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Abstract 

Phenomenological treatments of unstable states in quantum theory have been known for 
six decades and have been extended to more complex phenomena. But the twin requirement 
of causality ruling out a physical state with complex energy and the apparent decay of 
unstable states necessitates the need to generalize quantum mechanics beyond the standard 
Dirac formulation. Analytically continued dense sets of states and their duals provide the 
natural framework for a consistent and conceptually satisfying formulation and solution. 
Several solvable examples are used to illustrate the general formalism and the differences 
with the traditional phenomenological treatment (and its modem revivals) pointed out. The 
unreliability of the singularities of the S-matrix as a criterion for determining the spectrum of 
states in the generalized thory is also brought out. The time evolution of unstable system is 
characterized by three domains. Results in the decay of the neutral Kaon and its counter part 
in higher flavor-generations provides physically relevant and interesting unstable systems. 
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Chapter 1 

Introduction 

The study of the decay of a metastable quantum system began with Gamow's theory (Ga28] 
of alpha decay of atomic nuclei and Dirac's theory {D27J of spontaneous emission of radiation 
by excited atoms. A general treatment of decaying systems was given by Weisskopf and 
Wigner {WW30J, and by Breit and Wigner {BW36], (see for examples: Bohm (B080, 86, 
89]), Fonda, Ghirardi Ilnd collaborators {FGRW73,78, GOWR79]; all these gave a strktly 
exponential decay. Fermi {Fe50] gave a simple derivation of the rate of transition following the 
work of Dirac; and this has come to be known as the Golden Rule. The close relationship 
between resonances and metastable decaying states had been noted in nuclear reactions: 
Bohr {Boh36]. Kapur and Peierls {1{P38], Peierls {Pe60]; see also Matthews and Salam {MS58, 
59]. 

Siegert {Sie39] was the first to associate the complex poles in the S-matrix of Wheeler 
{Wh371 to quantum theory resonances. Peierls {Pe54] seems to have been the first one who 
seriously took up the problem that the Breit-Wigner resonance model has complex energy 
states on the "physical sheet" in violation of the notion of causality in quantum mechanics 
{vK63]i and he emphasized the need to relegate any such complex poles to an unphysical 
sheet in the analytic continuation of the scattering amplitude in the complex energy plane. 

The exact solution of a model of decay going beyond the Breit-Wigner approximation of 
the Dirac model for metastable atoms was studied by Glaser and Kallen {GI{56], by Hohler 
{H0581 and by Nakanishi {Na58] following the field theoretic formulations of Lee {Le541 and 
of an earlier work of Friedrichs {Fr48]. Other models of a metastable system were studied for 
examples, by Moshinsky {Mo 51], by Winter {Win61!, by Levy {Le59], by Williams {Wi71! 
and by Fleming {FI73]. 

In the meantime, Khalfin {Kh58,68] had shown that on general principles, if the Hamil­
tonian were bounded from below, the decay could not be strictly exponential. He used the 
Paley-Wiener theorem {PW34] to show this result. He also showed that there should be 
deviations from the exponential in the very large and very small time domains. Misra and 
Sudarshan IMS77] showed that for a wide class of systems tests of non decay repeated at 
arbitrarily small times prevents the decay of a metastable state, the so-called Zeno effect. 

The question of irreversibility and the treatment of unstable states has been systemati­
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cally pursued by Prigogine and his collaborators. Our interest in the conceptual questions 
has been stimulated by Prigogine's work and his important observation that an unstable 
particle, if it is autonomous, must obey the same decay law at all times. They must then be 
distinct from unstable states of Khalfin (Kh58], which must age. Since the work of Prigogine 
and collaborators is presented elsewhere in this volume we content ourselves with reference to 
their latest papers (TPP91, PP93, AP93]. See also the point of view elaborated by Prigogine 
in his work, for example "From Being to Becoming" {Pr80j. 

In this article we are concerned with a systematic and conceptually consistent devel­
opment of the theory of metastable systems going beyond the Breit-Wigner model and its 
modern revivals. We shall follow several of our papers (MS77, CSM77, SCG78, Su91, SC92, 
CSB92, Su93] over the past two decades. 

1.1 	 Spectral information of a resonance 

Quantum mechanics is defined in terms of vectors in Hilbert space with self-adjoint linear 
operators realizing dynamical variables. Self-adjoint operators have a real spectrum. For 
stationary states, we have point eigenvalues of the spectrum, while scattering states are 
usually associated with the continuous part of the spectrum. What then about resonances 
and metastable resonances? 

In standard quantum theory these also belong to the continuous spectrum bounded from 
below. The only signature of a resonance or a metastable state is a "spectral concentration" 
or a line shape. Since the line shape is affected by the background and by ldnematical factors, 
usually we can extract only the center of the resonance peak and its width (full width at half 
maximum). It would be desirable to see these items emerge as spectral information: this is 
what the Breit-Wigner approximation does but at a very high price, the violation of spectral 
boundedness. But the phenomena in which this situation obtains are many: deexcitation of 
atomic levels, alpha decay, formation of compound nuclei and resonant scattering. There­
fore we need a more general formulation of quantum mechanics which has a richer spectral 
structure but does not violate physical principles. 

1.2 	 Lorentz line shape and Breit-Wigner approxima­
tion 

The amplitude for a metastable state to overlap itself after evolution for a fixed time t is 
called the survival amplitUde 

A(t) = (tPle-iHtltP). (1.1) 

Since this is, in general, less in absolute value than 1. it is tempting to write 

e-iHtltP) -+ e-(iEo+h)tltP), (1.2) 
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80 that there is a complex eigenvalue. If we recognize that for negative time IA(t)1 is also 
less than I, we may consider 

e-iEot-!-Yltllt/J), (1.3) 

88 the evolute of the metastable state. Taking the Fourier transform of the exponential 
factor, there are contributions from both the negative time and the positive time. We get 
for -00 < w < 00 . 

f( ) = ..!.. . -i ..!.. . i . =1.. h (1 4)
W 211" (w - ~) - ~ + 211" (w - Eo) + !f 11" (w - Eo)2 + ~ . . 

The last expression has the Lorentz line shape known from the response of a harmonically 
bound electron with a dissipative term. Note that the spectrum is unbounded from below. 
The spectral weight is an analytic function of w with isolated poles at w = Eo +h /2 and at 
w Eo i,,(/2. Since few) is nonzero along the entire real axis, there are two pieces of the 
piece-wise analytic Fourier transforms. One piece varies as e-"Yt/ 2 for positive t and zero for 
negative t, the other piece has e"Yt/2 for negative t and zero for positive t. Neither of these 
pieces can serve to model an autonomous physical state since the state appears to be created 
or destroyed at t = 0 and has a purely exponential law. There are no states in the physical 
Hilbert space, that is among states in the linear span of positive energy states which have 
such a property. ( A "state" with such a time dependence can be synthesized only if one 
includes unphysical negative energy states along with the physical states.) If we require of 
these unphysical "states" the physical requirement of causality, i.e. they vanish for negative 
times, then we get the unique (though unphysical) choice 

1 i
few) 	 (1.5)

211" • (w -	 Eo) + ~ , 

It/J(t» (i(t)e-iEot-!"ytlt/J(O». (1.6) 

However, this state is not time reversal invariant; and cannot be made time reversal invariant 
without giving up the causality requirement. If we give up causality, we get back (1.3) and 
(1.4) 

The deomposition in (1.4) into two terms is the split of an unphysical state with a 
spectrum -00 < w < 00 into two unphysical states which are analytic in the lower and 
upper half planes and are therefore respectively causal and anticausal. This is a special case 
of a general decomposition which can be carried out for physical states and for unphysical 
states into the sum of functions analytic in halfplanes. This is discussed in detail in a later 
section of the paper (see Sec. 4.6). 

Let us return to the Lorentz line shape (1.4). A classical physical context in which such 
a line shape arises is in the correlation function of a harmonically driven damped harmonic 
oscillator. Here the time dependent amplitude x(t) and the two-point correlation function 
are respectively described by: 

iwtcPx 	 dx 2 -iwt ( ae- (
dt2+Rdt+WQx=ae , xt)= . .2 .•2 ~.. o· 1.7) 
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iwt _ 1 foo a- ae- lal2 -l t 
(x(O)x(t» == -2 2 2 +' R' 2 2 . Rdw ~ 4'Q,.2 e Rlleoswot. (1.8) 

11" -00 WD - W IW Wo - W - IW • "'""0 

In the last step, the approximation R << Wo is assumed. Here the temporal behavior for the 
two-point correlation function, which is analogous of the survival amplitude, is exponentially 
damped for both positive and negative time. The frequency dependence has been used in 
models of dispersion relations for the refractive index of a dielectric in the Sell meier formula 
IJW57J and in more detailed theories of the refractive index [MeS8! 

1.3 	 Lorentz transformation on state with complex 
eigenvalues 

Although Lorentz transformation will not be of the main concerned of the present article, it 
is instructive to digress here to see how would a resonance state with a complex eigenvalue 
transform under Lorentz transformation. For definiteness, consider the real spectrum of (1.5) 
with the corresponding time dependence given in (1.6). The real spectrum here consists of all 
energies, so when we make a fixed Lorentz transformation we get all possible momenta, some 
positive some negative with a concentration around the value which is the value expected if 
we had the energy m. This range of momenta may be expressed by a complex momentum 
suitably defined. e could work with real momenta but any fixed Lorentz transformation 
with the boost parameter q which would produce not a unique momentum msinhq but all 
momenta from -00 to +00. 

To do this analysis for the correct real spectrum 0 ~ w < 00 is not difficult; there is 
no state with complex energy m - i¥ by itself but it must be accompanied by a complex 
background. Such a state will transform itself into complex momenta but that is mostly the 
alternative expansion for a superposition of all momenta (in the same direction!). So there 
is no inconsistency. 

In the narrow width approximation r « m we can get a simple derivation of the behavior 
of the lifetime. . 2 ')2(m ir,o) =_ (E-ir',p _p2, 	 (1.9) 

with 

(m ~r,o) - (E- ~r',p), 	 (1.10) 

Equating the imaginary part on the two sides of the equation leads to 

Er' = mr. 	 (1.11) 

So 

~= ~ = Jl-~. 	 (1.12) 
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Thus while 

Re(m ~)--ym=E, ir r 
1m (m 2) - :y = r'. (1.13) 

Thus the width is reduced and the lifetime is increased! 

1.4 Violation of the second law of thermodynamics 

The Breit-Wigner model (and its modern revivals) violate the spectral condition to obtain a 
strict exponential decay; or, more generally, the linear sum of a finite number of exponentials. 
This violation would, were it actually to occur, also violate the second law of thermodynam­
ics. Since one admits here states with arbitrary large negative energy it follows that we 
can devise suitable interactions that take away arbitarily large amounts of energy from the 
system. The first law of thermodynamics can be satisfied and yet the available energy from 
the system is arbitarily large. Since this must not be possible, the unbounded spectrum by 
itself should not occur. 

In the formalism presented in this article, there is a complex energy discrete state always 
accompanied by a complex background such that the real energy spectrum is always bounded 
from below. The restriction we have to impose to obtain this resolution is to have only such 
states 88 are derived from analytic continuations of physical states; then an isolated discrete 
complex energy state must always be accompanied by a complex background with a real 
threshold. 

1.5 Organization of this article 

Our discussion below is divided into two main topics: one concerns the characteristic regions 
in the temporal evolution of unstable quantum system and the other concerns the formulation 
of a consistent theory for an unstable quantum state. 

1.5.1 Temporal evolution of an unstable quantum system 

When the energy spectrum of the unstable particle system is semi-bounded, one expects a 
deviation from pure exponential decay. This deviation occurs [Kh57, 581 both in the small 
t-region and in the large t-region. In Chapter 2, the three characteristic time regions {MS77, 
CSM771 in the time evolution of a one-level unstable quantum system are discussed. In the 
small t-region, the time evolution of the system is sensitive to repeated measurements. For 
the case where the expectation value of the energy of the system is finite, one expects the 
Zeno paradox, i.e. frequent measurement of the unstable system leads to nondecay. On the 
other hand, when the expectation value of the energy is infinite, repeated measurement of 
the system would lead to a rapid decay of the system. In the large t-region, the survival 
probability has a power law falloff with the rate of the falloff governed by the threshold be­
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havior of the semi-bounded spectra. There may be intricate interference phenomena (Win61j 
at the transition from the exponential decay to the power law region. 

The solution [CS90j to the multi-level unstable quantum system is presented in Chapter 3. 
The most common example of this type of system is the neutral Kaon system which is a two­
level system. Here the Lee-Oehme-Yang {LOY571 model is the Breit-Wigner approximation 
for the two-level unstable quantum system. Within this approximation the unstable Koons 
the KL and Ks can be written as superposition of J(O and K'0 and the KL and Ks decay 
independently. On the other hand, when one takes into account that they are poles on the 
second sheet, for the survival amplitudes in addition to the pole contributions, there are 
also cut contributions. The cut contributions are particularly important in the very small 
t-region and the very large t-region. Regeneration effects IKh87, 901, i.e. the transitions 
between KL and Ks, are expected to be nonnegligible in these regions (CS901. These and 
the related issues for the neutral Koon system are also discussed in Chapter 3. 

So far our attention has been mainly on the features in the time development of unsta­
ble quantum systems, which show the departure from pure exponential decay of the Breit 
Wigner approximation. This deviation arises when one takes the continuum spectrum into 
account. Here resonance is a discrete pole contribution in the survival amplitude or more 
generally the transition amplitude on the unphysical sheet. This is in contrast with the 
Breit Wigner approximation, where the resonance pole(s) are on the physical sheet. The 
"physical sheet" and the "unphysical sheet" designations here have important distinctions. 
From the requirement of causality, it can be shown that transition amplitUdes are analytic 
on the physical sheet. The presence of complex poles on the physical sheet, therefore, implies 
the violation of causality. Since we want to work with a causal theory, resonance poles must 
be identified with the second sheet poles and the deviation from exponential behavior in the 
time evolution is expected. 

From the study of solvable models, one finds that it is likely that the departure from the 
exponential decay law at presently accessible experimental time scales are numerically in­
significant. Nevertheless we find it to be important to insist on having a consistent framework 
for the description of unstable states, which gives predictions coinciding with the Breit­
Wigner approximation in the bulk of the middle region and at the same time allows the 
extension to the very small and very large time regions. We proceed now to the generalized 
quantum system where the resonance pole will be identified as a generalized quantum state. 

1.5.2 A theory for unstable quantum systems 

As we shall explain in detail later, a consistent framework for the unstable state is achieved 
through the use of a generalized vector space of quantum states. Consider the integral 
representation defined by the scalar product between an arbitrary vector in the dense subset 
of analytic vectors in the physical state space 1f.. and its dual vector: the integration is along 
the real axis. Keeping the scalar product fixed, the analytic vectors may be continued through 
the deformation of the integration contour. The deformed contour defines the generalized 
spectrum of the operator in the continued theory, which typically consists of a deformed 
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contour in the fourth quadrant and the exposed singularities, if any between the real axis 
and the defonned contour. We identify an unstable pole as a bonafide discrete state in the 
generalized space with a complex eigenvalue. Here the continuum states are defined along 
some complex contour 'Y, which is defonned in such a manner as to expose the unstable 
particle pole. The inner product and transition amplitudes are defined between states in g 
and its dual state in the corresponding dual space g. 

In Chapter 4, we discuss this analytic continuation approach. Several models are studied 
with special attention to the unfolding of the genemlized spectrum. We demonstrate how 
the analytic continuation is done for the Friedrichs-Lee model in the lowest sector and for the 
Yamaguchi !Ya58] potential model. We demonstrate that the generalized spectrum obtained 
leads to the correct extended unitarity relation for the scattering amplitude. In this Chapter 
we demonstrate that the possibility of having mismatches between poles in the S- matrix and 
the discrete states in the Hamiltonian, which may arise 'H obtains also in the generalized g 
space. In the same Chapter we will also consider the analytic continuation of the probability 
function and the operation of time reversal invariance. 

In Chapter 5, we study the analytic continnation as applied to the multi-level system 
ICS93j and its application to the Bell-Steinberger relation IBS651 for the neutralKaon system. 

In Chapter 6 we extend our consideration to 3-body system. In particular, we consider a 
solvable model which involves 3.body system i.e. the cascade modellCSB92j. In this model, 
there are particles A, Band C together with two species of quanta, the interactions are given 
by A - BO, B - C</>. Here the second sheet singularities are the resonance pole A·, and 
the bmnch cut B·O. The analytic continuation ISC93j of this model is also discussed. The 
extended unitarity relation here can be conveniently displayed in terms of the generalized 
discontinuity relations. Chapter 7 gives a summary and our conclusions. 



Chapter 2 

Time evolution of unstable quantum 
system 

In this Chapter we study the time evolution of the S(rcalled unstable particle system. By 
definition an unstable particle is a non-stationary state which undergoes substantial changes 
in a time scale much larger than the natural time scales associated with the energy of the 
system. In this case the "natural" evolution in time and the "decay transition" may be viewed 
as two separate kinds of time development; and it would be profitable to think of the natural 
evolution as if it were accounted for by an unperturbed Hamiltonian and the decay transition 
being brought about by an additional perturbation. Conversely, given a Hamiltonian with 
a point spectmm and a continuous spectmm, we may introduce perturbations which lead 
to "decay" of the states which belonged to the point spectrum and which were therefore 
stationary. In this way we can determine the precise time development of the system. 

