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Abstract 

We investigate the neutral kaon system based on an extended Lee model. An exact 

solution is obtained. By deforming the unitarity cut to be along a contour f, we obtain an 

analytically continued theory, referred to as the "f theory". Within this continued theory, the 

orthogonality and completeness relations are verified. The probability amplitude is defined 

as the scalar product between the discrete right eigenstates: 10), and the discrete dual states: 

(8*1. For instance, orthogonality property implies (K;IKs) == o. A corresponding f* theory 

can be defined with the unitarity cut deformed along the contour f* which is the mirror 

image of f in the real axis. 

Since probability involves the absolute square of the probability amplitude, any proba­

bility quantity involves the multiplication of two scalar products, one defined in "f theory" 

and the other in the "r* theory". The conventional "overlap function" (KiIKs) in the 

Lee-Oehme-Yang model is, strictly speaking, ill-defined. This is because the conventional 

herrnitean conjugate state (Kil belongs to the spectrum of the "r* theory" and IKs) to the 

spectrum of the "r theory". An inner product should be defined among vectors in the same 

space. 

Based on our theory, we derive a refined version of the Bell-Steinberger relation. For the 

neutral kaon system, numerically, this new version in a good approximation can be reduced 

to the original relation. 
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Introduction 

The study of the decay of a metastable quantum system began with Gamow's theory [1] 

of an a decay of atomic nuclei and Dirac's theory [2] of spontaneous emission of radiation 

by an excited atom. A general treatment of decaying system was given by Weisskopf and 

Wigner [3] which leads to the familiar exponential decay law. Three decades ago, Khalfin 

observed [4] that the decay could not be strictly exponential for a quantum system with an 

energy spectrum bounded from below. The exact solution of decay in a system of the kind 

that Dirac considered was investigated by Friedrichs [5] and in an elegant form by Lee [6], 

by Glaser and Kallen [7], and others [8]. 

In the Friedrichs-Lee model, one may identify unstable quantum state as the bare V 

particle. There the survival amplitude of the V particle with a bare mass rno is given by 

(Vle-iHtIV) = ~ foo dAeiAt(VIA) (AIV) = ~ f dA _1_ e-iAt , (1.1)
27rz Jo 27rz Je a(A) 

where 

a(A) = A - rno _..!. foo dz (Vlz)(zl~) . (1.2)
7r Jo A - z + u: 

One finds that the time derivative of the survival probability vanishes, at t = 0, which leads 

to the Zeno effect [9], occurring in the small time domain t;:S 1/Eo, where Eo is the difference 

between the resonance mass and the threshold energy [10]. Beyond the Zeno region, there 

is the exponential decay region, which is dominated by the contribution of the zero of the 

a(E) function, which is at the resonance pole on the second sheet. In the large t region, the 

survival amplitude is suppressed by a power law in l/t. 

Since stable particles correspond to poles in the S matrix, assuming the S-matrix is 

an analytic function of the complex variable E, it appears natural to continue to identify 

the pole in the S-matrix as the resonance states [11]. How could a complex energy be an 

eigenvalue of a hermitean hamiltonian? This is not possible. However, one may invoke the 

notion of analytic continuation, to analytically continue the original theory, through the 

deformation of the unitarity cut along the real axis, to an analytically continued theory 
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where the branch cut is along a contour r in the fourth quadrant. Here the resonance pole 

may be exposed. Many authors act as if poles in the analytically continued theory are the 

only relevant singularities [12]. On the contrary [13], it is the resonance poles together with 

the complex branch cut along r which are the relevant singularities on the physical sheet. 

Correspondingly, the spectrum of the continued theory consists of both the discrete spectrum 

as well as the continuum. They together span the state space 9 of the analytically continued 

theory. Recently we have also applied this analytic continuation approach to consider the 

spectrum of the cascade model which involves three particle channels [14]. 

