattering 1s given by a sum of tree diagrams
involving the exchange of zero width mesons [28,29].

An interesting feature of our amplitudes is the existence of poles at euclidean mo-
menta, which we refer to as tachyons. There are distant tachyon poles in both amplitudes.
Following the conventional approach [19], we define a cutoff A, which we interpret as the
scale at which our amplitudes cease to make sense as an effective theory. From Eq. (4.11)
and Eq. (4.13), we obtain a renormalization group equation for the I=0 renormalization

constant,

1 1 1 2
- — 1 . .
m2(pu2)  me?  1672F,’ 8 (mcz) (421)

Defining our cutoff as the scale at which m?(u?) blows up, we find

1672 Fy?
A? =m exp 2T ~ (24 GeV)? (4.22)
me?
where in the last approximation we have assumed that m¢ = m, = 770 MeV, and

Fr = 93 MeV. On the other hand, from Eq. (4.15) we find that the position of the

distant tachyon is given by

sp = —mp? ~ —A% (4.23)

Therefore, we regard the distant tachyon as outside the range of validity of our effective
theory. A similar analysis follows for the I=1 amplitude. In that case we find
0 (967r2F,,2

A% =m,2exp
Xl mp?

) ~ (770 GeV)?. (4.24)

This difference of two orders of magnitude between the two cutoffs is related to physics
near the threshold point: the I=1 low-energy theorem has a larger domain of validity than

the I=0 low-energy theorem, as is made clear by the saturation of the unitarity bound [3].
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5. Completeness Sum Rules

We recall that assuming the leading Regge trajectory for I=1 t-channel exchange has
@1(0) < 1 leads to an unsubtracted dispersion relation for the I=1 t-channel amplitude.

Evaluating at threshold and using the optical theorem yields the Adler sum rule [22],

1 1 OOdS 2 0 1 5 2
E@':; s "?;”tot‘*‘f’tot—'gdtot .

(5.1)

In the resonance-saturation approximation [30], where we assume the absence of “exotic”

I=2 resonances we find

1 327T, 48T,

F.2  3m} m3

(5.2)

This relation is not satisfied by the p and e widths given by Eq. (4.19) and Eq. (4.20)
respectively. The only other resonance with a significant coupling to the 7-7 channel is
the f3(1270) which contributes about one third as much as the p to the Adler sum rule.
However, inclusion of this contribution only serves to increase the discrepancy, so for now
we will neglect it.

We can understand the failure of Eq. (4.19) and Eq. (4.20) to satisfy Eq. (5.2) if we
decompose the Adler sum rule into algebraically equivalent sum rules for the direct-channel
isospin amplitudes which display the direct- and crossed-channel contributions separately.

With the help of the crossing matrix given in the appendix, we find for I (8)=0 and I®)=1

respectively?,
1 1 oodS 0 1 OodS 1 0 1 5 2 -
X = ;/0 Y [000t) — ;;/0 'y [gatot = Otor + 3%t 5 (5.3)
1 1 [*ds 1 [®ds | 1 1 5 .
XA f < o] =3 /0 0 {“5"% + 3ot af’fot] ' (54

Saturating these sum rules with p and € yields

2 It is interesting to note that, within the resonance-saturation approximation, the same

results follow if we assume that we can write an unsubtracted dispersion relation for

A(‘)gs,ﬂz

8



14

1 [[16aT 1Y [1 (1677 (4871-1“,,)}(")_ (5.5)
F.2 m3 13\ 3m m? ’
; («) 16T\ 1 [487T,\1"
1 _ 487T) ! W3 + = ( . ”)} . (5.6)
2F, 2 m3 3\ 3m? 2\ m}

We note that if the u-channel contributions are neglected in Eq. (5.5) and Eq. (5.6), we

obtain Eq. (4.19) and Eq. (4.20). This is reasonable since the R.H. amplitudes with tree-

level effective potentials explicitly neglect the u-channel resonance-exchange contributions.
However, we see from Eq. (5.5) and Eq. (5.6) that if it is a good approximation to assume
that the u-channel contributions cancel in the I(¥)=1 sum rule, then strictly speaking it is
inconsistent to assume that the u-channel contributions cancel in the I(*)=0 sum rule. Since
the KSFR relation is well satisfied experimentally, this implies that a tree-level effective
potential might not describe the I=0 channel in a satisfactory manner. This clearly does
not mean that a tree-level effective potential cannot serve as a good approximation in the
I=0 channel, since the missing contributions are associated with the crossed-channel and
are therefore necessarily small in the resonance region.