Many studies have been devoted to the questions relating to the deviation from the 
exponential decay law of particle decay processes. The time reversal invariance requires that 
the slope of the survival probability at t = 0 be continuous, which admits two possibilities, 
that it may be either 0 or 00. 

When the expectation value of the energy of the system is finite, this slope is zero. This 
leads to the Zeno's paradox. The theorem on Zeno's paradox due to Misra and Sudar­
shan{MS77J proves non-decay result generally. Earlier there were works by Degasperes et 
al IDFG74J and by Rau {Ra63J where they show that the limit of infinitely frequent inter­
actions leads to non-decay. These are special cases of the Zeno's paradox theorem. Some 
subsequent investigations of Zeno effect are by Chiu, Sudarshan and Misra ICSM771, by 
Girardi et al {GOWR79J. Peres {PerSOJ, Fleming IFl821 and Valanju (VaBO, VCS80j. The 
quantum Zeno effect has been verified by Itano, Heinzen, Bollinger and Wineland IIHBW90J 
using metastable atoms "interrogated" by microwaves. 

On the other hand, for a quantum system where the energy expectation value is 00, the 
slope of the survival probability at t 0 is 00. For this case, the repeated measurement of 
the system leads to a rapid decay of the system ICSM771. 

In the large t region, the survival probability has a power law fall off in t with the rate 
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of the falloff governed by the threshold behavior of the semi-bounded spectra. There was 
also the work by Winter {Win61J, where a simple barrier-penetration problem was studied t.o 
elucidate the time development of quasi-st.ationary states in the small and the intermediat.e 
and the large time regions. Some interference phenomena were observed. Our discussions 
below are mainly based on t.he paper by Chiu, Sudarshan and Misra (CSM771. 

2.1 	 Deviation from exponential decay law at small 
time 

We start with a brief recapitulation of the quantum-theoretical formalism for describing 
unstable states. Let?t denote the Hilbert space formed by the unstable (undecayed) states 
of the system as well as the states of the decay products. The time evolution of this total 

e-iHCsystem is then described by the unitary group Uc , where H denotes the self-adjoint 
Hamiltonian operator of the system. For simplicity, we shall assume that there is exactly 
one unstable state represented by the vector 1M) in?t. The state 1M), being an unstable 
state, must be orthogonal to all bound stationary states of the Hamiltonian H. Hence 1M) 
is associated with the continuous spectrum. (In contrast to this simplifying situation in 
quantum mechanics, the spectmm of the Liouville operator of a classical dynamical system 
which is weakly mixing or not mixing must have a singular continuous part.) Thus if H 
denotes the spectral projections of the Hanliltonian 

H = J>'dF), == J>'1>') 	 (2.1) 

then the function (MIHIM) is absolutely continuous, and its derivative 

p(>.) :>. (MIHIM) = (MI>') (>'IM) 	 (2.2) 

can be interpreted as the energy distribution function of the state 1M); i.e., the quantity 

fE+dE
J p(>.)d>. 	 (2.3)

E 

is the probability that the energy of the state 1M) lies in the interval IE, E +dEl. 
The distribution function p{>.) has the following general properties: 
(i) p{>.) ~ 0; 
(ii) f p(>.)d>. = 1 corresponding to the normalization condition (MIM) = 1; 
(iii) p(>.) = 0 for>. outside the spectmm of H. It may be noted that, in defining the 

energy distribution function p(>.) as we have done above, we have absorbed the customary 
density of states factor or the phase space factor 0'(>.) in p{>.). 

The above-mentioned conditions are quite general and hold for any state which is or­
thogonal to the bound states of H. In order that the state may be identified as an unstable 
particle state with a characteristic lifetime, its energy distribution function should satisfy 
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certain additional conditions. We shall discuss these conditions in Sec.2.3. But the discussion 
of the present section will use only properties (i)-(iii) of the energy distribution function. 

The nondecay probability Q(t) (or the probability for survival) at the instant t for the 
unstable state 1M} is given by 

2 
Q(t) = I{Mle-iHt IM)1 . (2.4) 

Accordingly, the decay probability pet) at t is 1 - Q(t). The nondecay amplitude a(t) = 
{Mle-mtIM) may be easily seen to be the Fourier transform of the energy distribution 
function peA), 

aCt) = {MleiHtIM) f e-Utd{MJFAIM) (2.5) 

f e-Utp(A)dA, (2.6) 

The celebrated Paley-Wiener theorem then shows that if the spectrum of H is bounded below 
so that peA) =0 for A < 0 then la(t)1 and hence Q(t) = la(t)12 decreases to 0 as t - 00 less 
rapidly than any exponential function e-rt, This is essentially Khalfin's argument proving 
the neressity of deviation from the exponential decay law at large time. 

The following proposition shows that Q(t) must deviate from the exponential decay at 
sufficiently small time too. Let the spectrum of H be bounded below; assume further that 
the energy expectation value for the state 1M} is finite, 

f Ap(A)dA < 00. (2.7) 

Then Q(t) > e-rt for sufficiently small t. We shall assume, without loss of generality, that 
the spectrum of H is confined in the positive semi-axis (O,ooJ. 

To prove the proposition it is sufficient to show that Q(t) is differentiable and 

. == d > -r, (r > 0). (2.8)Q(O) -d Q(t)I 
t t=o 

We shall in fact show that 
Q(O) = o. (2.9) 

In view of the positivity of the operator H, the energy distribution function peA) = 0, for 
A < O. Thus the condition (2.7) together with semi-boundedness of the spectrum implies 
that this function Ap(A) is absolutely integrable, 

f IAlp(A)dA < 00. (2.10) 

The survival amplitude is defined by 

aCt) f e-iAt p(A)llA, with a(O) = I. (2.11) 
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The condition of (2.10) implies that aCt) is differentiable for all t, since 

la(t)1 = If e-iAt Ap(A)dAI :5 f IAlp(A)dA < 00. (2.12) 

So the derivative here is continuous. Now 

a*(t) = a(-t) , (2.13) 

so that 

~ a.(t)1
dt t=-, 

-~ a(t)1
dt t=-, 

-a(-s). (2.14) 

Since Q(t) a(t)a·(t), 

~ Q(t)L. a(-s)a(s) - a(s)a(-s) . (2.15) 

In particular, 
Q(O) a(O+) a(O_) 0, (2.16) 

since a(O) 1 and aCt) is continuous so that a(O+) = a(O_). We emphasize that it is the 
semiboundedness of H, which ensures the continuity of the derivative, which is an essential 
ingredient in the proof. For otherwise consider the usual Breit-Wigner weight function 
peA) = for which 

iAt001 1 e- 1tl •a(t) - -- = e- (2.17) 
11" -00 1 +A2 

The magnitude of the corresponding derivative at t =0 is 

la(O)1 =.!.1°O AdA , (2.18)
11" -00 1 + A2 

Notice that this integral diverges at both the lower limit and the upper limit. So it is 
indefinite. This is manifested by the discontinuity at t = 0, 

a(O+) -1 and a(O_) = 1. 

The preceding proposition shows that at sufficiently small time the non decay probability 
Q(t) falls off less rapidly than would be expected on the basis of the exponential decay law. 
Thus if the unstable system is monitored for its existence at sufficiently small intervals of 
time, it would appear to be longer lived than if it were monitored at intermediate intervals 
where the decay law is exponential. The quantum Zeno's paradox states that in the limit of 
continuous monitoring the particle will be found not to decay at all. This conclusion in the 
present special case of a one-dimensional subspace of undecayed (unstable) states follows in 
fact as an immediate corollary of the preceding proposition. It can be easily seen that if the 
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system prepared initially in the unstable state 1M) is (selectively) monitored on its survival 
at the instants 0, tin, . .. , (n 1}tln, t, then the probability for its survival is given by 

Q(~r 
Since Q(t) is continuously differentiable and Q(O) = 0, it can be easily shown that 

lim Q (!)n (2.19)n-oo n 

independent of t. It is evident that the survival probability under discrete but frequent 
monitoring will be close to 1 provided that tin is sufficiently small, so that the departure 
from the exponential decay law remains significant. It is thus important to estimate the time 
scale for which the small-time deviation from the exponential decay law is prominent. 

2.2 Resonance Models for Decay Amplitudes 

To estimate the parameters Tl and T2 which separate the intermediate-time domain, 
where the exponential decay law holds, from small- and large-time domains where deviations 
are prominent, we need to make a more specific assumption about the energy distribution 
function p(..\) of the unstable state 1M}. In fact, so far we have assumed only very general 
properties of p(..\) that are not sufficient to warrant the identification that 1M} represents 
art unstable state which behaves as a more or less autonomous entity with a characteristic 
lifetime. 

To formulate this resonance requirement we shall rewrite the non decay amplitude as a 
contour integral. To this end, we consider the resolvent R(z) (H -z/)-1 of the Hamil toni art 

H. They form a (bounded) operator-valued analytic function of z on the whole of the complex 
plane except for the cut along the spectrum of H, which we take to be the real half axis 
10,001. Under mild restrictions on the state 1M), for instance under the condition that 1M} 
lies in the domain of H2, we have the formula 

e-iH'IM} = ~ r e-idR(z)IM}dz, (2.20)
271''' 1c 

where C is the contour shown in Fig. 2.1. The non decay probability then has the represen­
tation 

aCt) = (Mle-iH'IM) -2
1 

. re-U'p(z)dz, (2.21)7I"l1c 
where 

P(z} (MIR(z)IM) . (2.22) 

The function P(z) is uniquely determined by the energy distribution function p(..\} of 1M} 
through the formula 

P(z) roo p(..\) d (2.23)10 ..\ z..\, 
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and in turn determines the distribution function p(..\) through the formula 

p(..\) lim 1 1.8(..\ + if) - P(..\ - if)J . (2.24)
(-0+ 

The function P(z) is analytic in the cut plane and is free of zeros there. We may thus 
introduce 

-1 
(2.25)-y(z} P(z) , 

which is analytic and free of zeros in the cut plane. The nondecay probability is then given 
by 

id
i r e- dz. (2.26)aCt) 211" 1c -y(z} 

where the contour C is illustrated in Fig. 2.1. The above representation for aCt) is quite 
general and does not yet incorporate the important resonance condition alluded to earlier. 
The resonance condition may be formulated as the requirement that the analytic continua­
tion of -y(z} in the second sheet possesses a zero at z Eo - ~ir with Eo :» r > O. Under 
this condition the above representation for aCt) shows that it will have a dominant contri­
bution e-iEte-rt/2 from the zero of -y(z) in the second sheet and certain correction terms 
to the exponential decay law arising from a "background" integral. An investigation of the 
corrections to the exponential decay law then amounts to an investigation of the background 
integral in (2.26). This approach to studying the deviation from the exponential decay law 
has been adopted in the past. Here we investigate the detailed properties of the background 
integral by making a specific choice for -y(z). 

To facilitate the choice and to relate our results to investigations on the Lee model and 
the related Friedrichs model, we note that one can write (suitable subtracted) dispersion 
relations for -y(z}. 

For instance, if -y(z) has the asymptotic behavior 

b(z)-zl~zn (2.27)
1%1-00 

with n :5 0, then 

-y(z) z - Ao +! roo 1/(..\)12 (2.28)11" 10 ..\ _ z d..\. 

with 

1/(..\)12 2i (~+1 I' + if) - -y(..\ (2.29) 

On the other hand, if -y(z) satisfies (2.27) with 0 < n < I, then -y(z) satisfies the once­
subtracted dispersion relation. With the subtraction at z E., 

-y(z) z E, + -y(E,) 

+ z - E, roo 1/(..\)12 d..\ (2.30)
11" 10 (..\ z)(..\ - E,) . 
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It may be noted that the form (2.28) for feZ) is the one obtained in various model­
theoretic descriptions of unstable states. All such descriptions picture the unstable state 
1M} as a normalized stationary state of an unperturbed Hamiltonian Ho associated with a 
point spectrum of Ho embedded in the continuous spectrum. The decay transition is caused 
solely by a perturbation HI. under suitable assumptions about HI, for instance that the 
transition amplitude of HI between the states associated with the continuous spectrum of 
Ho may be neglected in the evaluation of aCt). The non decay amplitude can be shown to be 
given by (2.26) and (2.28) or (2.30), where 

11(>')12 = 1(>'IHI IM)!2 , 	 (2.31) 

with I>'} being the continuum eigenkets of Ho. 
Next define 

k = zI/2e itr/4 	 (2.32) 

and write 
itr/2(kfeZ) = .:y(k) = e - k+)(k - k_){(k), (2.33) 

with resonance poles as stated earlier at 

1 :I . 1 
Z = Eo - 2ir and Z = e 1ftEo + 2ir . (2.34) 

In the k plane they are at 
k:i::::: ±ko +6, (2.35) 

where ko = , 6 = ~1/2eif(/4 with ~1/2 r/4EJ/2. (See Fig. 2.2.) SubstitutingE1Peitr/4 

(2.33) into (2.26) and defonning the contour we may write 

aCt} 
i e-k't2kdk 

27r L ..,..,..,--....,.-.,...,.,..--:--:....,...,.,:-:­
a+(t) +al(t) +a2(t) , (2.36) 

with 

a+(t} _1_ k+ e-iEote-rt/2 
{(k+) ko ' 

(2.37) 

i roo e­It't2kdk 
al (t) 

27r 1-00 (k k+)(k ­ k_){(k) 

:::: 
i [00 e-It'tkdk 

27r Loo (k2 ­ kJ){(k} 
( 26k) 

1 + k2 ­ kJ ' (2.38) 

and a2(t) a contribution which can be dropped owing to a suitable cancellation. These three 
parts are associated with the deformed contour 

C -+ 8 S+ +SI +82 
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illustrated in Fig. 2.2. Note that we do not have to include any contribution from k_. 
To proceed further one has to make the specific choices for {(k). We may now restate 

our problem in the following fashion. Given an amplitUde of the fonn (2.36) with a suitable 
choice for {, how does the decay probability behave as a function of time? What are the 
characteristic times Tl and T2 for the system? How sensitive are these conclusions in relation 
to the specific fonns assumed for {? In the following section, we take up a study of these 
questions. 

2.3 	 Specific Decay Models and A Resolution of Zeno's 
Paradox 

In ref. ([CSM77j), two specific choices for { are considered. For model I, 

{(z) = 1. 	 (2.39) 

This leads to a dispersion relation of the fonn of Eq. (2.30). For model II, 

Fz-BI/:I 
{(z) = Fz (B1/2 + 2~1/2) . (2.40) 

This leads to the dispersion relation of the form of Eq. (2.28). We proceed to look at several 
aspects of these solutions. 

2.3.1 The large-t power law and its geometric interpretation 

Thelarge-t behavior of the survival amplitude for both models is given by 

1 
la(t)1 ""' const x t3/2 • 	 (2.41) 

A slower than exponential decay, as mentioned in Sec. 2.2 is expected from the general 
argument of Khalfin though it could be like exp( -t I-f). On the other hand, the specific r 3/2 

law is not only a particular property of these special models, but a reflection of the kinematics 
of the decay process. We may see this as follows. We write II(E)12 == li(E)12a(E), where 
aCE) is the phase space weight factor. Then from (2.26) and (2.29), 

1 [00 li(E)12 
-iEt 

aCt) = 7r 10 dE II(E + if)12 a(E)e (2.42) 

:::: 	 1 {lIt dE li(E)!:! a(E)e-iEt 
7r 10 II(E + it:}12 

1 Lilt - dEa(E)eiEt 
7r 	 0 

1 1.00 
:::: dE a(E)eiEt 	 (2.43)

7r 	 0 
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for very large times, because of the rapid variation of the phase factor, provided the functions 
iCE) and -r(E + if) behave gently near zero. The phase space factor aCE) has a power law 
behavior in the neighborhood of the origin. For a nonrelativistic system E = k2/2m, 

2 dk r;;
41fk dE'" vE, (2.44) 

while for a relativistic system E (k2 +m2)l/2 m, as E - 0, 

aCE) = 41fk(E +m) "" ../E. (2.45) 

Hence, in both cases we may recognize (2.43) to behave like 

foOt> dE../E e- iEt = C 3/2 foOt> duv'Ue- iu • (2.46) 

Thus the inverse-cube dependence of the probability of nondecay Q(t) may be related to the 
structure of the phase space factor, provided the form factor iCE) is gently varying. 

This power law dependence has a simple geometrical meaning: The "unstable particle" as 
such is not a new state, but a certain superposition of the decay products. These latter states 
have a continuum of energy eigenvalues. The precise manner in which the superposition is 
constituted depends on our definition of the unstable particle, and the development of this 
wave packet as a function of time depends on the dynamics of the system. But eventually 
the packet spreads so that the decay products separate sufficiently far to be outside each 
other's inAuence. Once this state is reached the further expansion is purely kinematic, the 
amplitude decreasing inversely as the square root of the cube of time. Consequently, the 
overlap amplitude aCt) also behaves thus. The requirement of gentle variation of the form 
factor is precisely that the corresponding interaction becomes negligible beyond some large 
but finite distance. 

In view of this geometric interpretation we expect that any unstable system with well­
behaved interactions would exhibit such a power law rather than an exponential law. 