The neutral kaon system presents new features of unstable quantum system. It involves 

two resonance poles, which correspond to the Kl and Ks "particles". Lee, Oehme and Yang 

(LOY) [15] formulated the necessary generalization of the Weisskopf-Wigner formalism which 

has been the basis for the discussion of the empirical data [16]. This phenomenological theory 

has the some shortcomings of the Weisskopf-Wigner theory discussed earlier. 

In ref. 17, we considered an extended Lee model which contains the dynamical ingre­

dients of the neutral kaon system. The exact solution was obtained. The corresponding 

matrix elements of the survival amplitude matrix are found to have the analogous three time 

domains. 

In this paper we consider the analytic continuation of this extended Lee model and 

identify the appropriate resonance poles as the Kl and Ks resonances in the space g. Within 

the present framework, we derive a refined version of the Bell-Steinger relation, which differs 

from the original Bell-Steinberger relation [18] in the order of 1m; - msl/ms. 

The plan of the remaining paper is as follows. In sec. 2, part of the LOY theory relevant 

to our present discussion is reviewed. In sec. 3, based on the exact solution of the extended 

Lee model, we investigate the resonance states as the discrete states in the space g. In 

sec. 4, the orthogonality relations and the completeness relations of the space 9 states are 

presented. In sec. 5, the difference between the identity operator defined in the space 9 the 

intertwining operator, which maps states in 9 to states in g* is discussed. In sec. 6, the 

improved Bell-Steinberger relation is derived. A summary is given in section 7. Detailed 

calculations for the orthogonality relations and the completeness relations for the eigenstates 
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in the space 9 are given in three Appendices. 

The Lee, Oehme and Yang Theory [15] 

Consider the neutral kaon system. In the KO and KO basis, the eigenvalue equation obtained 

from the perturbation theory is given by 

(2.1) 


In Weisskopf-Wigner approximation, 

irll ir12 ir21A = Mll - --, B = M12 - -- and C = M21 --- (2.2)
222 

with Mij and rj being constant elements of the real part and the imaginary part of the 

complex mass matrix. Here CPT invariance is invoked, so the II-element and the 22-element 

are identified, i.e.Mll = M22 and rll = r22 . In the Weisskopf-Wigner approximation, E is 

a constant matrix. There are two roots to (2.1). They are complex eigenvalues, which are 

the complex masses of the K t and Ks states. Denote them as 

(2.3) 


We proceed to get the eigenvectors. The trace of E, 

'fr E = 2A (2.4) 


From (2.1) and (2.2), the eigenvalue equations are: 

Ar+Bs - Atr (2.5) 

Cr+As (2.6) 

Equations (2.4) and (2.5) lead to 

(2.7) 
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while (2.4) and (2.6) lead to 
(2.8) 


Combining (2.7) and (2.8) gives 

(2.9)Gr =~, or~=±~. 

Making the correspondence between the "±" choice with the Ki and Ks states, for the Ki 

state: 

r 

s 
(2.10) 


and for the K s state, 

~ = - !B = _ E, or 1/Js = N ( p). (2.11) 
s Va q -q 

Define the bra-state, as usual, the hermitean conjugate of the ket state, i. e. (K0: I= IK o:) + . 

Then 

(2.12) 


This completes our review of the part of the LOY theory relevant to the present discussions. 

Note that the complex energies and the nonself-adjoint Hamiltonian specified by (2.1) and 

(2.2) are there by virtue of the fact that the LOY theory, like its predecessor the Weisskopf­

Wigner-theory, is a phenomenological approximation. We now ask how unstable states get 

described in an exact theory. 

3 Discrete solutions to an extended Lee Model 

3.1 The extended Lee model 

In ref. 17, we obtained exact solutions of an extended Lee model, which has the essence of 

the decay of KOK complex into arbitrary number of decay products. Here the basis states 
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are: 

The hamiltonian is given by 

H = ( mij 9~(w) ) 
(3.1)9pj(w) w8(w - w')8pq . 

