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Abstract 

We obtain the formula for the general N-dimensional 
optical theorem in quantum mechanics. The re
sult is given by the simple expression a tot + 
2e; )II Re(i"1(0)) = 0, where v (N 1)/2. The for
mula holds for arbitrary (anisotropic, non-local) short
range potentials. 

PACS number: 03.65 Nk 

1. In [1] Adawi wrote a formula for the op

tical theorem in N-dimensional quantum scat

tering; he assurned isotropic potentials and 

used partial wave analysis. In this note we 

shall deduce the same result for the case of a 

general, anisotropic, non-local hermitean and 

short-range potential. 

The optical theorem stems from the continu

ity equation p+divj = 0, which should hold for 

any (hermitean) potential, with an appropriate 

definition of the current j. By integrating the 

continuity equation in a large volume V, the 

theorern expresses the fact that there is no net 

current flux through the boundary, 

o= itQ + fv divj dv = 0 + fav j . ds 

* Permanent address: Departamento de Fisica 
Te6rica, Facultad de Ciencias. Universidad de 
Zaragoza. E-50009 Zaragoza, Spain. 
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favj· dS = O. (1) 

where Q =f I'¢(r) 12 dv = cons. and BV = 
boundary of V and we are applying the general 

Stoke's theorem fv dw = fav w. 

2. For the general scattering situation in ar

bitrary dimension N we have the separation 

1)/'( ) _ ,,/. ,,/. r large ikz 1 j(l"'\) ikr (2)
CfI r - o/inc + o/scatt --+ e + - H erV 

where v = (N -1)/2 and j(n) is the scattering 

amplitude in the solid (hyper-) angle n. Far 

enough from the potential region the current 

j = (h/2im)('I./J*V1/J - complex conjugate) has 

three terms:j inc' j scatt and j intI; the flux of the 
first two in the far away boundary BV is given 

by 

f3·· ·dS=vfz·dS=O,~nc 

f j scatt . dS = vatot (3) 

where Z is a unit vector in the incoming direc

tion, and the velocity is v = nk/m; (3) indi

cates that the incoming flux enters and leaves 

the large volume, and for j scatt that the scat

tered wave is purely outgoing. 

The current due to interference between the 

incoming and the outgoing wave is 

~ ik {(e-ikZeikr j(n)r+
jint! 2zm rV 


e-ikreikz j*(n)% - c.c.)} (4) 


which oscillates wildly for large r except in the 

forward direction n = () = O. Its contribu

tion to the flux will be computed by taking as 

boundary av e.g. a sphere of very large radius 



R: 

dO/(O).Jjint! . dB (hk) RV~ f 
m i8}r 

'eikR(l-cosO)(1 + cos 0). (5) 

No assumptions on the potential are made, 

besides hermitici ty and short range character; 
for the usual three-dimensional case this is a 

well-known formula, see e.g. Gottfried [2]. 

As R -, 00, the contribution is dominated by 

those angles which are close to 0 = 0; assum

ing that 1(0) behaves smoothly in this limit, 

1(0) ~ 1(0); what remains is a purely geomet

ric integral 

f8 2v dOeikR{l-cosO) (1 + cosO) = 

(VOl(S2v-l)) fo1f sin2v- 1 e· 
·eikR(l-COs 0) (1 + cos O)dO (6) 

where 

/ 100 
vol (sn-l) - Jdnre- r ' rn-1e-r ' dr 

- 211"~ /r(~). (7) 

J 

(6) can be evaluated in terms of Bessel func

tions, as the 8-integral is proportional to 

v-~ 
1 (kR). This is not necessary, however, as 

we can substitute (6) by an integral in the 

euclidean space IR 211' tangent to the boundary 

sphere at the forward direction 0 = 0, the re

sult being identical in our limit R -, 00. So we 

have 

lim { (2)eikR02/2dOlim (6) 
R-(X) R---o(X) .IS2v 

lirn 2 Jd2vxeikRx2/2 
R--oo 
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lim 2 [1+00 

eikRX2/2dx] 211' 
R-oo -00 

(8)J~002(!~r 

Therefore from (1), (3), (5), and (8) we ob

tain the general optical theorem [3] 

0"tot + 2(211"/ k ) (N -I)/2~ { i(N -I)/2I (0) } = o. (9) 

3. Formula (9) agrees with [1], where it is 

expressed in tenns of gamma functions, it is 

deduced through a much longer analysis, and 

holds only for local, isotropic potentials; our 

procedure is a simplification of that of Got

tfried [2] (see also [4]), and applied to arbitrary 

dimensions. For N = 2 the integral in (6) is 

evaluated in [5]. 
In low dimensions we have the well known 

results: 

<1tot + 2~/(O) 0 (I-D) (10) 

O"tot + 2~ { R/(O) 

~f(O) } /v2 = 0 (2-D) (11) 

<1tot = (411" /k)~/(O) (3-D) (12) 

obtained respectively in [6], [5], and [3]. 
Some final comments are in order: 1) The 

theorem is eminently plausible on physical 

grounds: it says that in order to have scattering 

you have to deplete the incoming wave, and this 

is achieved by generating a forward scattering 

wave to interfere destructively with the incom

ing wave; this is exactly what formula (9) says; 

the factor k- v is obviously necessary for dimen

sional reasons; and the formula is non-linear, 



characteristic of a unitary interference process, 

as 	 atot and f scale differently, dim [atod = 
[length]2V=N-I, dim [f(O)] = [lengtht. 

2) The phase factor ¢(iV) = (N 1)(~) 

is more subtle; it implies a phase increase by 

7r /4 = 45 0 as the spatial dimension N in

creases by one; therefore, it shows periodicity 

eight. This is reminiscent of the periodicity the

orem for the homotopy of the orthogonal groups 

of Raoul Bott; the periodicity is also present 

at the level of Clifford algebras [7]. In fact, 

the wave function -zP (r) is a kind of spinor, or 

"square root" of the orthogonal tensorial object 

p(r) = 1¢(r)12 
; this rough ~rgumer:t can prob

ably be refined. 

3) Our choice of the phase of the scattering 

amplitude f(O) in eq.(2) is not the only possi
ble, so the final expression of the theorem might 

differ from ours, usually by factors of Vi, This 

is true of Ref. [1]; also in [8] Adhikari argues 

that a different phase for f might result in bet

ter analytical properties. 

4) The optical theorem is a direct conse

quence of the continuity equation, that is, of 

the conservation of the probability; this, in 

turn, comes from the hermitean character of 

the hamiltonian, and consequently, of the iso

metric property of the S-matrix, stS ]. In 
fact, one can look at the relation (9) as an elabo

rate consequence of the normalization condition 

(¢ I¢) = 1, where I¢) = I¢inc) I'l/Jsc), carried 

out in coordinate space, (r I¢) = ¢(r). 

5) Complementary to the optical theorern, its 

cousin the Levinson litcoTern ( [9]; see also [10]) 
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is also an elaboration of the completeness rela

tion J 1-zP) (-zP1 = 11, which comes from the uni
tary character of the S-matrix, sst = ], this 

time in momentum space. We have now the 

split 0 0 = A + 0 = ], where A projects to 

the bound states, and 0(00 ) to the continuum 

states of the actual (free) system. We hope to 

delve in this analogy in a future publication. 
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