2.3.2 Two types of t dependence near t = 0 

The short-time behavior of the probability Q(t) given by two models are very different, which 
is correlated with the corresponding differences in the spectral moments. We recall that in 
the small t region, the survival amplitude can formally be expanded on terms of the spectral 
moments. i.e. 

aCt) = Je-i>.tp(t) d)' == 1 - i < ). > t < ).2 + .... (2.47) 

On the other hand, in the small t region where Eot <: I, both models allow the expansion 
in power of..;E;i. For model I, we obtain, 

a(t) _ 1 - const + e'lI'/4t j (2.48) 

18 CHAPTER 2. TIME EVOLUTION OF UNSTABLE QUANTUM SYSTEM 

which is compatible with the fact that without the form factor, from inspection on (2.36), 
the first spectral moment is infinite. (2.48) leads to the decay rate, as t - 0 

Q(t) oc - 00. (2.49) 

For model II, we obtain 
2aCt) - I i const +e-!ft3

/ (2.50) 

which is compatible with < ). > being finite and < ).2 > infinite, (2.50) leads to 

ooc _tl/2 - 0 . (2.51) 

Model II is an example of the proposition considered in Sec. 2.1, where the energy 
expectation value for the resonance state (MIHIM) is finite. From general arguments, we 
already concluded that as t - 0, the decay rate should approach O. Equation (2.51) is in 
agreement with this conclusion. On the other hand, if (MIHIM) does not exist, such as in 
model I, as t - 0, the rate of decay is infinite. So the exponential law again does not hold. 
We see that in no case could the exponential law hold to arbitrarily small values of t. The 
conclusion that we have arrived at only depends on the basic notions of quantum mechanics; 
it is therefore quite general. 

2.3.3 Repeated measurements in short-time and long-time limits 

From the above discussions, we are led to two possibilities regarding the leading term be­
havior of Q(t) as t -+ 0: 

Q(t) - 1 - ~ tit and OCt) - -atlt-
I

, /1 =I 1. (2.52) 

Since 0 ~ Q(t) :S Q(O), a> 0 and /1 > 0 [we are not considering non polynomial dependences 
such as tlt(logtpJ, the ranges /1 < I and /1 > 1 behave quite differently. In one case the rate 
is becoming larger as t - 0, and in other case it is vanishing. 

Now consider as in Sec. II, the n measurements at times tin, 2tln, ... ,t. In the limit of 
n - 00, the time interval tin tends to zero. Hence, for arbitrarily small t as n - 00, 

_{ 1/1>1Qn(t) _ [1 _~ It (2.53) 
o /1 < 1 

The first case corresponds to Zeno's paradox in quantum theory. In the second case the limit 
as n - 00 is O. So continuous observation would lead to a zero lifetime. The lesson which we 
have learned here is that quantum mechanics prevents us from determining the life time of 
an unstable particle with "infinite precision". There is a built in tolerance of lit = Tl "" t, 
where Eo is the distance in the energy plane of the resonance pole from the first nearby 
singularity. The latter is usually the threshold of the closest decay channel. With the time 
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interval 0 < t < TI , the time evolution is not governed by the exponential decay law or the 
unstable particle. I)q;~nding on the dynamics of the system, the apparent life time could 
be substantially lellb' ilfned or shortened. 

It is also interesting to ask what happens in the long-time limit. We have seen that 
with reasonable dynamics, the asymptotic form is purely kinematic. What about repeated 
measurement? The wave packet has expanded beyond the range of interaction in accordance 
with the t-3/2 amplitude law: The measurement collapses this packet to the size of the 
original packet we call the unstable particle, and the time evolution begins again. For 
~ > T:h we then have the behavior (t/n)-3n/2. We attenuate the unstable-particle amplitude 
by repeated observation. Naturally there is now no question of continuous observation. 

2.3.4 	 Laboratory observations on unstable particle and possible 
resolution of Zeno's paradox 

In these discussions we have dealt with the uninterrupted time development of an unstable 
particle. What can we conclude from this about laboratory observations on unstable parti­
cles? Is it proper to apply these considerations for particles that cause a track in a bubble 
chamber? 

The uninterrupted time evolution was, we saw above, characterized by three regions: (i) 
o < t < T), the small-time region where Q(t) ~ 1 - (a/fJ)tlJ, fJ > OJ (ii) TI < t < T2 the 
intermediate-time region where an exponential law holds; (iii) t > T2 the large-time region 
where there is an inverse-power-law behavior. Out of these the intermediate-time region 
alone satisfies the simple composition law 

Q(t.)Q(t2) = Q(t. + t2) . 	 (2.54) 

In this domain, therefore, a classical probability law operates and the results for the two-step 
measurement are the same as for the one-step measurement. 

On the other band, if the particle is making a track or otherwise interacting with a 
surrounding medium and is thus an open system, the considerations we have made do not 
apply. Instead we would have to account for the interpretation of the evolution by the 
interaction and a consequent reduction of the wave packet. The nondecay probability is now 
defined by the composition law: 

Q(t .. t2 ,· •• , tn) = Q(tl)Q(t2) ••• Q(tn). (2.55) 

Hence, if t. = t2 tn ­ 7', we can write 

Q(n7') IQ(7')]ft, (2.56) 

so that for times large compared with 7' the dependence is essentially exponential, indepen­
dent of the law of quantum evolution q(t). If the interruptions do not occur at equal intervals 
but are randomly distributed, the behavior would be more complex but this has been con­
sidered by Ekstein and Siegert IES71j and furthered by Fonda et aI IFGRW73!. The pure 

20 CHAPTER 2. TIME EVOLUTION OF UNSTABLE QUANTUM SYSTEM 

exponential behavior is somewhat altered but the power-law dependence of the long-time 
behavior of the uninterrupted time evolution is no longer obtained. 

We wish to call particular attention to this result: The long-time behavior of the closed 
and open systems are essentially different. Classical probabilistic notions do not apply to 
the closed system. The reason is not far to seek: Classical intuition is related to proba­
bilities which are the directly "observed" quantities. But probabilities do not propagate. 
Propagation is for the amplitude. Despite this, it is difficult if not impossible to observe the 
differences between the two. To be able to see the difference we must reach the third domain 
t > T2, but since T2 is much much larger than the mean lifetime, by the time this domain is 
reached the survival probability is already many orders of magnitude smaller than unity. T2 
may be estimated in following manner. For large t, in (2.38) the integrand peaks at k2 O. 
Within the peak approximation, for the regular terms in the integrand set k2 = 0 and set 

~(k) - ~(O) = 1 . 	 (2.57) 

This leads to 

i 46 {OO -A:~t 2 k _ 2i6 1 (OO _u1 2 . 
a. (t) '" 211' • k1 10 e k d - 11'~ • t3/2 10 e u du, 

so the magnitude 
r )5/2 

la(t)1 "'" const rt3/2 . (Eo 
T2 is at the time where the exponential pole term has the same magnitude as this term, 
solving for 

al (T2) const (.£..)5/2 1 

We obtain lor & > r. & rr," exp (-; To) . 
3 Eo)T2 5 	 Eo +- In ( 51n- (2.58)'" -In ­r r r r 

Notice our estimate here is not sensitive to the details of the form factor assumed as long as 
~(O) = 1, which is certainly more general than the models considered. Take the example of 
the decay of a charged pion, 11' - /.LV 

r = (3 x 10-8 sec)-I . 

This leads to T2 '" 190/r. So, by the time the power law is operative, Q(t) < 10-80• Clearly 
this is outside of the realm of detection. 

In the small-time domain we have other physical considerations that may prevent the 
conditions for Zeno's paradox from manifesting. This is ultimately to be traced to the 
atomic structure of matter and therefore to our inability to monitor the unstable system 
continuously. For example, in our model II, where Zeno's paradox is operative, in the 
Appendix of ref. !CSM77] one finds T, '" 1O-14 r '" 10-21 sec for charged.pion decay. 

http:51n-(2.58
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On the other hand, we have check points at interatomic distances, a time of the order of 
10-8 (3 x 1010) ~ 3 X 10-19 sec. We have no way of monitoring the natural evolution of a 
system for times finer than this. Within the present range of technology, according to the 
estimates, one is unable to observe the deviation of the exponential decay law.INGCB88] 

This resolution of Zeno's paradox is quite satisfactory as resolutions go in modern physics, 
but it raises a more disturbing question: Is the continued existence of a quantum world 
unverifiable? Is the sum total of experience (of the quantum world) a sequence of still 
frames that we insist on endowing with a continuity? (See also ICa75]) Is this then the 
resolution of Zeno's paradox? 

One special context which may point to the operation of the Zeno effect in high en­
ergy physics is in hadron-nucleus collisions. The collisions with successive nucleons inside a 
complex nucleus by an incoming hadron are in times of the order of the Zeno time and we 
would therefore expect a partial quenching of particle production in such nuclear collisions. 
This effect has been systematically studied by Valanju IVaSo, VCS80]. The Zeno time in 
high energy hadron-nucleus and nucleus-nucleus collisions has also been subsumed as the 
"formation time" or the "healing time", see for examples ISt75] and IBi88]. 
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Chapter 3 

Multi-level unstable systems and 
Kaon system 

In this chapter we study multi-level unstable quantum systems. The most common case in 
particle physics is the ~1(0 system, i.e. the "strange and anti-strange" meson system. 

3.1 Introduction 

About four decades ago, Gell-Mann and Pais [GP55} pointed out that ~ and 1(0 com­
municated via the decay channels and therefore the decay contained two superpositions Kl 
and K2 , which were the orthonormal combinations of KO and 1(0, which were, respectively, 
even and odd under charge conjugation. With the discovery of parity and charge conjuga­
tion violation and C P conservation, the terms KI and K2 were redefined to correspond to, 
respectively, CP-even and -odd superpositions. With the discovery of the small CP viola­
tion, qualitatively new phenomena were obtained with nonorthonormal short- and long-lived 
neutral Koons Ks and KL. Lee, Oehme, and Yang ILOY57} formulated the necessary gen­
eralization ofthe Weisskopf-Wigner formalism, which has since been used in the discussion 
of the empirical data. This phenomenological theory has the same kind of shortcoming as 
the Weisskopf-Wigner theory and the Breit-Wigner formalism as discussed earlier. For sub­
sequent theoretical discussions on the LOY model, see in particular the papers by Sachs and 
by Kenny and Sachs. [Sa63 and KS731. 

Khalfin [Kh87,90} has pointed out some of these theoretical deficiencies and gave es­
timates of the departure from the Lee-Oehme-Yang (LOY) theory to be expected in the 
neutral-Knon system as well as in the VODo and JJOBo systems. He asserts that there are 
possibly measurable "new CP-violation effects." We have reexamined this question in detail, 
formulated a general solvable model, and studied the exact solution ICS90}. While bearing 
out the need to upgrade the LOY formalism to be in accordance with the boundedness 
from below of the total Hamiltonian, our estimates of the corrections are more modest than 
Khalfin's. We review Khalfin's work to pose the problem and establish notation. 

In the LOY formalism, the short- and long-lived particles are linear combinations of ~ 
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and 7{0: 

IKs) ) _ (IKO») _ (p -q) (3.1)( IKd - u 11(0) ,U - P q' , 

with Ipl2 +Iql2 = 1 and Ip'I2 +Iq'12 = 1. The parameters p,q,p,q' are complex; their phases 
may be altered by redefining the phases of IKs} and IKL}. Generally, the states are not 
orthogonal, but linearly independent: 

(KdKs) = p'.p q'Oq I: O. (3.2) 

Let j denote KO,Ko, and 0 denote Ks,KL, Equation(3.1) can be rewritten as 

10) = E I.i) (10) == E Ij)Rja , (3.3) 
j j 

where R = UT • For a right eigenstate 10), let the corresponding left eigenstate be Then 
in terms of the oblique bases, 

Ij} E 10) (alj) 10)R;;] . (3.4) 
a a 

Let the "time evolution matrix" of KO and 7{0 states be defined by 

I~(t» ) ( IKO) ) (3.5)( 11(0(t» A(t) 11(0) I 

with Aj",(t) Ulem'lk), and the corresponding matrix in the Ks and KL bases by 

IKs(t» ) = B(t) ( IKs) ) (3.6)( IKL(t» IKL } , 

with Batl(t) = (ale-m'Ip). The matrices A and B can be related in the following way: 

A"'j = E(klo)(alem'IP)(PIj) 
a,fJ 

(RBR- I )",; • (3.7) 

As in the LOY theory, for the time being, if we were to assume that KL and Ks do not 
regenerate into each other, but otherwise have generic time evolutions: 

B(t) ( 
Set) 

0 
0 ) 

L(t) . (3.8) 

Then 

A(t) RB(t)R-1 

1 

pq' +p'q 

( pq'S +qp'L 

-qq'(S L) 

_pp'(S ­ L) ) 

qp'S +pq'L . 
(3.9) 
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At this point let us invoke CPT invariance, which implies All = A22 or pq'(S - L) 
qP'(S - L). Since KL and Ks are states with distinct masses and lifetimes, S - L -10. In 
turn, p/q =p'/q'. The states IKs) and IKL) are defined only to within phases of our choicej 
we may therefore set p' = p and c/ q. At this point we shall relax the normalization 
condition on p and q and write Ipro! + Iql2 (2. The transformation matrix and its inverse 
are now given by 

R = ~ ( p p ) ,R-1 l (q -p) . (3.10)
( -q q 2pq q p 

We shall adhere to this convention in the rest of this paper. Equation (3.9) also implies that 
the ratio of the off-diagonal elements, that is, the ratio of the transition amplitude of 1(0 to 
KO to that of ~ to K 0, is given by 

AI2(t) ~ const. (3.11)
A21 (t) q2 

Th sum up, the assumptions that (i) Ks and KL are definite superpositions of KO and 1(0 
states, (ii) there is no regeneration between Ks and K L, and (iii) CPT invariance holds, 
imply the constancy of ret). Khalfin's theorem IKh87, 90} states that if the ratio r(t) of 
(3.11) is constant, then the magnitude of this ratio must be unity. His proof goes as follows. 

The matrix elements Aik(t) are given by the Fourier transform of the corresponding 
energy spectra, i.e., 

10
00 

Aik(t) dAe-i>.&Cik(A) , (3.12) 

where 
Cik(A) E0IAn)(Anlk}. (3.13) 

n 

The summation is over different channels. A is the energy variable. To be precise, it is the 
difference between the relevant energy and the threshold value. So A = 0 is the lower bound 
of the spectrum. Using the sesquilinear property of the inner product, i.e. (AlB)" (BIA), 
(3.13) implies that 

Cik(A) CZ,(A) . (3.14) 

Now we explore the consequence when (3.11) holds. Denote ret) by-the appropriate constant 
r, one may write 

D(t) A12(t) - rA21(t) 

10
00 

dAe-i>'&[CI2(A) - rCI2(A)] (3.15) 

O. 

Based on the integral representation, with A being positive, D(t) may now be extended as 
the function of the complex variable t. Since e-i~t = e-i>.R.et . e>.Imt, the function D(t) can 
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now be defined in the entire lower half-plane. By the Paley-Wiener theorem [PW34}, D(t) 
is also defined at the boundary of the function in the lower half plane. So 

D(t) = 0, for 00 < t < 00. (3.16) 

Inverse Fourier transform of D(t) implies 

CI2 (A) - r C21 (A) = CI2(A) - rC;2(A) 0, or Irl = 1. (3.17) 

This conclusion contradicts the expectation of the LOY theory. In particular, when there 
is CP violation, it is expected that 

Irl = const -11. (3.18) 

We have investigated the situation in the framework of the Friedrichs-Lee model in the 
lowest section with the particle Vi and its antiparticle ~. They are coupled to an arbitrary 
number of continuum N () channels. We express the time-evolution matrix in terms of pole 
contributions plus a background contribution. We show that because of the form-factor 
effect, both the correction to the pole contribution and the background contribution give rise 
to a tiny regeneration between KL and Ks· This invalidates one of the original assumptions 
needed to deduce the constancy of the ratio ret). Therefore in the generic Fredrichs-Lee 
model, the assumption that KL and Ks are fixed super position of KO and KO states is 
not valid. In the remainder of this Chapter we set up the dynamical system which involves 
multilevels and multichannels and investigate the generalization of Khalfin's theorem. We 
will also look at the solution to the neutral Kaon problem beyond the Wigner-Weisskopf 
approximation. We show that in our solution the ratio ~!~!:J does depend on time, which 
invalidates one of the assumptions of Khalfin theorem, and predicts insignificant but nonzero 
departure from LOY model values in the region where the resonance pole contribution is 
dominating. 

3.2 Multi-level Systems and Time Evolution Matrix 

3.2.1 Eigenvalue problem 

In the generalized Friedrichs-Lee model, the Hamiltonian is given by 

N (00 
H = E mikV;tVk + E ItnNJNn +10 dwwt/J" (w)t/J(w) 

i.k n=l ° 
+ [ dw E9in (W)VjNJt/J"(w) 

o j,n 

(00 t+ 10 dw Egj,.(w)Y" Nnt/J(w). (3.19) 
o j,n 

http:e-i>.R.et
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Here the bare particles are \i), V:h Nn{l $ n $ N), and () particles. The following number Substituting (3.27) into (3.24) leads to 
operators commute with the Hamiltonian: 

/ g(W')gf(w'»)
(M m)a~ g(A) + \A _ wi + it.: a~, (3.28) 

QI E"ifV; + ENJNn, 
j n or 

a~ K-Ig, (3.29)
Q2 	 ENJNn +Jdwl/>·(w)l/>(w). (3.20) 


n where 


Denote the corresponding eigenvalues by ql and lJ2. The Hilbert space of the Hamiltonian K M m - G(A) (3.30) 

is divided into sectors, each with a different assignment of ql and q2 values. We will only A mil Gil -m12 GI2 ] 


consider the eigenstates of the lowest nontrivial sector, where ql = 1 and q2 = O. Here the [
 m21 - G21 A- m22 - G22 ' 
bare states are labeled by I\i)}, !V2}, and In,w), with n = 1,2, ... , N. Since there are N 

withindependent continuum states, for each eigenvalue A, there are N independent eigenstates 

which can be written as / g(w)gf(~) )
G(A + if) 

\A-W+U 
~ IV;} [a~ljn + 10

00 

dw ~ Im,w)[b~(w)lrnn' (3.21) 
(OO dw g(w)gf(~) .J 	 (3.31)

where 	 10 A - w + at.: 

3.2.2 Time evolution matrix
[a~ljn (V;IA, n), Ib~(w)lmn (m,wIA, n) . 	 (3.22) 

It follows from (3.31), that, for Areal, the 2 x 2 matrix G is 
In (3.21) the integration variable of the Im,w) state, w, begins from O. So it now stands for 
the difference between the energy of the state and the threshold energy. [G(A + it.:)Jf = (OO dw g(w)gf(W!