We label the continuum eigenstates by lA, r), where the index r indicates the presence of 

a plane wave "in"state in the rth channel. The continuum eigen wave function may be 

represented by 

(3.2) 

where 

(3.3) 

The function a is independent of r, or au = ar,\. When the context is unambiguous, we will 

often suppress the A label and sometimes also the w-dependence, i.e. 

- r br-br -br() (3.4)ai - ai,\, p - p,\ - p,\ w . 

Expanding the eigenvalue equation H'¢~ = A'¢~ gives 

(>..6;j - m;j)aj = 10"" gi;(w)b;(w)dw, 	 (3.5) 

and 

(3.6) 

From (3.2) 	and (3.5), we write 

br(w) = 8(A - w)8 r + 9pj(w)a~ . (3.7) 
p 	 p A-W+U: 

Substituting (3.7) into (3.5) gives 
00 d,. ) - +( \) 1 9~(W)9qj(w)aj(AUij - mij aj - 9ir + W A +. . 	 (3.8)A o -w t € 

The discrete eigenstate equation is 

(3.9) 

where 

K· '(A + if) = A8 .. - m .. _ foo dw _91.-:.,t_(W_)_9q;.;;....j_(W_) (3.10)
l.J l.J l.J Jo A - w + if . 

In ref. 17, we considered the conventional theory where the eigenvalues are all real. Now we 

proceed to analytically continue the original theory to the complex energy plane. 
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3.2 Analytic continuation of the model 

To analytically continue the variable w, we first replace the hermitean conjugate operation 

by the "dual" operation, i.e. 

[F{w)]+ ---+ F{w) = F+{w*). (3.11) 

The bra state is to be replaced by 

(3.12) 


where (M~I is the dual state with eigenvalue A = MOt. The analytically continued operator 

K of (3.10) is given by 

K· '(A + i<:) = A8·· - m·· - f dw Yiq(W)gqj{w) (3.13)
tJ tJ 'tJ Jr A - w + i<: . 

The corresponding discrete state wave function based on (3.9) is given by 

(3.14) 


where +i<: serves as a reminder that MOt is above the r -cut. (See Fig. 1). Correspondingly, 

the dual wave function of another discrete state at A = M {3 is 

d{3iYiP{W))
<P{3 (X{3, ({3) = N{3 d{3i' M .. (3.15)( {3+w+u 

Again, here M{3 is also above the r-cut. (See Fig. 2.) We label the discrete eigenstate by 

K£ and Ks. Similar to (2.10) and 2.11), 

(3.16)Ct = Nt ( :;) and c. = N. ( :: ) , 

except that p and q now depend on A, which are evaluated at A = Mi and Ms. The N's are 

the normalization factors yet to be determined. 

For the dual wave function, we proceed to solve for d{3 = (r, s) based on 

Cr,s) (~: ~:) = ACr,s). (3.17) 
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Taking the transpose we have 

(3.18) 

Comparison with (2.1) reveals that analogous to (2.9), here 

(3.19) 

In other words, for the Kl and Ks dual states, 

(3.20) 

3.3 Orthnormality relations 

The inner product of a discrete state labelled by 0' with another dual discrete state (BID = 
({3* I, is given by 

({3* 10') 

(3.21) 

The discontinuity of K across the r-cut can be read off from (3.13), giving 

K(A + i€) - K(A - i€) == 27rig(A)g(A) (3.22) 

Thus the integral in (3.21) can be deformed in the following manner: (see Fig. 2.) 

1. ( dw [Kij(W + i€) - Kij(W - i€)]···
27rZ lr 

-1 1-. dwK(w)··· (3.23)
27rZ C 

where as indicated in Fig. 2 the contour C wraps around the r -cut in a counter-clockwise 

manner. The equations for the discrete solutions are 

at A == MQ, Kij(MQ)cjQ == 0, and 
(3.24) 

at A M f3 , df3iKij(Mf3) == o. 
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Inspection on the contours in Fig. 2 reveals 

(3.25) 


The corresponding integrals are related by 

. -d{3 { dwK(w)ca (3.26)Ic == -Ia - I{3 + 100 , wIth Ic == 27ri lc (M{3 - w)(Ma - W) . 

