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Abstract 

The close relationship between the zero point energy, the uncertainty relations, 
coherent states, squeezed states and correlated states for one mode is investigated. 
This group - theoretic perspective enables the parametrization and identification of 
their multimode generalization. In particular the generalized SchrOdinger-Robertson 
uncertainty relations are analyzed. An elementary method of determining the canonical 
structure of the generalized correlated states is presented. 

Paper presented at the Second International Workshop on Squeezed States and Uncer
tainty Relations at the Lebedev Institute, Moscow 1992. 

Introduction 
Advances in atomic physics and quantum optics have made it possible to examine and verify 
many of the immediate predictions of quantum mechanics. The most celebrated of these is 
the Heisenberg [1] uncertainty relation 

(1) 


where 

(~q)2 = (q2) _ (q)2, (2) 

(3)(~p)2 == (p2) _ (p)2 

are the dispersons in the coordinate and momentum variable. The Heisenberg uncertainty 

relation in the form n (4)
~q'~P>2 



has been verified in gedanken experiments like the Heisenberg microscope and in the simple 
pictures of de Broglie waves. 

Since ~q and ~p have different dimensions their individual magnitudes cannot be com
pared without choosing units for length and momentum. By a suitable scale change we could 
scale them inversely as long as the unit of action is fixed; in this case the change is in the unit 
of {mass2/ ( time?} or equally well in the unit of length since action has the dimensions of 
{mass x (length»2/time}. Having fixed any such choice we can talk of the numerical values 
of ~p and ~q. Another and earlier result of quantum theory is the existence of zero point 
energy [1]. If p and q are canonical operators satisfying the commutation relations 

qp - pq = in (5) 

then the "energy" ! (p2 +w2q2) has a nonzero minimum value: 

1(2 2 2) {Wq - ip wq + iP} nw > n /2- p +w q = w . + - w. (6)
2 ~ ~ 2

Since the first term is non negative, w ata, there is the zeropoint energy nw/2 for the ground 
state which is annihilated by the operator 

a = (wq+ip)/~. (7) 

While the notation is new, the zeropoint energy is as old as quantum theoryl 
It is well known that there is an immediate connection between the two relations. For 

every w, -00 < w < 00 

E(w) = (wq - ip)(wq + ip) > 0 (8) 

but this implies 

W2{q2} + {p}2 + iw{qp _ pq} (9) 

(10) 

Hence the discriminant of this quadratic form should be negative: that is, 

(11) 

Noting that the deviations from the mean 

Q = q - {q}, P = p- {p} (12) 

also satisfy the canonical commutation relations we, derive 

(13) 

which is Heisenberg's uncertainty relation. 
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We may therefore say that the zeropoint energy relation was not invariant under the 
linear canonical transformation 

q --+ Q = q - (q) (14) 

p --+ P = p - (p) (15) 

nor under 

q --+ Q =w
1 
2 q (16) 


p--+ P =w 
_1

2p. (17) 


Imposition of these canonical transformations on the Planck zeropoint energy inequality 

gives the Heisenberg uncertainty relation. 

But there are yet other linear canonical transformations: the simplest one is 

q --+ q cos (J - w-1psin (J (18) 

p --+ wq sin (J + pcos (J. (19) 

While the Planck zeropoint inequality is invariant under this transformation, the Heisenberg 
uncertainty relation is not. We get, for any (J, 

{ (q2) cos2 (J + (p2) sin2 (J - (qp + pq) cos (J sin (J} • (20) 

{ (l) sin29 + (1'2) cos29 + (qp + pq) cos 9 sin 9} 2: ~2 . (21) 

By an elementary rearrangement this gives 

By choosing 

tan 29 = (qp; pq) / {(l) - (p2)} (23) 

we get the inequality 

(24) 

This is the Schrodinger uncertainty relation provided we replace q and p by q - (q) and 
p-(p). It was derived by Schrodinger and by Robertson[?]. It is stronger than the Heisenberg 
uncertainty relations and reduces to it in the special case of "uncorrelated states" for which 