10 A-W-UUsing the Einstein summation convention, the corresponding eigenvalue equation is given 
by G(A - it.:). (3.32) 

mii gu(w'») ( la~ljn ) = A ( la~lin ). 	 This in turn implies the identity that, for real A,(3.23)( g!,.j(w) w6(w - w')6m1 [b~(w')lln [b~(w)Jrnn G(A + if) - Gf(A + it.:) = -211"ig(A)gf(A) 

For brevity, hereafter we will suppress the matrix indices. Equation (3.23) leads to Kf(A + i~) K(A + it,;). (3.33) 

(M m)a~ (g(w')b~(w'». (3.24) 	 The time-evolution matrix is easily evaluated: 

(A w)b~(w) = gf(w)a~ , (3.25) 	 Akj(t) (kle-iHtli) 
oooo(...) L	 L dAe-i~t }:]kIAn)(Anlj)dw· ... 

o n 

OO 

We choose the boundary condition such that, in the uncoupled limit, b~ is given by 	 L dAe-j~tla(A)af(A)lkj . (3.34) 

Ib~(w)lmn = 6(A - W)6".n. (3.26) 	 From (3.29) and (3.33), 

aaf = K-lggf(K-I)t + K-1 [Kt -l!] (K-1)tSuch a solution is given by 
-211"& 

b~(w) = 6(A _ w)I + gf(w)a~ (3.27) 2
i
1l"1K-1 

- (K-I)t] . (3.35)
\ - w + i~' 



3.2. MULTI-LEVEL SYSTEMS AND TIME EVOLUTION MATRIX 29 

Substituting (3.35) into (3.34), we get 

2~ 10
00 

Akj(t) I dAe-i>.1 {K-1(A + i<:) 

_ [K- 1(A + i<:)]t} (3.36)
kj 

But 

[K- 1(>. + ffi - G(A + i<:Wrl 

IK(A - i<:)r 1 
• (3.37) 

Based on (3.37), (3.36) can be written in a contour integral representation (see Fig. 3.1): 

Akj(t) 1= i fc dAe-i>.t [K- 1(A)],.j 

...!.. ( dAet>'1 Nlei(A) 
211" Jc Ll(A) , 

(3.38) 

where 
Ll = detK , (3.39) 

and 
N(A) CofK = Cof (A6lej ffilei - Gkj ) . (3.40) 

We recall the cofactor of the element of Alej of a square matrix A equals to (-- )Hi times the 
detenninant of the matrix which A becomes when klh row and jth column are deleted. 

Since G(A) is defined through the dispersion integral (3.31), the A dependence of G, in 
tum, the integrand of (3.38) may be extended to the entire cut plane of A. 

3.2.3 Completeness relation 

At t = 0, from (3.34) and (3.38), 

Alej(O) {CO dA E(kIAn) (Anlj)
Jo n 

...!.. ( dA Nlej(A) . (3.41)
211" Jc Ll(A) 

From (3.36) and (3.37) the asymptotic behaviors are 

Nkj(A) --+ An-I for k j, 

Nlej(A) --+ An
-

2, for k f:. j , 

Ll(A) --+ An . (3.42) 
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Defonn the contour as depicted in Fig. 3.1. Since the integrand is analytic, using (3.42), 

Akj(O) _i.. ( dA Nkj(A) _ c 
211" JCI Ll(A) - Vkj , (3.43) 

or 

{CO dA E (klAn) (Anlj) 
Jo n 

6kj, (3.44) 

which is the completeness relation. 

3.3 Applications to neutral Kaon system 

3.3.1 Formalism 

So far our treatment has been general. Now we want to specialize to the neutral-K system. 
We identify J(O and K O as Vt and V2• The the Ks and KLare the unstable particles which 
correspond to the second sheet zeros of the detenninant of the matrix K I 

A - ffill Gil ffil2 +G12 ) 
(3.45)(K = ffi21 +G21 A - ffill - Gil 

where we have applied CPT theorem and set ffi22 +G22 ffill +Gll . The discontinuity of 
the G-matrix is given by 

Gkj(A + i<:) Gki(A + i<:) 
(9(A)9t(A)]lej2i 

-11" E(kIHIAn)(AnIHlj) , with k,j = KO,Ko .(3.46) 
n 

In the Weisskopf-Wigner approximation, Glej(A) is replaced by its imaginary part evaluated 
at the resonance mass 

Glej{A) = -i rle; (3.47)
2 

This is the approximation of the LOY model, where eigenvalue problem of the type 

(3.48)K ~ ~ ~~, or ( ~~) (:) ~ ~ ( : ) 

is considered. 
We digress a little to examine the solution of this eigenvalue problem in order to establish 

the relationship between r and s and the mass and width parameters. For the neutral K­
system, 

. r ll B . r 12 C .r21A = ffiu- 'T' = ffi12 -- 'T' = 'T'ffi21 
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The complex eigenvalues are 

\ .rL \ .rs 
AL mL IT' As=ms-'T' 

Substituting these quantities back in the eigenvalue equations, we obtain 

1 .(rL + rs)n K = 2A AL +As, or A = 2' (AL +As) = ml1 -, • . (3.49) 

In terms of the eigenvalues and the components of the corresponding eigenvectors, 

r
B 28 (AL - As) 

8
C 2r (AL - As) 


or 


(3.50)(;r ~.= 

Making the correspondence between the definition of the KL and Ks states defined earlier, 
for the KL state we get 

-r - -,P or tPL N (3.51)[g (p)
s C q q 

and for the Ks state: 

r [g- P-, or tPs= N ( p) . (3.52)
s C q -q 

• A12(t)

The ratio: A21 (t) . 


We proceed to evaluate the ratio AI2(t)/A2tCt) within the Weisskopf-Wigner approximation. 
Again we write 

6. (A - As}(.'\ - Ad (3.53) 

except now As and AL do depend on A. We are interested in the effect due to A-dependence 
of G. For our purpose we find it to be adequate to work with a common form factor and 
write 

GI/;(A) = -i r;i F(A) (3.54) 

where !f is independent of A. Then 

As mil i r~1 F(A} +deAl 
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AL ml1 - i r~1 F(A) - deAl 

d(A) [(ml2 - i r~2 F(A») ( mi2 /~2 F(A»)] 1/2 (3.55) 

The transition amplitude 

i 1d\ -,~t ml2 - iIf F(A) [1 1]-- (3.56)A )2()t - Ae ----- •
211' C 2d(A) A - As A AL 

The contour C here is illustrated in Fig. 3.1. It is to be deformed according to Fig. 3.2, 
such that the integral can be written as the sum of pole contribution and the background 
contribution. We further assume that F(A) varies in hadronic scale (- IGeV), so that it is 
a smooth function in the neighborhood of A mS,mL. Expanding F(A) about A = mll, at 
A ms and A = mL the corresponding form factors are respectively given by: 

Fs 1 + F'd, FL 1 - F'dj d d(ml1)' (3.57) 

Deforming the contour in the manner indicated in Fig. 3.2, the pole term gives 

AI2(t)lpoIe ~ :q [(1 612)e-'~S' (1 +612)e-i~j',t] 
with 

~ _.rI2F'q CJ(rI2)
(112- 1---"" -- (3.58)

2 P 2mll 

A21 (t)LIe ~ i - 621 ) e-Ust (1 +~1) ei~j',t] 
p 

with 

~ . fi2 F' q 0 ( r 12 )(121 1--- --. (3.59)#'V 

2 P 2m11 

So 
A)2(t) I Pzr(t) ~ -- = - (1 + ... ) (3.60) 

pole A21 (t) pole q2I 
where "..." term carries a time-dependence wherever 

2 
r l2 9..- =/1. (3.61)612 =/ 621 or rh • ,r 

The amount of departure is bounded by the order of magnitude of 612 which is 0 (~). 
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For neutral Koons, 

r 12 rs _ 5 x 1010 sec-I
"2 2 
mil mK - 2T/lw - 200MeV - 3 x 1023 sec-I (3.62) 

So, 6 0.2 x 10-13• 

The background term also contributes to the t dependence of the ratio ret). From general 
arguments it can be shown 

AI2(t)1 1. (3.63)
IA21(t) bk 

In the very small t region and in the very large t regions, where the background term 
contribution is significant and when ~ =# 1, a further departure of the value of ~ from the 
Weisskopf-Wigner approximation may be expected. 

3.3.3 Regeneration effect 

Next, we demonstrate that there is a regeneration effect in the present solution, which inval­
idates one of the assumptions stated in Sec. 3.1, leading to the conclusion of the constancy 
of the magnitude of the ratio r. The presence of the regeneration effect is inferred by the 
presence of the nondiagonal element in the time-evolution matrix B of (3.6). Based on (3.9) 
and (3.38), 

B(t) R- 1 A(t)R 
. R 	 1..!...! d)..e-i,xt 	 - NR (3.64)

211' 

with 

R-1NR = _1_ [2PqNll (N12q~ + Nl~2 - N21P2 ] 

2pq -N12q2 +N21r 2pqNll +(N12q2 +N21r) . 
We focus our attention on the element B12 , which leads to the regeneration of Ks from KL: 
i.e., 

B12 N12q2 -	 N21P2 

.r12 F) 2 ( • F) 2(m12 - '2 q 	 - ml2 P 

2_i(F_1){;2q	 _ r~2r). (3.66) 

In the last step we have used the relations p2:::: m12 - ir;a and q2 m~2 - i!f.. So 

BI2(t) = v..i.. { d)..ei,xt 	 (3.67)
211' lc 
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where v = 2 Im(rp.mh). So the regeneration correction occurs only when v =# 0, i.e., when 
there is CP violation. Deforming the contour, we get 

BI2(t) = BI2(t)lpo... +BI2(t)lbk ' (3.68) 

with 

v 
l)e- iAstB I2(t) Ipo... 	 2d 

- - (FL ­

vF' 'A t -'ALt)(e-& S-
2 

+ e . (3.69) 

and 
B I2 (t)1 bk -vJ(t) . (3.70) 

J(t) represents the background integral. It is complicated to evaluate J(t) for general values 
of t. However, for both small t and large t regions for simple form of form factors, the 
background integral is manageable. In the small t-region, it can be shown that [CS901 

BI2(t) ex 	 (3.71) 

Here first power in t is the expected time dependence for the transition amplitude. Further 
there is always the Zeno region, in the sense that frequent observation would inhibit the 
transition from the "I" state to "2" state and also vice versa. For large t, 

B12(t)1 ex Im(rl2 mi2) 1 . 	 (3.72) 
bk 

Once again the inverse power law associated with a geometric expansion picture is obtained. 
In summary we see from this analysis that a quantum system with two metastable states 

which communicate with each other exhibits interesting phenomena in its time evolution. 
For its short-time behavior the quantum Zeno effect obtains; for very-long-time behavior 
there is a regeneration effect even in vacuum unless the long- and short- lived superpositions 
are strictly orthogonal. In the Kaon complex the short-lived particle Ks has passed from 
the exponential regime to the inverse power regime before appreciable decay of the K L or 
regeneration of the Ks takes place. The CPT invariance making the diagonal elements of the 
decay matrix in the KO,1(o basis equal is crucial to the nature of the time evolution. In the 
study of communicating metastable states in atomic physics, such an additional constraint 
of CPT is not there; consequently the decay exhibits richer features. We will present the 
general study elsewhere. Suffice it to observe that the asymptotic and Zeno region time 
depedences are very much the same as with the case of a single metastable state decay: 
This is not surprising since the generic arguments apply without restriction to the number 
of channels involved. 

http:Im(rp.mh


Chapter 4 

Generalized quantum system: 
one-level system 

So far our attention has been mainly on the features in the time development of unstable 
quantum systems, which show the departure from pure exponential decay of the Breit-Wigner 
approximation. This deviation arises when one takes the oontinuum spectrum into account. 
Here resonance is a pole in the survival amplitude or more generally in a transition amplitude, 
on the second sheet. This is to be in oontrast with the Breit-Wigner approximation, where 
the resonance pole(s) are on the physical sheet. The "physical sheet" and the "second sheet" 
designations here have important distinctions. From the requirement of causality, it can be 
shown that transition amplitudes are analytic on the physical sheet. The presence of complex 
poles on the physical sheet implies the violation of causality. Since we want to work with 
a causal theory, resonance poles must be identified with the second sheet poles and the 
deviation of the exponential behavior in the time evolution is expected. We then proceed 
now to consider the generalized quantum system through the use of analytic continuation. 
Within this framework, the resonance pole may be identified as a generalized quantum state. 

4.1 Introduction 

As alluded to in Chapter I, orthodox quantum mechanics is formulated in a vector space over 
complex numbers with a sesquilinear inner product. 1054, Ma54j In most applications the 
vector space is a separable complete space and often taken to be a Hilbert space. IvN32, &66, 
Ro661 The vector space, except in cases of "spin" systems with a finite basis, is made up of 
L2 functions of one or more variables or a vector of such functions. The dynamical variables 
are taken to be linear operators of finite nonn. Among them the selfadjoint operators fonn 
a preferred class and the observables are usually identified with them. 

But it is convenient to deal with unbounded operators like the canonical coordinate or 
momentum or the Hamiltonian. Such operators do not have an action on the whole vector 
space since they could make the length of the image vector unbounded and thus not in the 
space; so we have to restrict the "domain" of the unbounded operator. 
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Even a further departure is often needed: when we deal with an operator with a con­
tinuous spectrum it is useful to introduce ideal vectorslD541 with distribution-valued scalar 
products. 

In the cases where the vector space is realized by functions of a certain class it may be 
possible to consider analytic continuation of such function spaces with an associated bilinear 
fonn but with two analytic vector spaces being defined: the basic vector space and the space 
of linear functionals on this space. Of course, this generalization could have been considered 
without analytic continuation. If the base space topology becomes stronger the dual space 
topology becomes weaker and vice versa. In a Hilbert space the two topologies are the same 
(completeness of all Cauchy sequences!) with a reflexive antilinear transformation connecting 
the base space (ket) vectors and the dual space (bra) vectors. ID541 In the context of density 
operators this has been emphasized by Segal ISe471. In the context of vectors in a Hilbert 
space this formalism due to Gelfand [Ge671 and amplified by Bohm [&861 is called the 
Rigged Hilbert space. While such a generalization is by choice for Hilbert spaces, both in 
the Segal context and in the course of analytic continuation the dichotomy between the base 
space and the dual enters automatically. 

Dirac introduced the notion of analytic continuation of vector spaces in the context of 
the "extensor" representations of the Lorentz group in the forties, which was followed up by 
Kuriyan, Mukunda and Sudarshan [KMS681 to obtain the master analytic representations of 
nonoompact groups. Nakanishi [Na58j had employed the notion of an analytically continued 
set of "wave functions" in the context of a treatment of unstable particles in quantum 
mechanics. The first systematic generalization of the quantum vector space by analytic 
continuation was formulated by Sudarshan, Chiu and Gorini [SCG78j. Rigorous treatment 
of the problem with careful attention to functional analytic details have since been given 
[PGS801· 

The problem of decaying particles, scattering resonances and generic metastable states in 
quantum physics oontinues to be of current interest. The long time behavior departing from 
exponential decay exhibited by Khalfin IKh581, the short time Zeno behavior IKh68, MS771 
and the detailed transition behavior of quantum metastable excitations constitute a complex 
of rich phenomenology [CSM771. It has been further enriched by the multitude of features 
in the neutral Kaon decay and that of other such particles ICS901 and in the cascade decay 
phenomena. Recently Yamabruchi [Ya881 has raised important questions about the behavior 
of decay amplitudes and the possibility that short- and long- lived Koons are orthogonal 
whether CP is oonserved or not. From a somewhat different point of view Tasaki, Petrosky 
and Prigogine [TPpglj have considered this question with special attention to the breaking 
of time symmetry in decay. 

Apart from these questions there has been some lack of precision about analytic contin­
uation, and about scattering amplitude singularities: not enough attention has been paid to 
redundant zeros and discrete states buried in the continuum. 

Complex variables, analytic functions, and topology are only ai{ls to the mathematical 
discussion of physical phenomena; and an essential part of the task is the proper identi­
fication and proper interpretation of the mathematical results. Not all quantum theories 
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involving analytic continuations are alike nor are their scope the same. We have found sev­
eral treatments that are lacking in one aspect or the other. For example many authors act 
as if poles in the analytic continuation are the only relevant singularities [B089]. We show, 
on the contrary, that the treatment of scattering amplitudes involving unstable particles 
requires complex branch points. We have therefore made a specific attempt to spell out in 
some detail the theory that we introduce. The use of solvable models enables us to illustrate 
many relevant features of the theory. 