We can also consider a superconvergent sum rule for the I=2 t-channel amplitude which

follows if the leading Regge trajectory for I=2 exchange has «2(0) < 0 [31]. We obtain

o 1 0 1 1 1 2 [
0= A ds gazot‘§0t0t+'éatot . (5.7)

In the resonance saturation approximation, if we assume that the Adler sum rule and the

KSFR relation are satisfied, we find m, = m,,.

In fig. 1 we display the I=0 and I=1 phase shifts for the tree-level effective potentials

in the special case where m, = m,, in accord with the superconvergence relation.
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6. 1-Loop Effective Potential

In this section we construct the R.H. amplitudes with 1-loop order effective poten-

tials [16]. Appealing to Eq. (2.9) we find

7 (s) = af¥ (s) + af) (s). (6.1)

That is, in accord with our prescription given in sect. 4, we include all two-particle

irreducible diagrams at order s? in chiral perturbation theory. As explicitly displayed in

sect. 2, this includes loop diagrams in the t and u channels as well as tree diagrams which
are the low-energy manifestation of resonance exchange in the t and u channels.

In order to obtain the amplitude from this effective potential, we must evaluate another

dispersion integral. Define

Ood / (4)6' 5
Ii(s) = —1—/ —f——‘z—]—J————:l + counterterms (6.2)
)y & —s—te
where
C e
“(141) (s) = Brss’ [108 (F) + ’YIJ] ) (6.3)
with
-1 7 ) 1 2
[3()0 = — | — (Ot(m)z, and ﬂ]l = *(&11) . (64)
m \ 18 T
The ~7;’s are the renormalization constants associated with crossed-channel resonance

3

exchange. With three subtractions® we can write

sods's' log (25 ) (s — s0)® 0 g2l N3
I (s) ﬂ”/ i (—2 ( : + 51””/ ds's’ (s = s0) s+ Pi(s), (6.5)
0 ) 0

s —s0)? ’” (s = 3)(s" — s0)

~ e

where

Pi(s) = Mjpys* + Nyjs+ 0py. (6.6)

3 The subtractions take place at the same point sg for the amplitude, its first derivative,

and its second derivative.
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Evaluating the integrals, we obtain

-8

2
I (s) = _%{7{32 (log(%)) _ B 210025y L py(s) . (6.7)

T 2
N =0 follows from our definition of R;;. O1;=0 for the same reason that by =0 1n sect.
- . 3 .
4. Mps consists of a new set of undetermined parameters which appear at order s° in the

effective potential. For the full amplitude we have

args + Bryst [log (fy) + ’YIJ]

try(s) = 2 h
1+ 122 [log(38) + Ry (u?)] + &7 [(log(jé)) + 2915 () log(5) + My ("2)}

(6.8)

One can easily verify that this amplitude is scale invariant if

2

7(;;2) — 7(1/2) + log (%) (6.9)

and

2 2
M (,uz) =M (1/2) + 2*/(1/2) log (V—z) — log (%) . (6.10)
Iz 1
For I=0 and I=1 we continue to choose our renormalization point such that a resonance

occurs “near” s = u?. For the denominator function we find

2
_ 8 ayjs —8 Br1y 9 —38 9 —8 2
D]J =1-— '([2 + log(F) -+ E;& [(log(ﬁ)) + 2’7]] (ll, )log(F) + 7 . (611)

An interesting new feature that arises from a 1-loop effective potential is the shift in the

resonance widths. In the narrow-width approximation we find

T =apud + Brivised. (6.12)

The width is shifted from the tree-level case by an amount whose strength is determined
by the crossed-channel renormalization constant, 7. This is completely consistent with
our sum rule analysis of sect. 5; there should be contributions to particle widths associated

with crossed-channel resonance exchange.
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For the p width we find

3
m
— p .
T, = 06 F.2 K11 (6.13)
where
I m,”
ki1 =1+ W’Yu (6.14)
which yields
k11 — 1) 9672 Fy 2
1 = (11 ~ 1) 3 = (6.15)

my
Since the KSFR relation is well satisfied experimentally, we set k11 = 1 or 713 ~ 0 which
is consistent with the fact that the tree-level effective potential is a good approximation

for I=1.

In turn, the modified € width is given by

3
m;
© 16w Fy? o0 ( )
where
Tme?
Koo =1— W’YOO (6'17)
or inverting,
~ Koo) 28872 Fy?
Yoo = L= F00) 88TFy (6.18)

Tme?
We can fix the parameter xgg by requiring that the Adler sum rule be satisfied. If we
saturate with the p and e alone, this determines kg0 = %. Inclusion of f»(1270) reduces
Kgo to % In fig. 2 we plot the I=0 phase shift for these two values of kg9 where we choose

me = m, in accord with the superconvergent sum rule.