Consider first the case {3 =f:. a. On account of 

-1 1 dw (3.27)fa == -2' (M )(M ) d{3K(w)ca == O.7r't COt (3 - W a - W 

Similarily, 

o. (3.28) 

From (3.10), the asymptotic behavior of K(w) is 

(3.29) 


1 { dw 
- 27ri lc

oo 
(M{3 - w)(Ma - w) d{3i(wbij)Cja 

-d{3i bij Cia . (3.30) 

Putting (3.27), (3.28) and (3.30) into (3.26), using the definition (3.23), the inner product 

(3.21) becomes 

(3.31) 

For the case {3 a, 

(3.32) 

with K' == [~~] _ • Thus the normalization is given by 
A-MOt 

(3.33) 
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3.4 The "overlap function" 


The contribution to the overlap function from Vi and V2 componets alone is given by 

2:(M;IVi)(ViIMa) = NfjNa dfjca. 	 (3.34) 
i 

For a 	= Ki and /3 = K s , using (3.20) the right hand side of (3.34) becomes 

RHS = NtN. (q. - P.) ( :; ) 

NaNs (Piqs - qiPs) . 	 (3.35) 

Strictly speaking since (Pi, qi) and (Ps, qs) are evaluated at Mi and Ms, RHS I- O. However, 

to the extent that the energy dependence of the coupling function g(w) in the analytically 

continued Hamiltonian can be neglected, Pi ~ Ps, qi ~ qs, or RHS ~ O. 

4 	 Analytically continued wave functions and their 
properties 

So far we have looked at the discrete solutions in the analytically continued theory with the 

continuum states defined along the contour r. Hereafter, we refer to it as the "r-theory" . 

The continuum states and the dual states are defined along the same contour r. We proceed 

to display the complete set of wave functions including both the discrete states and the 

continuum states and to investigate their orthonormality properties and the completeness 

relations. Some of the calculations were given in the previous sections and the details of the 

remainder can be found in Appendices A, Band C. 

4.1 The complete set of the wave-functions 

The discrete states 

From (3.14) and (3.15), the wave functions of the discrete states and corresponding dual 

9 



wave functions are given by 

(4.1) 

(4.2) 

Continuum states 

From (3.6) and (3.7), the continuum wave functions and their dual wave functions are 

given by 

(4.3) 


(4.4) 


From (3.8), 

- K-1- - K-lK a=g, a= g, a=g - . (4.5) 

4.2 Orthonormality relations: 

The identity operator in the bare basis is 

(4.6) 


where summations over i and p are understood. The expected orthonormali ty relations are: 
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(4.7) 

(>.*, ria) - X>.iTJ'a + 1r dW(Ap(W)4>pa(W) = 0, (4.8) 

(8* lA, r) - X{3i1]i>. + f dw ({3p(w)¢>;>. (w) := 0, (4.9) 

(A*, rlJL, s) X~i1]:1-' + f dw(~p(w)¢>;I-'(w) := O(A - JL)Ors. (4.10) 

The proof of (4.7) is given in the previous section (see (3.31) and (3.32)). The remaining 

relations are proven in Appendix A. 