The most important point that we emphasize is that only suitable dense sets in the 
analytically continued spaces have corresponding dense set of states in the space with which 
we start the analytic continuation. Individual states in one space mayor may not have 
analytical partners in the generalized spaces. The analytic continuation is therefore basis 
dependent and not every vector in the continuation may have direct physical interpretation. 
The poles are examples of such objects. 

The outline of our presentation below is as follows. In Sees. 4.2 and 4.3, the generalized 
vector space of quantum states is used to study the correspondence between the physical 
state space 11. and its continuation g. We begin with the observation that the scalar prod­
uct between an arbitrary vector in the dense subset oj analytic vectors in 11. and its dual 
vector has an integral representation. While keeping the scalar product fixed, the analytic 
vectors may be "analytically continued" through the deformation of the integration contour. 
A typical analytically continued integral representation of present interest integrates along 
a deformed contour in the fourth quadrant of the complex energy plane and encircles those 
"exposed" singularities on the second sheet, if any, i.e. those between the real axis and the 
deformed contour. The deJormed contour together with the exposed singularities constitutes 
the genemlized spectrum oj the opemtor in the continued theory. 

In Sees. 4.4 and 4.5, simple two-body models, the Friedrichs-Lee model and the Yam­
aguchi model in the lowest sector are studied with special attention to the unfolding of the 
generalized spectmm. Here the "exposed" singularties, if present at all, are simple poles. 
We defer more complex situations involving multi-resonance levels and arbitrary number of 
two body decay channels to Chapter 5 and a case with 3-body decay channels to Chapter 6. 

In Sec 4.6, we observe that the predictions based on 11. and that based on 9 are expected 
to be the same. Since a pure exponential time dependence is not possible for states in 11., this 
then should not be possible for states in g. On the other hand, the Breit-Wigner resonance 
does correspond to a pure exponential decay and it realizes the semi-group of time evolution. 
However, in such a case one needs to give up the positivity of energy and define states with 
all possible values of energy from -00 to +00. 

In Sec 4.7, we recall the two possible disparities between poles in the S-matrix and the 
discrete states in the Hamiltonian. In particular, there can be a pole in the S-matrix without 
the corresponding state in the complete states of the Hamiltonian. Conversely there may 
be a discrete state of the Hamiltonian, which does not have the corresponding pole in the 
S-matrix. We show that these disparities continue to be admissible in the generalized vector 
space. In Sec 4.8 we consider the analytic continuation of the probability function and the 
operation of time reversal invariance. 
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Our concluding remarks are given in Sec. 4.9. Two distinct views on what constitutes an 
unstable particle are contrasted. One view is to identify an unstable particle as a physical 
state of the system which ceases to exist as a discrete eigenstate of the total Hamiltonian. 
The survival amplitUde of the unstable particle cannot be ever strictly exponential in time. 
There is no autonomy in its time development. It ages. So the unstable particle does not 
furnish a representation of the time translation group. The other view is to identify the 
unstable particle as a discrete state in the generalized space g. It has a pure exponential 
time dependence. The time evolutions form a semi-group. While the latter appears to be 
elegant, it is deduced at the expense of giving up the very starting premise of the lower 
bounded ness of the energy spectrum. 

4.2 Vector spaces and their analytic continuation 

4.2.1 Vector spaces 11 and 11' in conventional formalism 

Consider an infinite dimensional vector space 11. over the field of complex numbers (054] with 
vectors ..p, if;, . ... Then, if a, b are complex numbers a..p +lxP is also a vectorj and so are finite 
linear combinations. If {Ie(r) } is a countable basis then any vector ..p can be approximated 

to any desired limit by linear combinations of the form Ea~)le(r) = l..pn) where the sequence 
{I..pn}} converges to..p. A linear operator is a linear map from vectors in 11. to vectors in 
11.. The linear functional mapping each vector in 11. to a complex number constitute the 
dual vector space 11.' to 11.. A basis {J(a)} in the dual vector space 11.' may be obtained by 
considering the linear functional 

J(a)
le(r) '-+ orll and the correspondence: le(r) +-+ (4.1) 

Thus we can put the basis vectors into one-to-one correspondence; but the correspondence 
is antilinear: 

ale(r)} +ble(II)} +-+ a*u(r)1 +b*u(a)l. (4.2) 

The linear functional can be thought of as the scalar product of vectors in H, 11.' bilinear in 
them: 

¢ L(..p, ¢) E (..plif;) ; ..pf11.', if;f11. j (4.3) 

or as a sesquilinear form in 11. by making use of the antilinear correspondence (4.2) between 
bra and ket vectors. 

Given the basis vectors and the notion of scalar products we can introduce the complete­
ness identity. If we have a bra (..pI and a ket Iif;), we can define a linear operator by the 
vector valued linear functional: 

Ix} -+ (..pIx) Iif;} , (4.4) 

and identify it with the linear operator 

A Iif;}(..pl. (4.5) 
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In particular we can introduce the linear operator 

E le(r»(e(r)1 , 

which acting on any vector 14» reproduces itself: 

f: le(r»(e(r}I4» = E le(r»(e(r)la.le(·» 
r=l r,1 

= E a.6r .le(r» = 14» . 
r,1 

Hence it is the unit operator: 
00E le(r)}{e(r)1 = I. (4.6) 
r=l 

This is the completeness identity and provides a resolution 0/ the identity. A linear operator 
V is isometric [RiSS] if for every vector 4>, 

(V4>IV4» = (4)14>). (4.7) 

Given an operator A its adjoint operator At is defined by 

(4)/AtfJ) = (At4>ltfJ). (4.8) 

An isometric operator V satisfies the relation 

vtv = I. (4.9) 

The adjoint is an antilinea.r operator valued function of operators. An operator whose adjoint 
coincides with itself is called seUadjoint. 

At = A. (4.10) 

An isometric operator is unitary if in addition to (4.9) it satisfies 

vvt I. (4.11) 

If a linear operator C has the fonn 

C = E c",le(n»(e(n)1 (4.12) 

for some convergent sequence {c",} and some basis {leCn» } is said to be completely continuous. 
A completely continuous operator is the discrete (possibly infinite) sum of projections: 

C = E c",nn n.. le(n)}(e(n)I , (4.13) 
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with 
nnnm =nn6nm En.. = I. (4.14) 

n 

The expressions (4.12), (4.13) also give the spectral decomposition of a completely continuous 
operator [ruSS): 

C leCn» c", le(n» . (4.15) 

For any operator A we can consider the resolvent as the analytic operator.valued function 

R(Zj A) = (A ZI)-l. (4.16) 

R(z) is regular acting on 11. everywhere except for the values 

Z =c", 

which constitute the spectrum of A. More generally for any operator A, the set of points 
(discrete or continuous, finite or infinite) where the resolvent operator fails to be regular 
in 11. (i.e., the action of R(z) considered as an analytic function of z is not regular for any 
vector in 11.) is called the spectrum of A. 

For a selfadjoint operator with a continuous spectrum there may be no nonnalizable 
eigenvectors in 11.. In all the explicit examples we have considered the continuous spectrum 
has no normalizable eigenvectors. One can either introduce ideal eigenvectors (of infinite 
length!) following Dirac, or consider a continuous family of spectral projections n(~) for 
eigenvalues "less than" ~ by introducing a notion of ordering in the continuous spectrum 
(when it is possible!) and writing a Steiltjes operator valued integral generalizing the spectral 
decomposition and completeness identity (4.12), (4.13), (4.14): 

A ! ~dn(~). (4.17) 

! dn(~) I i n(~)n(ll) = n(~), Il ~ ~ . (4.18) 

So far we have considered the generic form A, the Hilbert space 11. and the vectors in 11.. In 
the study of quantum systems the space 11. is realized in terms of the states of the system 
and the generic form of the state vectors is in tenns of square integrable functions of one or 
more real variables. A dense subset of such £2 functions is the class of analytic functions 
(restricted to real values of the arguments). 

4.2.2 Analytic continuation of vector spaces 

This dense subset of 11. there can be analytically continued. But there are many choices of 
analytic £2 functions with varying domains of analyticity and correspondingly many choices 
of g and Q. The dense sets of analytic functions form a partially ordered set; and contin­
uations using functions analytic in a domain which coincide with the analytic continuation 
using functions analytic in another domain, and will coincide within their common domain 

http:le(r�(e(r)la.le
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of convergence. Linear relationships are preserved; and we can define analytic linear oper­
ators to be those which acting on an analytic function produces another analytic function. 
Needless to say the notion of analytic continuation is in terms of the specific L2 function 
realization of the space 'H and the domain in which (I is defined depends on the dense subset 
chosen. Since the correspondence between vectors in 'H and 'H' is antilinear we must ana­
lpically continue these spaces separately to produce a family of generalized spaces (I and 
g. 

The notion of resolvent and spectrum applies to the generalized family of spaces g, g. 
The eigenvectors are now right eigenvectors in (I and left eigenvectors in g. For every vector 
in 'H we have its dual vector in 'H'. The product of the analytic continuations of a dense set 
of vectors in 'H (and hence 'H') are in (I, g and it may be called the norm of the vector in 
(I. With respect to this norm we can define Cauchy sequences. 

Since the analytic continuation is for both 'H and 'H' to (I and 9 scalar products and 
matrix elements of analytic linear operators are preserved. To this extent, the analytic 
vectors and operators can be thought of as having different representations in the family of 
spaces g, g and these could be put in correspondence with the analytic vectors and linear 
operators in 'H. However, the analytic continuation is not of the entire space 1t into the 
completion of g with the norm as defined as the product of vector in g, gassociated with the 
vectors in 'H, 'H'. In particular there are vectors in (I which may not have a counterpart in 
'H and vice versa. We shall find that there are discrete states in (I which have no counterpart 
in 'H. 

Finally, since the analytic continuation depends on the functional form for the state 
vectors as a function of its arguments, there is a choice to be made of the relevant dynamical 
labels. In the study of Hamiltonian systems we often have a "total enermj' label as well as 
the values of a comparison Hamiltonian energy. On writing the ideal eigenstates of the total 
Hamiltonian as a function of the comparison Hamiltonian energy we look for analytic vectors; 
this can be done if the total Hamiltonian represented in terms of the functions of comparison 
Hamiltonian energies is analytic. The existence of the comparison (Ufree") Hamiltonian and 
its essential role in scattering theory where the "in" and "out" states are defined has been 
known for some time. [Su62] Formal theory of scattering does make use of this representation 
to go "slightly off" the real axis as far as the scattering amplitude is concerned. The analytic 
continuation of scattering amplitude was extended to its various sheets by many authors. 
[Ka38. Hu48, SaS5] However except for the work of Nakanishi IN58) and of Sudarshan, Chiu 
and Gorini [SCG78] (see also Bohm IB8O)) there was no intention to consider the analytic 
continuation of suitable dense· sets in the state space 'H to the family (I. 

4.3 Complete set of states in continued spaces 

10

If {IA)} is the set of ideal eigenvectors for a self adjoint nonnegative (total Hamiltonian) 
operator so that 

00 1000 

n(A)dA IA}{AldA = 1; (Alp) 6(A - p). (4.19) 
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The vector 
10

00 

I</» </>{A) 1A)dA (4.20) 

is a vector in 1t if 
10

00 

1</>{A)12dA < 00. (4.21) 

Provided </>(A) is analytic in A in a suitable domain in the complex plane we could deform 
the contour to write the vector as a vector in (I: (see Fig. 4.1) 

I</» fc </>{z)lz)dz . (4.22) 

10
The analytic continuation includes a simultaneous continuation of the bra vectors 

00 

(¢I ¢(AHAI dA (4.23) 

into a vector in g: 
(¢I = fc ¢(zHzl dz . ( 4.24) 

The additional closed contours C) and C2 encountered in the continuation (see Fig. 4.2) 
are typical of poles and branch cuts. For resonance in scattering we expect to find complex 
poles but for multiparticle states involving unstable particles we expect to have complex 
branch cuts. While Fig. 4.2 shows only one pole and one pair of branch points in the finite 
complex plane we may have more than one; and branch points may move to infinity. The 
completeness identity (4.6) gets modified to 

• f dz Iz)(;1 + L Iz,.)(z,.1 + f de,,)"'!. (4.25)
10 poles 102 

FUrther, the scalar product remains unchanged in value: 

(¢I</» 1iiJ(z)</>(z) dz + L ¢(Zr)</>(z,.) +1 iiJ«()</>«()d(. (4.26) 
o poles 0, 

Here and in (4.24), iiJ(z) is the analytic continuation of the function ¢·(ze): 

iiJ(z) = ¢·(z·); (4.27) 

and the norm of I¢) is given by (¢I¢). If we have a definite state ¢(A) (which may be 
thought of as the created unstable particle state) then the survival amplitude for the state 
is given by [MS77, CSM77) 

A(t) = (¢I e-iH'I¢) = tr (I¢){¢I e-iH
') (4.28) 

where H is the (total) Hamiltonian and can be expressed in the form of a Fourier integral: 

10
00 


A(t) 1¢(AWe-·"'dA. (4.29) 
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There can be at most one zero. No such discrete state exists if 

a(O) = -rna + / g*(w')g(w')dw' < O. (4.35) 

On the other hand if for some value..\ M > 0, we have the twin conditions 

geM) = 0 j a(M) = o. (4.36) 

Then we can have a discrete state overlapped by the continuum. 
There is a continuous spectrum 0 < ..\ < 00 and a corresponding continuum of scattering 

states which are ideal states with continuum normalization: [Su62, He57J 

I~'\) ('7,\, 4>,\(W»T == 1..\) 
g*(..\) g*(..\)g(w)

'7,\ = -(\.); 4>'\(w) 6(..\ w) + (\ .) (\ .) . (4.37)aA+U A-w+uaA+U 

These states satisfy the orthonormality and completeness relations 

(mlm) 1, (ml..\) = 0, 

(..\I..\') 6(..\ "\'); (4.38) 

and 
1m) (ml + / d..\I..\) (..\1 I. (4.39) 

Here 
1m) = (1)),4>o(..\))T . (4.40) 

These calculations are already available in the literature and involve straightforward contour 
integration. If there is a discrete state buried in the continuum IWvN29, Si67, Su811, (4.36) 
and (4.37) show that there are two solutions at this value M: a discrete state of the form 
(4.34) with m replaced by M; and an ideal state with..\ = M which is a pure plane wave: 

cia )-i (1 ~)T1M} (4.41)( d..\I,\=M • M -w ' 

1M)' (0. 6(..\ _ M) + non~=lar)T (4.42) 

The state (4.41) would enter the completeness relation (4.39) and the orthonormality rela­
tions (4.38). 

The S-matrix for the ideal scattering stfltes reduces to a phase: 

S(..\) a(..\ il)/a(>. + ill j 0 < ..\ < 00. (4.43) 

If g(w) is analytic in w so is 

yew) = g'(w) =g*(w*). (4.44) 

4.4. FRIEDRIGH~LEE MODEL STATES 

This same survival amplitude can be computed in Q, Q provided I¢) is an analytic vector: 

A(t) = ( dz ij;(z)¢(z) e-izt • (4.30) 
JC+Cl+C2 

If the analytically continued bilinear quantity is explicitly known the pole contributions and 
the branch cut contributions can be calculated. This we shall do when we consider solvable 
models like the Friedrichs-Lee model IFri48 , L54J and the Cascade model !CSB92J. Suffices it 
to say that the survival amplitude can be defined for evolutions both forwards and backwards 
in time; and for all times the absolute value of the amplitude is bounded by unity. 

For the generic case the poles of the S-matrix coincide with the discrete states in the 
generalized completeness identity (4.25). However, the existence of a pole in the S-matrix 
is neither sufficient nor necessaf'JI to have such additional discrete states in Q. This is due 
to possible existence of redundant poles and of discrete states buried in the continuum. We 
shall discuss this further in a later section of this paper. 

4*4 Friedrichs-Lee model states 

A simple solvable model !L54, Fri48, D27) is provided by a system with a discrete state and 
a one-dimensional continuum so that the vectors are of the form 

(11. 4>(w»T =~ (4.31) 

with 
(<1>1<1» = 11·11 + / dw4>t(w)4>(w). (4.32) 

We choose a total Hamiltonian of the form 

H (l1,4>(w»T = ..\(l1.4>(W»T 

..\11 mol1 +10
00 

g*(w')4>(w')dw' 

..\4>{w) w4>(w) +9(W)11. 

Define the function 
1000

a(..\) ..\ - rna - g*~w')g(w') dw' . (4.33) 

If a(..\) has a real zero it is for a negative value m (unless g(w) vanishes some place in 
the interval 0 < w < (0). If there is such a zero there is a discrete eigenvalue m for the 
Hamiltonian H: 

yew) (cIa I )-14>o(w) = --1)) ; 1)) = ­
m-w d..\ '\=m 

H (1)). 4>0(w»T = m(1)),4>o(w))T . (4.34) 
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Then the continuum ideal states IA} can be replaced by complex eigenvalue ideal states 
denoted by the same symbollA} which have branch cuts along a different contour r beginning 
at °and ending at infinity. To see this we consider the space of analytic functions in the 
region IJ. bounded by r and the positive real axis for which the integral 

1£ 4>" (z')4>(z) dz I < 00. (4.45) 

The spaces g, 9 consists of vectors (1'/, 4>(Z»T, (ij,4>(z» with such functions 4>(z). We further 
require that these functions 4>(z) vanish sufficiently fast at infinity so that 

001 14>(w)12 dw = £4>·(z*)4>(z)dz. ( 4.46) 

Note that the scalar product is between a vector in 9 and one in the dual space g. 
Along the contour r we can introduce a delta function 6(A - z) defined by [Na58, SeG78] 

£4>(Z)6(A - z)dz = 4>(A). (4.47) 

With this definition we can reinvestigate the eigenvalue problem 

(4.48) 

with z along the contour r. Eq. (4.48) implies 

H(1'/,4>(z»T = 

(A - 1Jl()1'/ £gO(Zlo)4>(ZI)dzl 

(A - z)4>(z) g(z)1'/. (4.49) 

The continuum ideal vectors have 

1'/>. = g'(A*) 
a(A + if) 

4>>.(z) 6(A - z) + g*(A*)O(Z) (4.50)
(A Z + if)a(A + it:) 

a(z) Z - 1Jl() _ f O*(z'O)g(z')dz'
Jr Z - z, . 