(q - (q)) (p - (p)) + pq) = 0 (25) 

or equivalently 
(qp + pq) = (q)(p) + (p)(q) . (26) 
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Even for a harmonic oscillator of frequency v this is not in general true ~d the cO,rrela
tion oscillates with twice the frequency. So a Heisenberg minimum uncertaInty state IS not 

. all' I'ant "[;'or the harmonic oscillator this has been known for decades. Do-
icanonIC y Invar . r , Th I t• 

dunov and Manko [?] have given a general systematics of such a ~erIvatIon: ~ c ue 
the Schrodinger-Robertson generalization of the Heisenb~rg uncertaInty :elatIons IS the re
quirement of invariance under the group of linear, canonIc~1 tr~nsformatIons. The state of 
the minimum energy for the harmonic oscillator wIth HamIltonIan 

H = ~(p2 +q2) = (ata +~) (27) 

is the vacuum state I'll) satisfying 
a\'lI) = 0 (28) 

with the associated wave function 

(29) 


This is a state of the minimum uncertainty, But the minimum uncertainty class is wider, 
among these are 

alz) = z Iz) ,z complex number (30) 

with wave function 
(31) 


These are the "coherent states" introduced by Schrodinger [?] and rediscovered decades later 
in the context of quantum optics by Glauber [?] and by Sudarshan [?]. They constitute an 
overcomplete family of states in terms of which every state can be expressed in infinitely 
many ways; further in terms of them every density matrix can be exhibited as a sum of 
projectors Iz){zl to the coherent states with distribution valued weight [?] and [1]. 

But the coherent states are not a canonically invariant set. The scale transformation 
( "squeezing" ) 

P -+w 
_.1

2p (32) 

takes a coherent state into a new class of [?] states which are now called squeezed states, In 
terms of a, at these are the Bogoliubov - Valatin transformations [?]. The unitary transfor
mation 

v = exp {-iwl(qp + pq)/2} (33) 

accomplishes the squeezing: and thus the one parameter family of over complete sets of 
squeezed coherent states with wave functions. 

t/J(x) = (11")-1 exp {-w(x - Z)2 /2} (34) 

labelled by 3 parameters w, Re z, 1m z. For each w we have an overcomplete family of 
states. 

This is still not general enough. There are still more canonical transformations that 
can be performed which will make the state no longer a minimum uncertainty state in the 
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Heisenberg sense but which would be minimum Schrodinger uncertainty states. These are 
the ;orrelated states whose wave functions have been obtained by Dodunov, Kurmyshevand 
Manko [1J 

111"( ) _ ()_1 1 {u+V x2} {(f3)2 V2f3x f32 v* - U*}
Cf/ x - 1(' 4 c;--:: exp - exp --- + +_ (35)

V u - v 2(u - v) f2 2 l(u - v) 2 u - v 

where u, v are complex parameters satisfying lul2 - Ivl2 = 1 and l a real length parameter, 
altogether a four parameter family. In terms of them 

(llq)2 - /.2 G+ Ivl2 - Re (uv·)} 

(llP? - /.-211.2G+ Ivl2- Re(uv·)} 

(qp + pq) (q){p - (p)){q) = llq ·llplm(uv*) (36) 

Making use of the appealing phase space picture introduced by Planck [1] for the quantum 
oscillator, the ground state with the zeropoint energy (for w = 1) has a phase space patch 
which is a circle with unit radius and an area 1(' which is (21(') times the uncertainty. The 
mean value of ! (p2 +q2) within this circular disc is ! which satisfied Planck. So his picture 
of the ground state is a circle of unit radius centered at the orgin. By 

Fig.!. Planck's picture of the minimum energy state and the coherent states. 
The coherent states are centered at the point (V2lz, V21mze:). 

displacing the origin to V2 z we get the two parameter (one complex parameter) family of 
coherent states. 