4.3 The completeness relations: 

The spectrum in the analytic continued theory consists of the discrete states K t and Ks at 

the complex energies Mt and Ms respectively. This defines a space "g", where the identity 

operator is given by 

1:= 10)(0*1 + 1r dAIAr)(A*rl· (4.11) 

Again summation over the discrete labels 0 and r are understood. The identity operator 

leads to following set of completeness relations: 

(Villi;) 'rJio:Xo:j + £dA'rJi>.X>.j := Oij (4.12) 

(NBpIVi) 4>paXa• +1r d>'4>PA X>.. = 0 (4.13) 

(ViINBq) 'rJio: (o:q + £dA1]i>.(>.q := 0 (4.14) 

(NOp(w) INOq(w') ) <ppo:(o:q + £dA¢>p>.(>.q := 6(w - w')Opq' (4.15) 

The proofs of these relations are given in Appendices Band C. 
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5 Probabilities 

5.1 Probability of Ks -t KO. 

Consider a Ks beam being prepared at t = o. We are co-moving with the Ks particle. The 

amplitude for detecting the KO-signal at t is given by 

(5.1) 

The detection probability at tis: 

(KO Ie-iHt IMs) (Ms Ie+iHt IKO) 

e-i(M,,-M;)t (KOIMs) (MsIKO) 

(5.2) 

5.2 Identity operator versus the intertwining operator. 

Note that the inner product (KOIMs(t») belongs to the space Q, while (MsIKO) belongs 

to the space Q*. So the definition of probability involves the multiplication of two linear 

products each belonging to a distinct space. Since the scalar products themselves are complex 

nUIubers, they can be multiplied together without regard to the spaces in which they arose 

as scalar products! 

For the bare state basis, in the Q space, the identity operator is 

Ig = IVi)(ViI + 1r dwINBp(w») (NBp(w*) I (5.3) 

while in the Q* space, the identity operator is 

(5.4) 

Since the two spaces are distinct, the two identity operators are distinct also. For the physical 

spectrum the corresponding identity operators are 

fg = IMc»(M~1 + 1r d,X l,Xr}{,X*rI (5.5) 
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Ig- = IM~){MQI + r d.-\I.-\r){.-\*rl. (5.6)
Jr-

Quantity such as IMs){Msl which appears in (5.2), is not an "outer product", i.e.neither in 

Q space nor in Q* space, but an intertwining operator between these spaces, acting on Q* 

and producing vectors in Q. 

Experimentally, one sees a weaker and weaker KO-signal as the time of travel t increases. 

This is what is predicted in (5.2). Suppose instead we were to calculate the quantity 

(M; (t) IKO) (KO IMs (t») 

(M; leiHt IKO) (KO le- iHt IMs) 


e-i(Ms-Ms)t (M; IKO) (KO IMs) (5.7) 


which would be time independent apart form a phase factor. This does not correspond to 

what we are looking for. 

5.3 Experimental interpretation of the "overlap function": 

Consider a coherent superposition of Ki and Ks beams. Again we are interested in the 

detection of Ko-signal downstream. The probability of detection is given by 

= "direct terms" + "cross terms" (5.8) 

where 

(5.9) 

One sees that the interference term is again given by the multiplication of two inner 

products belonging to two distinct spaces. The "overlap function" of (2.12) of the Lee­

Oehme-Yang model is not a bonafide amplitude, i.e.it does not correspond to a well defined 

inner product. The amplitude which has a proper inner product should be (M~IMQ)' As we 

see in (3.31), the latter has the expected orthogonality property. We have seen also that the 

neglect of the continuum contribution is not the essential ingredient which accounts for the 
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nonvanishing of the overlap function, since to the extent that one neglects the form factor 

variation, we still have (M~IVi)(ViIMQ) ::::: O. See (3.31). 

Derivation of the Bell-Steinberger relation. 

The Bell-Steinberger relation[18] is usually associated with the unitarity relation. It is in­

structive to see how the corresponding relation arises within the present framework. We 

recall (3.9). The equation of the discrete solution is given by 

Kij aj == 0, (6.1) 

where 

(6.2) 


With analytic sontinuation one gets, 

Eij(A) == fr g~(w*)gqj(w) (6.3)Jf A - w + it . 