These are orthonormal; the computation follows the usual route. They are, together with 
the possible discrete state 

4 
~ (a'(m)r , 

m 

also complete, provided a(m) = °for some m < 0. 
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In case mo >- 0, there would be no discrete state (7)),4>o(Z))T. But if the contour r 
proceeds sufficiently far in the fourth quadrant there would be a complex zero ZI for a(z) 
and a discrete state with 

(a/(ZI)r;,1'/1 

g(z)1'/1
4>1 (z) (4.51)

ZI-Z 
This state is orthogonal to the continuum states in 9 and enters as a discrete contribution 
to the completeness relation. Since a(z) is real analytic, if the contour r was in the upper 
half plane there would be a zero z: for a(z) and a corresponding state. In both cases, the 
discrete state remains fixed and contributes to the complete set of states or not according to 
whether r crosses zl(or zj). 

The demonstration of the completeness is the resolution of the identity in the form (see 
Fig. 4.3 for the contours defined.) 

1 (Ir dAIA){~+ Im)(ml, m* = m < 0, a(m) = OJ 
(4.52) 

Ir• dA IA)(AI + IZl){ZII. a(zl) = 0. 


In doing the r or I" integrals we have to compute, for example 


J.1.* ( ').1. ( ') d \ 1:.( ') g'(ZO)g(Z')
'1'>." z '1'>' z A U Z Z + (-I .) (' .)

~. - Z - u a Z - 'f 
*( 0) ( ') f gt(At)g(A)dA 

+ +9 Z 9 Z Jr (A _ z - if)(A - Zl + if)a(A + if)a(A if)' 

(4.53) 

The last term can be rewritten as a contour integral encasing the contour r since 

1 
O'(A')O(A) = -2. {a(A) - a'(A')} (4.54)

1H 

so that the last term becomes 

l(z*)o(z) 2~i fr (A - z' +if)(~A_ Z _ it:)a(A) . (4.55) 

The poles at A z' - if, Z + if cancel the third and second terms respectively while the 
remaining contribution would be proportional to the residue at any pole of l/a(A). Note 
that it is the zeros of a(z) that count, not the blow up of g'(z') O(z). 

This conclusion is further demonstrated in the computation of the survival amplitude of 
the "unstable particle" state (1, O)T. Quite generally, 

((1,O),e-iHt(l,O)T) =J1'/~.1'/>. e-i>.tdA (4.56) 

= f -Ut g*(A')O(A) dA = ~ f e-'>"dA (457)
Jr e a'(A')a(A) 21ri Jf a(A) . . 
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Again only the zeros of a(A) contribute, not the singularities of gO(AO)g(A). Any such pole 
of gO(AO)g(A) is counterbalanced by a corresponding pole in aO(AO). 

Here we have acted as if poles are the only singularities encountered in the analytic 
continuation. But in many contexts there could be branch cuts. We shall discuss such a 
situation for the Cascade model. 

4.5 	 Yamaguchi potential model states 

A model related closely to the Friedrichs-Lee model is the separable potential model 
!Ya54] which in its lowest relevant sector has a one-dimensional continuum. The states in 1{ 

are, then, L2(0,00) functions. 

{4> : l>O </J°(w)</J(w)dw < oo} . 
We choose a total Hamiltonian of the form 

(H</J)(w) = + f hO(w')</J(w')dw' (4.58) 

where 112 1. Define the function 

P(z) = 1 - 11 roo hO(w')h(w')dw' (4.59)Jo 	 z - w' . 

If P(z) has a real zero, it will arise for 11 < 0, at z Zo < O. In that case there is a discrete 
solution 

</Jo(w) = 11h(w) !p'(Zo)]-i i 11 -1; Zo < O. (4.60)
Zo-w 

There is a continuum of scattering states 

11h°P..)h(w)
4>,\ : </J,\(w) = 6(A - w) + 1\ W + id8lA + if' . (4.61) 

These ideal states satisfy orthonormality 

(010) 1, (AIO) = 0, 
{AI).'} 6(A A')j 

and completeness 

+ =1. 	 (4.62) 

Of course if /3(z) has no zero, the discrete state 10} would be missing from this equation. 
The S-matrix for the ideal scattering states reduces to a phase 

SeA) = peA - if)//3(A + if) , 0 < A< 00. (4.63) 
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If hew) is analytic in w so is hO(wO). Then we can continue the vector space 1{ into g 
and get a spectrum along another contour r starting from the origin and going to infinity. 

The dimensionless scattering amplitude (in 1{) is given by 

T(w) 	 lI'~~w)ho.(~) exp(i9(w» sin (J(w) . (4.64) 
w +n: 

where (J(w) = arg pew - if) is the phase shift. If we choose nonrelativistic kinematics so that 

w k2 /2p, (4.65) 

the more conventional scattering amplitude (with the dimension of a length) is given by 

T(k) 
1I'Ih(w)Pl 

kP(w + if) 

ei8("') sin (J(w) 
k 

(k cot (J(w) - ik)-I (4.66) 

which manifestly satisfies unitarity. The total (s-wave!) cross section is given by 

q(w) 411' sin2 (J(w). (4.67) 

When analytic continuations are carried out the scattering amplitude T(w) is continued 
to yield 

lI'h(z)hO(zO)
T(z) 	 P( .)' z on r . (4.68)z + If 

T(z) so defined may have poles due to complex zeros of P(z) or due to poles in h(z)hO(zO). 
The latter do not correspond to extra physical states: they are "redundant poles" (see below 
in SecA.7). If there are no complex zeros of P(z) the completeness relation in the analytically 
continued space g is 

1r dzlz) (;1 = 1. 	 ( 4.69) 

The explicit expression for the ideal states Iz} and the proof of the completeness and orthog­
onality are straight forward. In many contexts there could be branch cuts. We shall discuss 
such a situation for the cascade model in Chapter 6. 

4.6 	 Extended spaces and semigroup of the time evo­
lution 

We have so far formulated the passage from 1{ to g as a correspondence between dense sets 
in 1i and in g. With this understanding the basis in g is "the same" as in 1{. Therefore 
when we know that a pure exponential decay time dependence is not possible for states in 
1i (with a nonnegative spectrum for the total Hamiltonian) the same should also obtain 
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for corresponding states in g. Furthermore since the time evolution (and regression) are 
implemented by unitary family of linear operators realizing the time translation group, the 
same would also be true of the states in g. A pure exponential decay or a Steiltjes inte­
gral over damped exponentials would then not be possible with states obtained by analytic 
continuation of physical states. 

One can, however ask what property has to be relaxed to realize an extended space 1i 
and its corresponding continuation 9so that a semi group of time evolutions can be realized. 
These semi groups would, generally, be realized by an isometry which is not, however, unitary. 
After all, an unrestricted Breit-Wigner resonance [B36J with its Lorentz line shape does 
correspond to pure exponential decay (for positive time). We need to relax the positivity 
of energy and define states with all possible values of energy. In this case we can realize 
semigroups of time evolution ISu91J. 

Let .,p(>,) be a vector in a Hilbert space 'H, 

1000 

l.,p(>.)12 d>' 1; 0, >. < O. (4.70) 

We enlarge it into 1I:f:' where \fI(>.) is defined for negative values of >. also, in such a fashion 
that it is analytic in a half plane: 

00 

\fI:f:(Z) 	 -2'T 1 d>' 1/1(>'). (4.71) 
11'1 0 

These functions are analytic in the two halfplanes and their sum is equal to .,p(>.). 

.,p(>.) = \fI+(>.) +w_(>.). 	 (4.72) 

On \fI+(>.) the time evolution for positive times is realized by a contractive semigroup: 

1 
00 

-iAt 1\fI+(Zi t) = T+(t}\fI+(z) --2' 1 d>.e >. . .,p(>.) (4.73) 
11'1 0 - Z+u 

T+(tl)T+(t2} T+(tJ +t2} , t., t2 > 0 
T+(t} = 0, t < 0 j T+(O+} 1 . (4.74) 

By the converse of a theorem of Ti tchmarsh (Ti37J 

~:f:(1") == L \fI:f:(>')e-uTd>. 0, ±1" < O. (4.75) 

Then 

T+(t)q;+(1") q;+(1" +t) • t> -Tj (4.76) 

T+(t)q;+(1") 0, t < -1". 	 (4.77) 
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Thus a semigroup evolution obtains on the half-plane analytic function \fI+(>.). A similar 
conclusion obtains for the backward tracing of \fI_(>.). 

Given \fI +(>.) we can continue it to a vector \fI +(z) in j and the semigroup acts in j in 
the same fashion. 

The functions \fI+(z} is analytic in the half-plane by construction. They constitute the 
Hardy class of functions 1R85J which are square-integrable along Re z for any negative 
imaginary part. None of this class is a physical state (expressible as linear combinations 
of states of nonnegative total energy). But many familiar unphysical states like the Breit­
Wigner function 

r 
\fI+(>.) 	 -Ii (4.78) 

are included in this Hardy class. In addition to such a single pole we could also have multiple 
poles and/or branch points. To obtain them we can use a perfectly physical state obtained 
as a linear combination of states like (4.37), (for 3-body case see e.g. states like (6.13) and 
(6.14) in Chapter 6) and carry out the linear maps (4.72) into the two Hardy class functions. 

4.7 	 Redundant states and discrete states in the con­
tinuum 

For the model discussed in the previous section, when the contour r passes through 
z = M\ the continuum wave function (4.47) exhibits singularity at z M .. a complex 
eigenvalue. There is, when the contour justifies it, a discrete eigenstate with eigenvalue MI. 
The scattering amplitUdes also have singularities (poles) at the same point. People often take 
the poles of the scattering amplitude to correspond to unstable particles. It has, however, 
been known {Ma47, BPS72J that poles appear in the S-matrix (or the scattering amplitude) 
which do not correspond to discrete eigenstates of the Hamiltonian in 'H. This is true of the 
(repulsive) exponential potential; and a number of phase-eqUivalent potentials IBa49,Ne60J 
have been known for which some of the S-matrix poles are bound (discrete) states while for 
others are not. In the context of the Lee model and other such models, one could choose 
the poles to be redundant or genuine without changing the S-matrix. In the Lee model this 
corresponds to the distinction between the zeros of the denominator function a(z) and the 
poles of the form factor /"(z*)J(z). Nor are these redundant singularities restricted to being 
isolated poles; for example the S-wave Yukawa potentials give a branch cut, IW062) but 
with no continuum of (ideal) states entering the description. In all such cases the redundant 
singularities of the S-matrix do not correspond to states entering the complete set of states. 

A similar situation obt.ains in the case of analytic continuation of the vector space 'H 
to g. Consider the Lee model wave functions (4.50). They would develop singularities 
not connected with the spectrum of the Hamiltonian in 9 if the form factor g(z) develop 
singularities. But these singularities do not give any contributions to the completeness 
identity since in these calculations we obtain the contour integrals involving ahJ. The poles 
in g*(Z*)9(Z) are matched by corresponding terms in a(z) and they disappear from the 
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contour integral. As the contour r smoothly deforms itself, it is not snagged by singularities 
of gO(ZO)g(z). The same situation obtains for the Cascade model; only the zeros of a(z) 
contribute to discrete state and only the branch cuts in 'Y«() contribute to the scattering 
states involving an unstable particle. 

A related phenomenon is that of states which contribute to the complete set of states 
which are located in the continuum but which do not contribute any singularity for the S­
matrix. (Su81] This occurs when a zero of a(z) coincides with a zero of the form factor g(z) as 
far as the Lee model is concerned. The spectrum is degenerate at this point M, a(M) = ° 
with a discrete state in 'H. and an ideal state belonging to the continuum. In analytic 
continuation we can have complex zeros of a(z) where the scattering amplitude vanishes; 
nevertheless the complete set of states include these states. They also enter the computation 
of survival amplitudes (4.57). 

For the Lee model we choose a form factor gO(ZO)g(z) and an a(z) such that 

a(Mt} = ° ; gO(ZO)g(z),.,. (z MI)2G(Z) (4.79) 

for some complex MI' Then the scattering amplitude vanishes at this point 

T(z) ,.,. (z MI}t(z). 	 (4.80) 

The (ideal) state at this point is a "plane wave" 

iiI ° ; 4>1(Z) 6(z - MI ) +nonsingular terms, (4.81) 

(with no asymptotic diverging wave) which is degenerate in energy with the proper state in 
9 with 

g(z)'11
'II = (a'(M1»-!; 	 (4.82)

MI z· 

In a similar manner for the Cascade model, if the form factors have zeros along the cut 
beginning at the branch point 1'1 then the scattering amplitude vanishes at these points on 
the branch cut, but the (ideal) states Iz) in (6.14) beginning at It I exist and contribute to 
the completeness (and to the survival amplitude for the unstable A particle). 

Thus the S-matrix singularities and the spectrum of states are not necessarily in corre­
spondence. 

Along with redundant poles we could also have redundant branch cuts from the "geometry 
of the potential". There will be no contribution from these to the completeness identity. Such 
branch cuts are familiar as the left hand (and the short- and circIe-) cuts in partial wave 
dispersion relations. 
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4.8 	 Analytic continuation of survival probability and 
time reversal invariance 

4.8.1 Analytic continuation of survival probability 

The probability is the absolute value squared of the amplitude, which now involves the 
multiplication of two factors. One is (-$14», the inner product between the state in 9 and 
its dual in g. Both are defined along r. And the other factor corresponds to complex 
conjugations, which is the inner product of the corresponding state in g. and the dual state 
in go defined along ro. For the analytic continuation of a probability function, there are two 
distinct pairs of vector spaces: 

g, g, 	 and go, go. 
For a discrete state 1M) where M m - if, its time dependence is characterized by 

t) e-IHt IM,O} = e-iMt IM,O). 	 (4.83) 

For the corresponding dual state in g, 
(M,tl = (1M· eiMt(M,ol· 	 (4.84) 

Their inner product 
(M,tIMt) Ci(M-M}t(M,OIM,O} 1. (4.85) 

Consider the corresponding complex conjugate space. For the discrete state in go, 

IMOt) e-iMOtlMo (4.86) 

and the g. space, 
(Mo,tl == (M,tl = eiMOt(M,OI eiMOt(M-:;OI, (4.87) 

with the inner product 
(Mo,tIMO,t) = (M,tIMO,t) 1. (4.88) 

4.8.2 Time reversal invariance 

Decay signifies irreversibility, but it is still relevant to investigate questions of time reversal 
invariance. We recall some conventional wisdom's on time reversal. It is a "kinematic" 
transformation, which is independent of the Hamiltonian or any other time evolution. Time 
reversal requires an antilinear correspondence in the primary space state vectors. Under 
time reversal 

t/J(z, t)-SUTt/J°(ZO, -t) 	 (4.89) 

where UT is some suitable lmitary operator. When we have "in" and "out" states which 
are labeled by free particle momenta and helicities, under time reversal the states become 
respectively the "out" and "in" st.'l.tes, the momenta get reversed and the heJicities are 
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unchanged. Although we will not make use of it in our following discussion we also mention 
that for spinning objects UT is a rotation about the 2-axis by 11". 

UT exp(i1l"J2). (4.90) 

For internal symmetries like SU(3) where 3 and ~ are distinct, the time reversal can be 
invoked only on the density operators 't/J't/Jt rather than on the field operator 't/J alone. The 
probabilities are sesquilinear in the amplitude (or absolute value square) and are always 
real. The time reversal invariance predicts the equality between this probabili~and the 
corresponding time reversed quantity. We recall that the survival amplitude is (M,OI M,t). 
Apply the time reversal operation, we have 

iMt(M",OI M, t)-S(M, 01 M*, -t)° = e- iMt (MO, 01 M, 0) e-

e-iMt(M,OI M,t) e-iMt{M,OIM,O)-S (e-iM.(-t»)* (M,OIM*,O) = 

(M,OI M,W = e+iMt (M*,OI M",O) -Se+iM·t. (4.91) 

So the corresponding dependence of the time reversed probability is given by 

rtI(M"OI M,t)12 -S I(M,OI MO, _t)12 = e- . (4.92) 

So that the survival amplitude involves the inner product of the state 1M, t) in Q with its 
dual state {M,OI = (M*, 01 in g, which leads to exponential decay. On the other hand, for 
the complex conjugation of the inner product between Q* and go states, which again leads 
to an exponential decay. 

4.9 Two choices for unstable particle states 

In our study of generalized quantum state spaces we have given exposition to analytic con­
tinuation of state spaces: and correspondence between dense sets of states in 11. and in Q. 
For analytic Hamiltonians the spectrum can be "analytically continued" in Q. The resolution 
of unity embodied in the completeness identity has alternate expressions. Incidentally this 
is an example of reducible representations of the (time) translation group having different 
decompositions in which no component of one decomposition is equivalent to any component 
of the other one. The notions of discrete states, of continuous spectra, of "in" and "out" 
states and exact expressions for the (ideal) states all obtain for these generalized spaces. 