Squeezed states are obtained by area preserving deformations of the circles into ellipses 
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with major (minor) axis along the coordinate directions. 

Fig.2. Planck pictures for squeezed states. 

When the ellipse is tilted we get the more general family of correlated states discussed by 
Dodunov, Kurmyshev and Manko. Of course this tilting alters things only for the squeezed 
states but not for the coherent states. 

Fig.3. Planck pictures for correlated states. 

The Group Theoretic Significance of the States Which 
Have Minimum Schrodinger Uncertainty. 

The linear canonical transformations on a pair of canonical variables form a group SL(2, R) B T(2), 
the semi direct product of the special linear group with translations. The minimum uncer
tainty state of Planck are invariant under the harmonic 80(2) subgroup of this group; this 
is its stability group. So the quotient of the canonical group by the harmonic stability group 
the correlated states are in one-to-one correspondence with the elements of the coset of 
dimension 5 - 1 = 4. 

These states are realized by single mode lasers and states with substantial squeezing 
and/or correlation have been generated and identified. 

It is a natural question to ask whether these notions and correspondences can be gener
alized to n-degrees of freedom and multimode laser beams. Group theory can be invoked to 
get a general answer to the problem. 
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3 Multimode Correlated States and Their Group-Theoretic 

Relevance 
Consider a system of n canonical pairs {qr,Pr}, 1 ::; T,8 < n. The homogeneous linear 
transformations are Sp(2n, R) and the translations are T(2n). So the linear canonical group 
is the semidirect product Sp(2n, R) B T(2n) with n(2n + 1) + 2n(2n + 3) parameters. We 
seek canonical invariants bilinear in the 2n canonical variables and look for the appropriate 
conditions to get the minimum generalized Schrodinger uncertainty. We expect this to come 
from the ground state In} annililated by all annililation operators (qr + iPr)/V2 and states 
obtained from In) by the action of the linear canonical group. Since these involve individual 
harmonic SO(2) elements for each degree of freedom and any O(n) rotation between the 
various degrees of freedom the stability group of In} has n + n(n2-1) = !n(n +1) parameters, 
we expect a family with !n(3n +5) parameters corresponding to the dimension of the coset 
space. 

Even for small values of n this dimension grows rapidly; we adopt a more elementary 
method to obtain the generalized correlated states. We describe in detail the case for n = 2 
and remark that the method generalizes for arbitrary n. The multimode coherent states are 
2n parameter states obtained by T(2n) acting on In}. Let us consider the group Sp(4, R) 
which is a double covering of SO(3,2) and has the same Lie algebra of dimension ten. This 
algebra can be obtained by the three (PrP,,), the three (qrq,,) and the four !(qrP" + p"qr) 
which close under commutation. The generic SO(3,2) algebra has two invariants, one of the 
second order and one of the fourth order. If we consider the expectation values of the ten 
quantities (PrP,,), (qrq,,), ! (qrP" +p"qr) they furnish a 4 x 4 symmetric non negative matrix 
which is bounded below by the zero point energy 

1. Let this matrix be denoted by: 

T. - :::: (37)(:~~ ! 1 

IJII - a c 111 112 . 

b d 112 122 

By suitable harmonic SO(2) transformations in (qt,Pl) and in (q2,P2) this can be reduced 

to the form 


el 0 a' b' 1 o e2 c' d' 
(38)a' e' 11 0 .