We deform the unitarity cut running along the positive real axis to the contour r, such that 

it "exposes" the discrete state solution. See Fig. 2. In terms of the E-function, the discrete 

solution at A== M Q is given by 

(6.4) 


Taking the hermitean conjugate for the discrete solution at A == Mfj gives 

(6.5) 


But 

[E (M )]+ f dw' g+(W'*)g(W,? = E(M*) (6.6)
fj Jr· M~ - Wi - Zt fj 

where 

(6.7) 


and Wi == w* were used. 

We assume each Yukawa coupling function in the Hamiltonian can be characterized by a 

coupling constant gpi and a cutoff Lp. To evaluate E(z + it), where there is say one discrete 
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solution in the lower half plane, we choose the contour r such that it barely misses the point 

z. The principal value part 

6 1.L1' 
- dw dw ]P (E(z)) = Lp 9k9Pi 0 . + .[1Z 

Z-W+U: z+6 Z-W+U 

"'" + zL..,; 9j p9pi in L . (6.8) 
p p 

Using the identity 

1 _ p_l_ =Fitr6(z-w) (6.9)
z - W ± if z-w 

"'" + (z -i1r)n (6.10)";' 9jp9pi.r.n Lp e . 

Assuming the bare mass matrix (mij) is hermitean, (6.4) and (6.5) lead to 

a%i [Eij(M;) - Eij(Ma)] aja 

(M; - M,,)a-;iaia = ~ (afj;gjp) (gpiai,,) [27ri Hn ~] (6.11) 

The last equality is a refined version of the Bell-Steinberger relation deduced based on the 

present theory. 

For the kaon system, both the mass and the width differences between Kl, and Ks are 

small compared to the mean kaon mass, i.e. 

M*-M
/3 a « 1 (6.12)
Ma ' 

or 

(6.13) 


Denote 

"(/110)" 

(6.14) 
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(6.11) in the approximation (6.13) is reduced to the original form of the Bell-Steinberger 

relation: 

"(,8la)" (M; - MOt) = 21ri L "/:+"/; . (6.15) 
p 

Summary 

We have presented a theory for the neutral kaon system based on the extended Lee model. 

The spectrum of the theory consists of the discrete states on the second sheet, which are the 

Kt and Ks states and the continuum states defined along a contour r. The spectrum spans 

the space g. The bra states here are dual states of the ket states. For the discrete states, 

for both the bra states and the ket states are at .A = M. For the continuum states, if the 

ket state is defined at .A + it along the upper lip of the contour r, the bra state is at .A - it, 

along the lower lip of r. 

Our analysis indicates that the nonvanishing of the "(KtIKs)" in LOY theory is related 

to the fact that the quantity does not correspond to a properly defined amplitude. It is the 

properly defined amplitude, which corresponds to the inner product in the g space, (K;IKs) 

is expected to vanish. As we see in 3.3, it does. 

Lastly based on our present theory, we derived a refined version of the Bell-Steinberger 

relation. The refinement differs from the original relation in the order of 0 ( Mt;;.M. ). Al­

though this difference is very insignificant for the neutral kaon, DOJjo, BO13° systems, it still 

remains a challenge to look for quantum systems in nature where such correction does lead 

to a detectable effect. 

This work was supported by the U.S. Department of Energy grant DOE-FG05-85ER40­

200. We would like to thank Y. Yamaguchi and H. Miyazawa for discussions. Thanks to G. 

Bhamathi for her interest in the present work and for valuable discussions. 
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Figure Captions 

Fig. 1 The contour r and the exposed pole at Mo:. 

Fig. 2 Relationship between Coo and those counterclockwise contours enclosed 
by Coo. 
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Appendix A: Orthogonality relations. 

In this Appendix we verify the remainders of the orthonormality relations (4.8), (4.9) 
and (4.10), based on the wavefunctions defined in (4.1)-(4.4). 