There are two views that one could take about what is an unstable particle. One is 
that it is a physical state of the system which is normalizable and which ceases to exist as 
a discrete eigenstate of the total Hamiltonian. If 1M) denotes this normalized state, the 
survival amplitude is 

A(t) = (Mle-iHtIM) / dAe-iJ.t{MIA)(AIM). (4.93) 

Here A is integrated along the positive real axis. This amplitude cannot be ever strictly 
exponential in t and is bounded in absolute value by unity for aU t, positive or negative. It 
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exhibits a Khalfin regime where it has an inverse power dependence and a Zeno regime where 
the departure of its absolute value from unity is quadratic in t. But for much of the inter· 
mediate region it is approximately exponential in Itl. One of the drawbacks of this picture 
of an unstable particle is that its survival amplitude does not furnish a representation of the 
time translation group or semigroup. The unstable particle so defined is not "autonomous". 
It ages. 

The other picture of the unstable particle is as a discrete state in the generalized space Q 
and as such having a pure exponential dependence. The time evolutions form a semigroup 
(for t > 0) the absolute value steadily decreasing exponentially. Such a state cannot have a 
counterpart physical state in 11.. For negative values of t the state tends to blow up. If we 
start from any state in 11. which can be continued into Q, the result so obtained would never 
be a pure discrete decaying state, but that plus remnants of a continuum. We could extend 
11. to it by relaxing the spectral condition H ~ °and obtain a state in UI:I: as in (4.72)j then 
we could obtain a semigroup evolution law (4.76, 4.77). We have also seen that both the 
time evolution of the decay process and that of the time reversed process exhibit exponential 
decay. While this choice appears to be elegant, it is deduced at the expense of giving up the 
lower boundedness of the energy spectrum. We consider it to be the less desirable choice. 

Finally, we observe that the spaces 11. and Q that we have used are distinct spaces though 
there is one-ta-one correspondence between dense sets of analytic vectors in 11. and Q. This 
correspondence can be implemented by an intertwining operator V : 11. - Q with its inverse 
V-I: Q _ 11. given by the formal Steiltjes integral . 

V(z,X) / dcn/Je.(z) 't/J:(x) , 

V-I(z,x) / dcr 't/J£l(X) 't/J:(ZO) / dcr't/J£l(x)¢£l(Z) . (4.94) 

where {'t/J£l(x)} is an analytic basis in 11. and {'t/J£l(z)} its counterpart in Q. Any analytic 
operator, including the Hamiltonian in 11. has the counterpart in Q defined by 

A-VAV-I. (4.95) 

These operators V, V-I are intertwining between the spaces 11. and Q. 
Two further remarks are in order. First we can choose to concentrate on the eigenvalue 

equation being reduced to an equation for the unstable state alone by using one half of the 
equations to eliminate the daughter product amplitude. For the Fredrichs-Lee model 

(A Mo) 1/0 {XJ J*(w')t](w')dw' 

(A - w)1J(w) f(w)1]o • (4.96) 

For the discrete state the second equation can be used to solve for t](w) in terms of 1/0: 

1J(W) 1~~ 1]0 j A < 0. (4.97) 
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Then 
(A Mo)~ f r(cJ)f(w')dW (4.98)A-w' ~. 

This is a nonstandard eigenvalue equation since the right handside is dependent on the 
eigenvalue. The solution is obtained by seeking the zenos of the function 

a(z) z - mo - loco r(1~(~)dW . (4.99) 

Note that the normalization of the state includes the continuum states also so that instead 
of I~I 1 we must choose 

I~I (a/(M»-i. (4.100) 

If the subspace for which the solution is attempted is not one-dimensional we would have a 
nonstandard matrix eigenvalue problem 

A¢ A¢ = F(A)¢. (4.101) 

Such a situation obtains for the Kaon decay complex. The generic theory of such reduced 
non-standard eigenvalue problem is due to Livsic !Li57, H0751. 

The second remark contains improper models we have seen that the survival amplitude 

A(t) = {¢I eml (4.102) 

can be expressed as a spectral integral 

loCO 1¢(A)/2e-i.\tdA (4.103) 

with an absolute value no greater than unity. It is tempting to introduce an effective non­
self-adjoint Hamiltonian K with the property 

e-iK11¢} = A(t) I¢} . (4.104) 

Since for a large class of dynamical models there is an extended region for which A(t) is well 
approximated by a complex exponential 

A(t) "'" e-iEoI-irl (4.105) 

one could consider 
i 

K Eo 2f (4.106) 

as the effective Hamiltonian. This would be very similar to the Livsic operator F(A) that we 
mentioned above. But if K is really thought of as describing the decaying system then we get 
into inconsistencies: to begin with we get complex eigenvalues be/ore analytic continuations. 
Such complex poles ("in the physical sheet") violate general principles like causality. As 
pointed out by Peierls, the complex poles must be obtained only by analytic continuation. 
We see this in the Livsic decomposition, the function a(z) with a cut along the real axis has 
no complex pole, only its continuation has a pole. Lack oC care in discussing this question 
leads to misleading statements even in current literature. 
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So for complex value of M, the product 

(KsIKL) (5.4) 

is an ill-defined product. This is not an inner product! This difficulty was recognized soon 
after the proposal of the LOY model. The resolution was found through working with the 
left-eigenstates, or the dual states. We denote the dual states by (1<sl and {KLI. Here the 
orthogonality relations should hold, 

(KsIKL) 0, {KLIKs} = 0 

and we may choose 

(KsIKs) (KLIKL) = I. (5.5) 

The notion of left-eigenstates is well known. In the context of the neutral Knon system, 
it was explained in detail by Sachs ISa631 over three decades ago. In his paper, Sachs worked 
in the same approximation as in the LOY model, where the KL and Ks states are assumed 
to be the superposition of KO and 1(0. The continuum component of the wave functions 
is being neglected. In the theory which we presented in Chapter 3, the continuum channel 
contribution is included explicitly. As we shall see it is with the inclusion of this piece which 
leads to the exact orthogonality relation. 

Our discussions in the remainder of this Chapter are divided into four parts. In the first 
part, we recall the conventional solution of the theory as presented in Chapter 3. In the sec­
ond part, we demonstrate how the exact orthogonality relation alluded to above is obtained 
and demonstrate that when the continuum contribution is suppressed it gives an approxi­
mate orthogonality relation. In the third part we present the completeness and orthogonality 
properties of the analytically continued wave functions, which display the generalized spec­
trum of discrete states with complex eigenvalues together with the continuum states defined 
along a complex contour. In the last part based on the present analytically continued theory, 
we present a derivation of the refined version of the Bell-Steinberger relation. 

5.1 Solution of present multilevel model 

In Chapter 3, we saw that the continuum eigenfunctions take the form 

¢, C~:») 
where 

b,\(w) 6(-\ w)I + gt(w)a,\ (5.7)
-\ w+ it:' 

and 
K a,\ = g, with J( M - m - G(-\) , (5.8) 

Chapter 5 

Generalized multi-level quantum 
system 

In Chapter 4 we discussed the analytic continuation in the context of one level quantum 
system. In the present Chapter we apply the same approach to the multi-level and multi­
channel quantum system. Since in particle physics the neutral Knon is the most familiar and 
a simple example of such a system, similar to the approach in Chapter 3, in this Chapter we 
will also devote most of our attention to the neutral I{non system. The wave functions we 
will be looking at, as in Chapter 3, take on the general form labeled by running indices, so 
that it can be readily adapted to the multi-level, multi-channel situation. 

We have seen in Chapter 3 the Lee-Oehme-Yang (LOY) model makes use of the Breit­
Wigner approximation as applied to the neutral Knon system. From Chapter 3, we saw that 
within the LOY model, the KL and Ks wave functions are superpositions of ~ and 1(0, 
with 

(5.1)~L N ( : ) , ~s N ( !q ) 
Should one define the corresponding bra states to be the hermitian conjugate of the ket 

state, i.e. (Kol = IKo)t, one would arrive at 

N 2(KsIKs) (KLlI(L) + (5.2) 

and 
N 2(KsIKL) (5.3) 

One might query that if Ks and KL are distinct eigenstates of the Hamiltonian, why are the 
two states not "orthogonal", i.e. (KsIKL) O? 

The answer is that the wave functions here are eigenfunctions of an effective Hamiltonian, 
namely the operator "K" defined in (3.48). While the total hamiltonian of (3.19) is hermitean 
the operator K is not. K is a 2 by 2 non-hermitean matrix. SO.,pL and .,ps given above are 
eigenfunctions with complex eigenvalues. The operation of complex conjugation takes the 
state with eigenvalue M into another state with the complex conjugated eignenvalue M*, 
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where 

G(A + if) ( 
g(w)gt(w.) ) 
A ­ W + 110 

roo dw g(w)gt(w,> . 
10 A ­ W + 110 

(5.9) 

If the discrete solution occurs at A = M, then 

gt(w) aM 
bM 	 (5.10)= M -W+if 

where aM satisfies the equation at A M 

K a>. 0, or 1m +G(A)! a>. Aa>. 
KaM K(M)aM = (m +G(M»aM MaM. (5.11) 

If we identify KL and Ks to be the second sheet poles one may define the unitarity cut 
in such a manner as to expose these poles (see Fig. 5.1). The corresponding analytically 
continued wave function is given by 

Cko )
7]0 =No (5.12) 

'1/10 = (rp) ( !!Pt("')Ci~
po M .. - ...+u 

where +ie serves as a reminder that the second sheet is now partially exposed and Mo is 
above the r-cut. The corresponding dual wave-function of the discrete state at A= MfJ. as 
given by 

dfJk9kp
rp13 = XfJ,'fJ) = N13 dfJk' M .' (5.13){ ( ,,-w +110 

) 

Here again MfJ is above the r-cut. 

5.2 	 The inner product (MpIMa) 

We denote the discrete eigenstate by KL and Ks. Similar to the approach of Sec 3.1, we 
have 

CL = N L ( PL) and Cs = N s ( Ps ), (5.14)
qL -qs 

except that p.a.nd q now depend on A, which are evaluated at A= ML and Ms. The N's are 
the normalization factors yet to be determined. 

For the dual wave function, we proceed to solve for dfJ (r,s) based on 

A>. B>')=A(r,S). 	 (5.15)(r,s) ( C>. A>. 
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Taking the transpose we have 

(;: ~:) ( : ) = A ( : ) . (5.16) 

Comparison with (3.48) reveals that analogous to (3.50), it can then be shown that 

(~)2 = 	C>., ~ ± rc;.. (5.17) 
8 B>. VB;.8 

In other words, for the K L and Ks dual states, 

dL = NL(qL,pt}, ds Ns{-qs,ps). (5.18) 

5.2.1 	 Orthonormality relations 

The inner product of a discrete state labeled by a with another dual discrete state (.BID == 
(,8.\, is given by 

N N (d dfJj9jp(W») ( Cko )(,8·10) 
o 	 fJ 13k, MfJ - W+ if If!~2;;f 

t.: ( d gkp(W)gpj(W)]N N d 	 (5.19)o fJ 13k [Uk; + lr w (MfJ _ w)(Mo _ w) Cjo 

The discontinuity of K across the r-cut can be read off from (5.11), and is found to be 

K(A + if) - K(A - if) 27rig(A)g(A) (5.20) 

Thus the integral in (5.19) can be deformed in the following manner: (see Fig. 5.2) 

k dw gkp(w)gpj(W)'" 2~k kdwIKkj(W+if) Kkj(w if))'" 

-1 (
27rk lc dw Kkj(w) ... (5.21) 

where as indicated in Fig. 5.2 the contour C wraps around the r -cut in a counter clockwise 
manner. The equations for the discrete solutions are 

at A= Mo, Kkj(Mo)cjo = 0, and 
(5.22) 

at A= MfJ, dfJkKkj(MfJ) = o. 
Inspection of the contours in Fig. 5.2 reveals 

Coo Co + CfJ +C. (5.23) 
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For a 	 KL and fl Ks , using (5.18) the right hand side of (5.32) becomes 

(S·IL)v NsNd-qs Ps) ( :: ) 

NsNL (PSqL - qspL) , 	 (5.33) 

Strictly speaking since (PL,qL) and (pS,qs) are evaluated at ML and Ms, RHS -I O. How­
ever, to the extent that the energy dependence of the coupling function g(w) in the analyti­
cally continued Hamiltonian can be neglected, PL ~ Ps, qL ~ qs, or RBS ~ O. 

This approximate result was discussed for instance in the work of Sachs [Sa63). Our 
contribution in this section is the demonstration of the exact orthogonality relation between 
the state a and its dual state fl. More specifically, when the form factor effect is taken into 
account, even though the discrete part alone (5.33) no longer vanishes, with the inclusion of 
the continuum contribution the orthogonnlity relation holds exactly. 

5.3 	 Continued wave functions and continued spec­
trum 

So far we have looked at the discrete solutions in the analytically continued theory with the 
continuum states defined along the contour r. Hereafter, we refer to it as the "r-theory". 
The continuum states and the dual states are defined along the same contour r. We proceed 
to display the complete set of wave functions including both the discrete states and the 
continuum states and to investigate their orthonormality properties and the completeness 
relations. Some of the calculations was given in Sec. 5.2 and the remainder can be found in 
Appendices A, B and C of ref. [CS93). 

6.3.1 Complete set of wave-functions 

The discrete states 
From (5.12) and (5.13), the wave functions of the discrete states and corresponding dual 
wave functions are given by 

(Vila») (T/a) (Clea) (5.34)
l.{Ia == 	 ( (NOpla) == tPpa = Na g~:~~.. 

~ == 	 «fl·Iv.} , (fl*INOp»== (Xfjle, (/%I) 

N (d 	 dtJle[jkp(W») (5.35)
fj fjle, 	 MtJ-w 

Continuum states 

5.2. THE INNER PRODUCT (M~IMa) 

The corresponding integrnls are related by 

1 - -I / + I 'th 1 -dtJ 1 dwK(w)Ca (5.24)0- a tJ 00, WI 0 211'k 0 

Consider first the case fl -I a, On account of (5.22) 


1 -1 dw
1 	 (5.25)a 211'k 0 .. I II .\1 II .\ d(l K(w)Co = o. 
Similarly, 

/(1 O. (5.26) 

From (3.31), the asymptotic behavior of K(w) is 

Klej(w)~w6IejO (5.27) 

1 dw1(Ioo)fja - 211'k 0"", I II .\ dple(w6Iej )Cja.H II 

-dfjle 6lcj Clea . (5.28) 

Substituting (5.25), (5.26) and (5.28) into (5.24), using the definition (5.21), the inner prod­
uct (5.19) becomes 

(MJIMa) NaNfjdfjle [6kj +(-0 - 0 - 6kj») Cja = O. (5.29) 

For the case fl a, 

1 = N~dale [61ej +f [jkq(W)gqj(W)dW] .(M~IMa) (Ma w)2 Ca, 

N! dalcK~j Cja (5.30) 

with K' [~~] _ . Thus the normalization is given by 
A-M.. 

2
Na Ida J('Car l / • 	 (5.31) 

6.2.2 The "overlap function" 


The contribution to the overlap function from the discrete V-components alone, i.e. VI and 

VII 	 components or the ](0 and 1(0 alone, is given by 

(f3*la)v == L(MJIVi}(Vi\Ma) = NpNa dpCa. (5.32) 
i 
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From (5.6) and (5.7), the continuum wave functions and their dual wave functions are 
given by 

r = ( (Vtl'\r) ) == ( 71kll ) 
\If II - (NOpl'\r) <,b~ 

akll ) (5.36)( 0('\ - w)o + lIpj("')op.
rp lI-",+u 

~ == «'\·rIVi), ('\°rINOp» == (XlIk, ,~) 

ii 6('\ - w)o + iilljgjp(w) ) (5.37)( lIk, ",. A - w- it: 

From (5.8), 
Ka = g, a K-1g, ii gii=l. (5.38) 

5.3.2 Orthonormality relations 

The identity operator in the bare basis is 

I = IVi)(ViI +£dwINOp(w»(NOp(wO)1 (5.39) 

where summations over k and p are understood. The expected orthonormality relations are: 

(A 

(,BOla) (,B°'Vi)(Vila) +£dw (,B°INOp)(NOpla) 

X/Jkf'/ko +£dw',6p(w)<,bpo(w) = oO/J, (5.40) 

0 
, ria) XUf'/ko +£dW'lIJ>(w)<,bpo(w) = 0, (5.41) 

(,B0,'\, r) X/Jk71u +JdW'fjp(w)<,b;lI(w) 0, (5.42) 

(AO,rll"s) X~71kp +JdwGp(w)<,b;p(w) 6(A IJ)Or8' (5.43) 

The proof of (5.40) is given in the previous section (see (5.29) and (5.30». The remaining 
relations are proved in Appendix A of ref. ICS93j. 

5.3.3 The completeness relations 

The spectrum in the analytic continued theory consists of the discrete states KL and Ks at 
the oomplex energies ML and Ms respectively. This defines a space "gu, where the identity 
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operator is given by 

I la)(aOI +£d'\I'\r)('\°rl. (5.44) 

Again summation over the discrete labels a and r are understood. The identity operator 
leads to following set of completeness relations: 

(5.45)(VtIV;) f'/koXoj +£d'\71kllXlIj = Okj 

(5.46)(NOpIVt) <,bpoXok +£d,\<,bpllXlIk = 0 

(5.47)(VtINOq) 71ko '09 +£d'\71U'lIq = 0 

(NOp(w) INOq(w'» <,bpo'09 +£d,\<,bpll'lIq w')opq.o(w (5.48) 

The proofs of these relations are given in Appendices B and C of ref. [CS93]. 