-t
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7. The Higgs Boson Line Shape

In the standard model Higgs sector, the Adler sum rule no longer follows from the
properties of the I=1 Regge trajectory, but rather from the good high energy behaviour
associated with renormalizable gauge theories [32]. The statement of renormalizability is
closely related to the fact that only the Higgs particle is necessary to effect the cancellations
among Feynman diagrams which ensure that physical amplitudes are well behaved at high
energies. In fact, the tree-level Higgs width, obtained from the minimal standard model
couplings, trivially satisfies the Adler sum rule [29,33]. On the other hand, in Q. C. D.-like
theories such as technicolor, one would expect a spectrum of low lying resonances as in
Q. C. D. With the replacement of the pion decay constant with v, the weak scale, we can
make use of the formulae in the previous section. With a Higgs alone, the Adler sum rule
is satisfied with kg = % Whereas if we assume the existence of a techni-rho with a width
that satisfies a KSFR-type relation, we find koo = % as in 7-7 scattering. In fig. 3 we

exhibit the scalar meson line shapes corresponding to these two alternatives.

8. Critique of The Method of Padé Approximants

Beyond giving a powerful parametrization of Goldstone boson scattering in the reso-
nance region, the Adler sum rule serves to delimit the class of models which yield a con-
sistent unitary parametrization. For example, it is interesting to note that the [1,1] Padé
approximant, applied to the chiral perturbation series [9-12], includes crossed-channel con-
tributions, yet in the narrow width approximation the € and p widths are the same as
those obtained from the R.H. model with tree-level effective potentials. The [1,1] Padé

approximant 1s given by

(2)
1,1 ay; (s)
a{”](s) == Ua(:;)(g)
I AAS

a$3(s)

(8.1)

where we appeal to the formulae of sect. 2. It is clear that the [1,1] Padé approximant
suffers from the same ailment as the R.H. amplitudes with tree-level effective potentials:
the denominator function has no imaginary part in the right-half plane whose strength

is determined by crossed-channel contributions. Our sum rule analysis suggests that it




19

is reasonable to require that the lowest order contributions associated with resonance
exchange in the crossed-channel contribute to the width in such a way as to allow the
Adler sum rule to be satisfied. From this point of view, the method of Padé approximants
is essentially equivalent to the Brown and Goble parametrization since neither unitarization
scheme properly accounts for the crossed-channel contributions, and as a result, the particle
widths are completely determined by unitarity.

As was mentioned in sect. 2, the logarithmic term does not appear in the I=J=1
amplitude to order E* in chiral perturbation theory because of a cancellation between
direct- and crossed-channel loop diagrams. It has been noted recently [12] that it is a
positive feature of the [1,1] Padé approximant that it also lacks this logarithmic term in
the I=J=1 denominator function (as can be seen from Eq. (8.1)). We find it difficult to
understand why this should be a desirable feature, since the one-to-one correspondence
between a resonance and a pole on the second Riemann sheet is lost. Clearly the R.H.
amplitudes with 1-loop effective potentials do not possess this feature since they are of —g—
form and therefore allow no cancellation between direct- and crossed-channel contributions.
In fact, it is precisely this structure which allows the Adler sum rule to be satisfied.

However, if we expand the I=1 P-wave amplitude, the logarithm is absent at order s2.

9. Summary and Conclusion

We solved a relativistic Hamiltonian theory with effective potentials given by the low-
energy theorems of current algebra, and obtained the Brown and Goble parametrization
of -7 scattering [8]. By considering suitable dispersion relations, particularly in the form
of the Adler sum rule, we were able to understand that strictly speaking it is inconsistent
to neglect the left-hand cut in the I=0 amplitude, although and because the experimental
validity of the KSFR relation indicates that it is a good approximation to do so for I=1.
This demonstrates that simple unitarization procedures do not necessarily fix resonance
widths to the correct value. The case of the p is special because it turns out that in the I=1

p-wave channel, there happens to be a cancellation among the u-channel contributions.
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We included crossed-channel contributions by going to the next order in the effective
potential. We found that these contributions modify the imaginary parts of the denom-
inator functions, as they should, in order that the tree-level difficulties be resolved. In
particular, we found that we could shift the e and p widths in order to achieve con-
sistency with the Adler sum rule, and in the process fix the renormalization constants
associated with the next-to-leading order terms in the effective potentials. The resulting
parametrization of 7-7 scattering acts as a Lorentz-invariant and crossing-symmetric form
of the Breit-Wigner approximation [21], and is in good agreement with experiment. As a
more current application, we considered the implications of our analysis with regards to
the line shape of the Higgs resonance. We found that the R.H. model amplitudes, con-
strained by the Adler sum rule, exhibit the modifications to the Higgs line shape due to the
presence of a techni-rho. Finally, we considered wether the method of Padé approximants
can be made consistent with completeness sum rules. We found that although the [1,1]
Padé approximant includes the contributions that are neglected by Brown and Goble, the
Adler sum rule implies that these contributions appear in the wrong place.