( 
b' a' 0 12 

By scale transformations independently for the two degrees of freedom we can reduce this 

to the form 


eO a" b" 1o e c" d" 
(39)a" c" I 0 .( 

b" d' 0 I 

7 



Now harmonic SO(2) transformations in (q1,P1) and in (Q2,P2) can be used to diagonalize 
the other diagonal blocks to get 

eO a' 0 )o e 0 d' 
(40)a' 0 f 0 .( 

o d' 0 f 

Now the SO(2) rotation between the two degrees of freedom can be used to transform this 
into 

~ + a' ~ + d' ~ + a' ~ ) . (41)( 
o 0 0 f+d' 

Further scale transformations in the two degrees of freedom can render this to the final form 

91 0 0 0) o 91 0 0 
(42)o 0 92 0 .( 

o 0 0 92 

Thus there are two invariant quantities 91,92 which maybe recognized as the uncertainties 
in the two natural modes. Note that 91792 are both positive and not less than ~Ii. 

Naturally the minimum uncertainty state must have degenerate structure with 

1 
91 = 92 = -Ii. (43)

2 

This is the vacuum state In) in the natural modes. The correlated states are obtained by 
the action of the group Sp(4, R) a T(4). The T(4) action demands that we replace Q,p 
by q - (q), P - (p), after which we may ignore them. Since the state In) has a 3-parameter 
stability group we may restrict attention to the quotient manifold of cosets. 

This construction can be immediately generalized. We take the 4 X 4 diagonal block of 
the 2n X 2n matrix and carry out the transformations outlined in the previous scheme and 
then take the bordering 4 X 2, 2 x 4 and 2 x 2 blocks. Now make orthogonal transformations 
between the modes to make the 6x6 block diagonal with possibly unequal diagonal elelments. 
Scale transformations independently in the three modes will make them diagonal with pairs 
of values equal. Now the process can be repeated with the bordering 2 x 6, 6 x 2 and 2 x 2 
blocks; and repeating the procedure we can diagonalize the 8 x 8 matrix with 

(44) 


This can be done with the 2n x 2n has matrix is fully diagonalized with adjacent pairs of 
diagonal elements equal; that is the eigenvalues are 

(45) 
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This is the canonical form with n invariants 9t,92,· .. ,9n with each 9r > ;1i. The 
distinguished generalized correlated states have degenerate eigenvalues 

91 = 92 = ... = 9n = 2'1 
Ii . (46) 

This is the multimode vaccum state! We can get the multimode coherent states by displace
ments which are the real and imaginary parts of ZI, Z2,"" Zn' Squeezed states are obtained 
by scale transformations in each mode independently so that the diagonal eigenvalues became 

(47) 

The displacements and squeezings introduce 2n + n = 3n parameters. But the generalized 
correlated state is obtained by the full coset of the linear canonical group Sp(2n, R) B T(2n) 
by the stability group of the N-mode vacuum state In). 

These correlated states maybe displayed explicitly but are too cumbersome. The multi
mode correlated states have wave functions which are displaced Gaussians with phase factors. 
Depending upon the experimental requirements we may obtain intensity correlations, pho
tocount statistics etc. directly. The number of parameters describing such correlated states 
are enormous and would be restricted by the method of generation of such states. 

4 Discussion 

Some remarks are in order about the correlated states in quantum field theory. As long as 
the number of excited modes is finite, however many, there exists a unitary transformation 
from the multimode4 facuum state to the multimode correlated state. These unitary trans
formations are generated by a quantity bilinear in the canonical variables. These operators 
are unbounded but do generate unitary transformations. When the number of modes be
came infinite, the generic correlated state cannot be obtained form the vacuum state they 
would be in a different Hilbert space from the Fock Vacuum. [1] 

It was the purpose of this paper to demonstrate the close relation between the correlated 
states and the linear canonical group; and to show that the correlated states which minimize 
the Schrodinger uncertainties is related to the canonical multimode vacuum which is invariant 
under linear unitary transformations of the modes. The generic wave functions are Gaussians 
with a determined number of independent parameters. 

The one and two-mode analysis is equally applicable to the propogation of the Gaussian 
Schell mode paraxial wave fronts through a system of thin lenses which are, respectively, 
isotropic and nonisotropic. This has been carried out elsewhere [1]. 

Correlated states are the generic family which include squeezed states and coherent states 
as special cases. 
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