1. 	 Verify (,X *, ria) = o. 

According to (4.8), 

('x*, ria) = X-Xi1]Qi + 1r dw (rp(w)</JPQ(w) 	 (A.l) 

f dw(r (w)</J (w):= f dw [6(A _ w) + a-X;'YiP(W?] gpj(w)CjQ.
lr -Xp pa lr A- W - Zt MQ - W + U 

-	 gpj('x)CjQ + - .lr d Yip(W)gpj(w) . (A.2)- M \ . a-Xt w(\ . )(M . ) CJQ •
Q-A+U r A-W-U Q-W+U 

With the approach of (3.23), the second term 

-	 a-Xi Kij1Ir 	= Ie := -. dw ( . )( CjQ. (A.3)
27rz e ,X - W - Zt M Q - W + it) 

The contours are related by (analogous to Fig. 2) 

or 

Ie (A.4) 

(A.5) 

I-x 	 = a-XiKij('x)CjQ gpj('x)CjQ 
(A.6)MQ - ,X + iw - MQ -,X • 

Putting all these together, (A.l) is given by 

X + [gri('x)CjQ _ X . . + grj('x)CjQ].1J'l.(,X*rla) -Xt'ltQ MQ _ ,X + it -Xt1]tQ _ ,XMQ 
o 	 (A.7) 

2. Verify (,8*/'x, r) = O. The proof can be carried in similar fashion. We leave it as an 
exercise for the reader. 

3. 	 Verify (,X*rlJ.ts) := o. 
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Ir 

(A.8) 

(A.9) 

Relationship between various contours is (analogous to Fig. 2): 

Coo = C + C>. + CIJ. , 

and the corresponding intergrals are: 

Ir - Ie = 100 - I>. - IIJ. , (A.10) 

(A.11) 

a>. K(A)alJ. g(A)alJ. (A.12)+ J-L - A+ if = J-L - A+ if ' 

a>. K (J-L )alJ. a>.Y(J-L) (A.13)IIJ. = + = .
A - J-L - if A - J-L - if 

Putting all these together, (A.8) gives 

(A.14) 

(A.15) 
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Appendix B: Completeness relations. 


In this appendix we verify the completeness relations of (4.12)-{4.15) based on the wave 
functions of (4.1)-{4.4). 

1. Verify (ViII"IVj) = Oij . 

Based on (4.12), 

(viIIg IVi) = 1]ia Xa j 1r d)" 1]o,XJ.j , (B.1) 

1rd)" 1]iJ.XJ.j 1rd)" aiJ.aJ.j . (B.2) 

Since fronl (2.8), K a 9 

aa K-1ggK-1 

2~i [K-1(K -K)K-l] 

1 [K-1 _ K-1] , (B.3)
21Ti 

where K =K(A + it), K =K{A - it) with ±it defined with respect to the contour r. 
Substituting (B.3) into (B.2), 

(B.4) 

Cauchy theorem implies (analogous to Fig. 2): Coo = Ea Ca + C, or 

Ic (B.5) 

(B.6) 

so 
1 /, -1100 -2. Kij dA = Oij. (B.7)
1Tt Coo 

The discrete state contribution is evaluated in Appendix C giving 

1 /, -1Ia = -2. K dA (B.8)
1Tt COl 

Putting all these together, (B.1) gives 

(B.9) 

2. Verify (NOpII"IVi) = o. 

22 
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From (4.13), 

(B.lO) 

(B.ll) 

where in the last step (BA) was used. For the contour convention analogous to Fig. 2, 

or 

(B.12)Ir -Ie 
a 

9pj r bji dA = 0 (B.13)
211"i leoo A2 

9pj { K;/dA _ 9pj17jaXai - <p X . 