In general terms, our analysis appears to be a vindication of the % form for the 7-=
scattering amplitude as first advocated by Chew and Mandelstam [34]. Of course, the
% form was motivated by analogy with potential theory where the N-function is said to
lﬁrc)vicle the interaction force. The surprising thing here is that it proves fruitful to extend
the analogy further by introducing the notion of completeness, in the form of weli known

sum rules, as a constraint on the form of the relativistic amplitudes.
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Appendix : The 7-7 System

The 7-m scattering amplitudes are determined by crossing symmetry in terms of a

single analytic function A(s,t,u) as

Tapiys = A(s,t,u) 6apdys + A(t,8,u) baydps + A(u,t,s) 00503 (1)
where
2
8= (pa + pﬂ) ) (2a)
t= (Pa - P7)2 > (2b)
u = (pa —ps)°, (2¢)

are the usual Mandelstam variables. These amplitudes can be decomposed into amplitudes

of definite isospin by using the standard techniques of projection operators. We find,

To(s,t,u) =3A(s,t,u)+ A(t,s,u) + A(u,t,s), (3a)
Ti(s,t,u) = A(t,s,u) — A(u,t,s), (30)
To(s,t,u) = A(t,s,u)+ A(u,t,s), (3¢)

where the crossing matrix that relates the amplitudes in the s-channel to those in the

u-channel is given by

1 5
3 = — = U
N _ (5 T (B
S p— K2
271 ) \E @
& 3 2 s/ \D

In turn, the partial waves can be projected out. The result is,

1
arg(s) = _El—;—?r 1d(cos 8) Py (cos0) Ty (s,t,u) (5)

where for elastic scattering (in the chiral limit),

ajy = &1 sindyy. (6)
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The total cross section follows from the optical theorem,

ot () = T I (a1 (s)) (7)

<

and the phase shifts are obtained from

Re(azj(s))
Im(aj;(s))

The narrow width approximation for the total cross section i1s given by

cot 677 (s) =

(8)

2
tot 167“mp

or (s)= (27 + 1)TRé (s — m%). (9)

8

Figure Captions

Fig.(1) (a) I=0 s-wave phase shift from R.H. model amplitude with tree level effective
potential compared with experimental data of ref. [35](points), ref. [36](open circles), and
ref. [37](open squares). (b) I=1 p-wave phase shift from R.H. model amplitude with tree
level effective potential compared with experimental data of ref. [35](points), ref. [36](cir-
cles), and ref. [38](crosses). All data points are extracted from ref. [5].

Fig.(2) I=0 s-wave phase shift from R.H. model amplitude with 1-loop effective po-
tential compared with experimental data of ref. [35](points), ref. [36](open circles), and
ref. [37](open squares). The Solid line corresponds to kgg = %, and the dotted line corre-
sponds to koo = 3. All data points are extracted from ref. [5].

Fig.(3) The scalar meson line shape. The solid line corresponds to kgo = %, and the

dotted line corresponds to kgo = %
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Postscript

We thank the referee for bringing to our attention a publication by T.N. Truong (Phys.
Rev. Lett. 67, 2260 (1991)) which is related to this work. Truong compares various unita-
rization schemes by focusing on the properties of the I=1 P-wave amplitude. He considers
the % amplitude with tree-level effective potential (equivalent to Brown and Goble result).
He notes that due to a neglect of the left-hand cut contribution, the expanded amplitude
does not allow the cancellation of logarithms that is a property of the s? term in the chiral
expansion. He further notes that the [1,1] Padé approximant does satisfy this property.
However, we note that consistency requires that the Padé result be compared with the
%— (RH) amplitude with 1-loop effective potential, since it is through the 1-loop term in
the effective potential that the lowest order left-hand cut contributions make their appear-
ance. The cancellation among logarithms at order s? then follows, as stated. We have also
shown that due to a cancellation among crossed-channel contributions in the I=1 P-wave

amplitude, its properties are not generic.
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