5.4 Derivation of the Bell-Steinberger relation 

The Bell-Steinberger relation [BS65j is usually associated with the unitarity relation. It is 
instructive to see how the corresponding relation arises within the present framework. We 
recall that equation of the discrete solution is given by, see (5.11), 

Kkjaj = 0, (5.49) 

where 
Kkj(A) = AOkj - EkiC'\) - mkj' (5.50) 

With analytic oontinuation one gets, 

Ekj('\) = 1 gt,,(wt)gqj(W) (5.51)
rAW +if . 

We deform the unitarity cut running along the positive real axis to the contour f, such that 
it "exposes" the discrete state solution. See Fig. 5.2. In terms of the E-function, the discrete 
solution at A= Ma is given by 

Imkj +Ekj(A») all = Moall . (5.52) 

Taking the hermitean conjugate for the discrete solution at ,\ M~ gives 

at [m+ +E+(A)] M;at. (5.53) 

But 
IE (M )]+ ( dw' g+(w't)g(w'! == E(M·) (5.54)~ Jr' M; w' If ~ 
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where 
[g+(w·)g(w)r g+(w)g(w*) g+(w'*)g(w') (5.55) 

and w' =w· were used. 
We assume each Yukawa coupling function in the Hamiltonian can be characterized by a 

coupling constant gplc and a cutoff Lp. To evaluate E(z +if), where there is say one discrete 
solution in the lower half plane, we choose the contour r such that it barely misses the point 
z. 	The principal value part 

[r-6 (Lp ]dw dw 
P (E(z» ~ gj;,gplc 10 z - w + + lZH Z - W + if 

~ gj;,!/Pk [ini - in 7] 
zE gj;,gpk in Lp . 	 (5.56) 

p 

Using the identity 

P _1_ =t= i1f6(z - w) 	 (5.57)
z-w±if z-w 

E(z + if) ,,+ (z -'If)IJ~ gjpgplcc,n L" e . (5.58) 

Assuming the bare mass matrix (mkj) is hermitean, (5.52) and (5.53) lead to 

ahk [Ekj(M;) - Ekj(Mo)] ajo 

(M; - Mo)ahkako = ~ (ahigj;,) (gplcako) [21fi + in Z':] (5.59) 

The last equality is a refined version of the Bell-Steinberger relation deduced based on the 
present theory. 

For the K80n system, both the mass and the width differences between KL and Ks are 
small compared to the mean ({aon mass, i.e. 

M~;;0Mo « 1 , (5.60) 

or 

(M.) M·-Min 2 e2lfk ~ 21fi + {I 0 

Mo Mo 
~ 21fi . (5.61) 

Denote 

"(Pia)" 
,.,: 

- ahkakO ' 
- gpkako, (5.62) 

-r:t 
- ahkg~ 
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Equation (5.59) in the approximation of (5.61) is reduced to the original form of the Bell­
Steinberger relation: 

"(Pia)" (M; Mo) 21fiE-r:+,.,:. 
p 

(5.63) 

5.5 Summary 

We have presented a theory for the neutral Kaon system based on the extended Lee model. 
The spectrum of the theory consists of the discrete states on the second sheet, which are the 
KL and Ks states and the continuum states defined along a contour r. The spectrum spans 
the space g. The bra states here are dual states of the ket states. For the discrete states, 
for both the bra states and the ket states are at A M. For the continuum states, if the 
ket state is defined at A+ if along the upper lip of the contour r, the bra state is at A if, 
along the lower lip of r. 

Our analysis indicates that the nonvanishing of the "(KLIKs)" in LOY theory is related 
to the fact that the quantity does not correspond to a properly defined amplitude. It is the 
properly defined amplitude, which corresponds to the inner product between a state in the 
9 space and a dual state in the 9 space, (KiIKs) is expected to vanish. As we see in Sec. 
5.2.1, it does. 

Lastly based on our present theory, we derived a refined version of the Bell-Steinberger 
relation. The refinement differs from the original relation in the order of 0 (Mi;:s). Al­
though this difference is very insignificant for the neutral Kaon, DODO, ED lJO systems, it 
still remains a challenge to look for quantum systems in nature where such correction does 
lead to a detectable effect. 



Chapter 6 

The Cascade Model 

Up to this point, we had confined our attention to 2-body channels. In the models we have 
investigated, either in the case of one level system of Chapter 4, or the multilevel system 
of Chapter 5. the second sheet singularities are simple poles. In this chapter we shall look 
at the quantum system which admits the decay into 3-body channels. Here in addition to 
second sheet poles, there may also be second sheet branch cuts. We consider a simple 3-body 
model, namely the cascade model which is an exactly solvable model (CSB921. 

6.1 The model 

We consider a Hamiltonian system (CSB90J where there are 3 classes of states for the unper­
turbed Hamiltonian; a particle A with bare energy Mo; a two-particle continuum with energy 
Po +W I 0 < W< 00; and a three-particle continuum with energy W+ /I , O:$; W, /I < 00. We 
denote the amplitudes for these by 'fI , lP(w) and .,p{w, II) and the scalar product is given by 

00 

'fIiT}2 +1 lPi(w)~(w)dw +f f .,pj{w, /I)tP2{w, II) dwdv < 00. (6.1) 

The vector space 'H. of states is the completion of this vector space. The total Hamiltonian 
and eigenvalue equation are given by 

Mo r{w') 

o ]
'~) (Po +w)6(w w') g·(v)6(w w') (¢':~) ]= >. ( ¢'~:) ].

( 
g(/I)6(w - w') (w + /I)6(w - w')6(/I - v) tP.\(w'v) tP.\(W/l} 

(6.2) 
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6.2 The eigenstates 
The energy eigenvalues are degenerate and infinitely degenerate once the three-particle chan­
nel becomes open. We can enumerate the (ideal) eigenstates of (6.2) in the following form: 

r(>. - n) g·(n) 
a(>. +it) "Y(n + it) 

'fI>..n ] 
g·(n)6(>. - w - n) few) 'fI.\n (6.3)I>.n) == lP.\n(w) "Y(>' - W+ it) + "Y(>' - W+ it)

( 
tP>..n(W/I) 

6(/1 n)6(>' - W n) + \ g(/I) . lP.\n(W) 
-w- /I+tt 

where 0 :$; n :$; >. < 00, and 

00 z Mo _ 1 r(w')f(w')a(z) 
o "Y(z - uI + it} 

z - IJ.o roo g.(/I)g{/I) d (6.4)"Y{z) 10 z - /I + it /I . 

If there is a real value p such that 

"Y{p) = 0 ; i = 8-y{z) I (6.5) 
8z %=/10' 

there exist a two-particle one parameter family: 

IT) = ( ¢.~W) ] 

tPT(W/I) 

reT ­ p) 
Ra(T + it) 

1 ftw)
---,:;6(T-p w)+ ( +' )'fIT
VT "Y T - W tt 

g(lI) 
T W­ /I + it tPT(W) 

(6.6) 

Note that >. and T vary over ranges differing by p so that 

0< >., (T - p) < 00. 

If there is a real value M such that 

a(M) 0 '­ -­8a(z) I ' 
a - 8z z=M 

(6.7) 

then there exists a discrete state 
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few) 
-y(M -w) (6.8)

1M} = [ ~7w) 1 R 
g(II) few) 

-y(M - w)(M - w - II) 
¢D(w, II) 

6.3 	 Orthonormality relations 

These states are (ideal) normalized. By a straightforward calculation they can be shown to 
be mutually orthogonal. We can also show them to be complete. The best way is to compute 
ff dWdv' tP·(w'v')tP(w'V) etc. and to convert it into a contour integral. If there are zeros of 
-y(z) they will compensate the one-parameter continuum and so on, and we may obtain 

(MIM) = 1 , (MIT) = 0, (MIAn) 0, 


(1"I1') = 6(,,' - 1') , (,,'IAn) = 0, 


(A/n'IAn) 6(A - A/)6(n - n'l j (6.9) 


and 

II tP>.n(w'v)tP~n(wII)dAdn + I tPT(wV)tP;(wII)d1' + ¢D(w'V)tP~(WII) 6(w - w')6(11 - II'), 

/II tP>.n(w'v)4>~n(W)dAdn + I tPT(W'II )4>;(w)d1' +4>o(w'v')4>o(w) = 0, 

II tP>.n(w'V)l1~ndAdn + I tPT(w'V)l1;d1' + tPo(w'V)110 = 0, 

II 4>>.n(w')4>~(w) dAdn + 14>T(w')4>;(w)d1' + 4>o(w')4>o(w 6(w' - w) , 

II ¢>.n(w')11~ dAdn + I 4>T(w')l1;d1' +4>o(w')110 = 0, 

II 11>.n111n dAdn +I11Tl1;d1' + T}o11O 1. 	 (6.10) 

6.4 	 Continuation of scattering amplitudes and unitar­
ity relations 

To study analytic continuation [CS93J with complex branch cuts we choose Mo and Po 

sufficiently positive so that there is no real zero for -y(z) or for o(z). Then the only states in 
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'H. which are (ideal) eigenstates are IAn} and these states are complete in the sense of (6.10). 
The S-matrix elements are 

(An, outIA/n/, in) = 6(A A') . {6(n - n') +2i T(n, n'; A)} (6.11) 

T(n, n'; A) = -11' {O(A + ie)l1>.nl1>.n' + g./n)g\n16(n - n')}' (6.12)
-yn+u 

Both the S-matrix element and the T-matrix element considered as a function of A can be 
viewed as analytic functions of (complex) energy z with a branch cut 0 < z < 00. Since 
by hypotheses -y«() has no real zero we would find a complex zero at 1'1 in the lower half 
plane as we deform the branch cut from that along the positive real axis to the appropriate 
contour in the fourth quadrant. This pole induces a branch cut in T(n, n/; A) from 1'1 to 
infinity along a contour of our choice. So we can have, as illustrated in Fig. 6.1, the choice 
of the contours rl, or r2+~, or ra +~ +r;. For r2+r~ we have the complex branch cut 
beginning at 1'1. For ra +r~ + r; we have the complex branch cut beginning at 1'1 and the 
pole at MI' 

These analytic properties signal the possibility of analytic continuation of the space 'H. 
into g. For the contour rl we get the complete set of states Iz, (): 

r(z* - C) g·(C) 
o(z + ie) -y«( +ie) 

g*(C)6(z - ( - e) fee) . r(z* C)g"«(") 
-y(z - e + ie) + o(z + ifh«( + ieh(z - e + if)

Iz,() 


6«( - II)6(z e - 11)+ 


g(II) {90(C)6(Z - ( - e) f(e)r(z" - C)g·(C) } 
+z e II + if -y(z e + if) + o(z +ieh«( +ifh(z - e +ie) 

(6.13) 
where z lies on the contour r 1 and we may choose e+II, ( and II also to lie on this contour. By 
a lengthy but straight forward calculation using the conversion of open contour integrals into 
closed contour integrals we can show that (6.13) constitutes a complete (ideal) orthonormal 
system. Neither the zeros of a nor of -y are in the complex plane cut along r 1 and consequently 
the closed contour integrals do not enclose any of the related singularities. 

If on the other hand we choose the contour r 2 we have crossed the branch point at 1'1. 
This branch point "snags" the closed contour over which we integrate: and completeness is 
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restored only by including the generalized (ideal) states 

rev· PI)

frl a(v +i{) 

_1_ 6(V PI _ e) + f(e). reV· -PI) 
(6.14)Iv) = frl 'Y(V - e+Jf:) f1. a(v + if:) 

g(v) e) + I(e) r(v" - PI) }{I £(-- -uV II.I .. 
V e- v + if: frl 'Y(V e+ if:) frl a(v + if:) 

with 

-It = ~()Lp, . (6.15) 

Here V and e+ PI are along r2 and elies on r~. I2 is obtained from r2 by displacing it by 
the fixed complex number 1". The states Iv) and Iz,() in Eq. (6.14) and Eq. (6.13) now 
form a complete set. The contour ~ is the spectrum of the "unstable" particle B (which 
has now become a "stable particle"!) scattering a 0 particle with energy e. This scattering 
also obeys in addition to the generalized unitarity relation along ~: 

T«(, ('j z) - TO«(" ('0; Zo) = f d("T" «("0 ,ej zO)T«(", ,'i z) , (6.16)
Jr~ 

the unitarity relation: 
T(e) - T·(C) = T(e")T(e) (6.17) 

along 12. There is a technical point here. For the definition of the continued wave-functions, 
the contour ~ is chosen through the "parallel transport" prescription stated above. However, 
for the continued unitarity relation, it can be shown that it is no longer necessary to be 
confined to the parallel transported contour ~. 

In the context of the continuation of wave functions, further deformation of the contour 
does alter the states IT). When z and e+ ( are along the contour ra, T is along r~ = ra +PI! 
see Fig 6.1. It could also uncover the discrete state IMI ) with 

I(e)1 
(6.18)'Y(M) - e)IMI ) = ;;;; 

g(/I) I(t.) 

'Y(MI - e)(M) e - v) 


which then needs to be included in the completeness relation. 
Unitarity relations for the T-matrix are energy-local relations IGMRS711 and as such do 

not mil; the unstable particle scattering and stable particle scattering. 



Chapter 7 

Summary and conclusions 

Let us recapitulate some of the points considered in the present article. The Breit-Wigner 
approximation has been the phenomenological framework for the description of unstable 
states and it predicts a pure exponential decay. There are several shortcomings in this 
approach. The resonance is associated with a pair of complex conjugate poles on the physical 
sheet; this violates "causali ty". Breit-Wigner model seen as a continuous spectrum violates 
the semiboundedness condition, which in tum, leads to the violation of the second law of 
thermodynamics. So there is a need to describe unstable quantum system going beyond 
Breit-Wigner approximation, not only for minor technical corrections but for a conceptually 
satisfactory formulation. 

Our discussions have been divided into two parts. In the first part, we see that insisting 
on the semi-boundedness of the spectrum, the time evolution of an unstable quantum system 
must deviate from strict exponential decay both in the very small time region and in the very 
large time region. In the neutral Knon-type system in the very small and large t regions, 
there is the regeneration effect between KL and K s states. 

From the study of solvable models , we saw that the departure from exponential law 
with the present experimental limits of time resolution are numerically insignificant. Never­
theless we find it useful for the sake of conceptual clarity to pursue a consistent generalized 
quantum mechanical framework for the description of unstable states. The predictions of 
this framework coincide with the Breit-Wigner approximation in the bulk of the exponential 
decay region and at the same time allows the extension to the very small and very large time 
regions. This is in analogy to the formulation of the relativistic theory in non relativistic 
domain which allows the natural extrapolation to the relativistic domain. 

With this in mind, by means of analytic continuation we identify an unstable particle 
state as a discrete state in the generalized space 9 with complex energy eigenvalue. Here 
the continuum states are defined along some complex contour and the inner product and 
transition amplitudes are defined between states in 9 and its dual state in the corresponding 
dual space G . 

Breit-Wigner approximation [BW361 was introduced in the 30's. A systematic and rigor­
ous approach began with the paper by Sudarshan, Chiu and Gorini [SCG78], which proposed 
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the notion of generalized quantum states leading to a consistent treatment of an unstable 
quantum particle as a complex eigenvalue solution of the operator in 9 88SOciated with a 
Hermitean hamiltonian in ft. The analytic continuation of this program was carried out for 
various models demonstrating that this approach can indeed be consistently implemented 
in various models. Within this framework, a resonance pole is a bonafide eigen state of 
the continuation of a hermitian hamiltonian with a complex energy eigenvalues. We have 
applied the same generalized framework to scattering problems. The analytically continued 
scattering amplitudes and the extended unitarity relations were presented. The general­
ized framework provides the essential ingredient needed for a consistent description of the 
scattering process involving resonances. 

The present formalism of dual spaces differs from the Rigged Hilbert Space theory which 
also deals with dual spaces. But the dual spaces are the primary entities here. Some 
earlier papers in the literature claiming time asymmetry obtain their results by introducing 
unphysical states with energies unbounded from below. 

The present approach is in one sense the completion of the Heisenberg's program to 
make dynamics out of directly measured quantities like spectral frequencies and intensities 
augmented by resonance positions and widths; and in another sense a further generalization 
of the Dirac Formalism of quantum theory in terms of ket and bra vectors. It is instructive 
that these old ideas contain the germs of many modern developments [Su93]. 
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Figure Captions 

Fig. 2.1 The contour C in the complex ~ plane. (Sec 2.2) 

Fig. 2.2 The contours defining the integrals (2.36). (Sec 2.2) 

Fig. 3.1 The contours C and Ct in the complex ~ plane. (Sec 3.2) 

Fig. 3.2 Illustration of the deformation of contours Ct and C2 into the pole contributions plus 
the background contribution. (Sec 3.3) 

Fig. 4.1 The z-plane contours defining vectors in 9 (Sec 4.3) 

Fig. 4.2 Possible singularities encountered and the modified contours. (Sec 4.3) 

Fig. 4.3 Contours r, r', r for demonstrating completeness. (Sec 4.4) 

Fig. 5.1 The contour r and the exposed pole at Ma. (Sec 5.1) 

Fig. 5.2 Relationship between Coc and those counterclockwise contours enclosed by Coc • (Sec 
5.2) 

Fig. 6.1 Spectra and Contours for the Cascade Model with Mo » Ito» O. (Sec 6.4) 
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