211"i leo: A - w + it: - Ma - w + if - pa at 


9pjK;/(w) = ai. (B.14) 


Putting all together, (B.lO) becomes 

(N8pIIgIVi) = <PpaXai + [ai(w) - <ppaXai ai{w)J = O. (B.15) 

3. 	 Verify (ViIIgIN8p ) O. 

From (4.14), 

(B.16) 

(B.17) 

Ir (B.IS) 

Analogous to Fig. 2, 
Coo 	= C + L Ca + C - Cw , 

a 
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or 

lr (B.19) 

0, 	 (B.20) 

_1_ ( d)"K-;l g-(W) 17aXag r (B.21)
27ri loOt ).. - w - if Ma - w - if = 17ia":,ap , 

1 K- 1 

-. ( d)").. A . g(W) = K-1(w)g(W) = 17(W). (B.22)
27r~ low - w - ~f 

Putting all these together, (B.16) becomes 

(VillgINOp) = 17a(ap + (17 -17a(ap - 17) = 0 (B.23) 

4. 	 Verify (NOp(w)llgINOq(w')) = 8(w - w')8pq • 

From (4.15), 

(B.24) 

l8(w - w')8 + awgq(w') + gp(w)aw + 1 (B.25) 

where 

( d)"
lr lr 

g(w) 
27ri 

pq ).. - w' - if W' - W + if r 

g(w)aAaAg(w') 
()..-W+if)()..-w'-if) 

( d)" K-1 
-( ') - 1 

10 ().. - w + if) ().. - w' _ if) 9 w 

Using the contour notation analogous to Fig. 2, here 

Coo = C + L Ca + Cw+ CW' 
a 

or 

Ie 100 - L:Ia - Iw - Iw l , 

a 

100 0, 

g(w)aag(w')
la 	 ¢a(a,

(Ma - w)(Ma - w') 

g(w)K-1(w)g(W' ) a(w)g(w')
lw 	 ,

w - w' - if W- w' - if 

g(W)K-l (W')g(W') g(w)a(w')
lw l 

w' - w + if w' - W+ if' 

24 

(B.26)
= 	 o· 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

(B.32) 



Putting all these together, (B.24) becomes 

(B.33) 
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Appendix C: Integral representation of discrete contributions. 

From (B.4), we saw 

(Ir);j - £dA(V;IA)(AOIV;) = £dAl1ii1X.;"j 

1 
-2. { dA (K~l) .. dA =(lc)ij. (C.1)

1r'l 1c 1,3 

Through the deformation of the contour the corresponding discrete state contribution at 
A== Ma is given by 

1 -1ICa == -2' 1 K>. dA. (C.2)
1r'l COl 

In this appendix we want to verify 

(C.3) 

This is used a number of times in Appendix B in proving the completeness relations. 

Denote the 2 x 2 matrix 

(C.4) 

The subscript indicates that all the elements I, J, L as well as the matrix K depend on A. 
From the residue theorem, 

CofKaICa (C.5)
(det Ka)' 

where 

( La -fa)Cof Ka (C.6)
-Ja La 

and 

(C.7) 

The positions of the discrete states are at A == M a , which satisfy the constraints of 
det Ka 0, or 

(C.8) 

Consider the "+" case. This corresponds to the Ks state, where 

(C.g) 
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From (C.5) we get 

1 -::)
( _!k 1 

P. (C.lO)
2L' - !k I' - &. J' . 

s P. S q. S 

To evaluate the right hand side of (C.3), we use the explicit forms (see (3.16) and (3.20)): 

Cs ( _~:) and d. (q., -P.) (C.ll) 

(Vila)(a*IVj) - 'f/iQXQj = N;CiQdQj 

(C.12) 


(C.13) 

Substituting (C.13) into (C.12) and comparing with (C.lO), we see (C.3) is satisfied. The 
"-" case corresponds to the Ke-state where Ce = (:) and de = (q p). 

Here 

(C.14)
2L~ + ~ I~ + ~ J~ . 

Finally as an extension to the identity (C.3), for any function W("\) which is regular in 
the neighborhood of .,\ = M Q , 

(C.15) 
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