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ABSTRACT 

We present a general formalism for doing the perturbation theory in the complex energy 

plane, where the notion of the generalized quantum mechanical systems is used. This for

malism is applied to the Friedrich-Lee model. It reproduces the results of the exact solution, 

where the spectrum of the generalized quantum mechanical system consists of a discrete 

complex energy pole and a continuum spectrum (which passes below this discrete pole) in 

the complex energy plane. This spectrum disagrees with that obtained by Petrosky, Pri

gogine and Tasaki which has the discrete complex energy pole and a continuum spectrum 

along the positive energy axis. We also investigate the role of the "complex delta" function 

in the description of a resonance state. The unboundedness of the spectrum appears to be 

the very ingredient needed to give rise to a pure exponential decay. 



1 Introduction 

Recently Petrosky, Prigogine and Tasaki[l] investigated the Friedrich-Lee model[2] based on 

perturbation theory. They found that the spectrum of the system may be described as a sum 

of a discrete resonance state and a continuum spectrum along the positive real energy. This 

conclusion differs from our earlier work[3] based on the analytic continuation of the exact 

solution of the model. There we found that accompanying the discrete resonance state, the 

continuum spectrum must be defined along a contour in the complex energy plane which 

passes below the resonance pole. It is curious, what is the origin of this difference? 

A closer look reveals two important ingredients in their analysis, first is the use of pertur

bation theory and second the expansion of the wave function in powers of the imaginary part 

of the resonance energy. In our work in this paper we avoid any divergence difficulty by do

ing perturbation theory in the complex energy plane. One may also want to further explore 

whether there are features in the theory which are more clearly revealed in the perturbation 

approach. 

Perturbation theory in the complex energy plane is to our knowledge novel. The appli

cation of the perturbation theory in the complex energy plane could be an effective means 

to study the resonance properties of the system. 

Earlier, based on solvable models we have investigated various quantum mechanical sys

tems in the complex energy plane by working with the "generalized quantum mechanical 

systems" . To supplement our solvable model work on such generalized systems, we now 

proceed to consider the perturbation theory of these systems. 

The usual textbook approach to perturbation theory in quantum mechanics is the Rayleigh

Schrodinger perturbation method[6] where the wave functions and the eigenvalues are ex

pressed in power of the coupling constant g, 

W(g) = ¢o + g¢(l) + ... + gn¢(n) + ... , (1.1) 

A(g) = Ao + gAl + ... + gnAn + ... . (1.2) 

Then from the eigenvalue equation 

(Ho + gV)¢(g) = A(g)¢(g) (1.3) 
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one obtains the corresponding equation for each order of gn. Despite the textbook exposi

tion of the method, there seem to be essential complications just beyond the second order. 

Further, the method appears to be very cumbersome in higher orders. In this work we will 

follow an alternative method based on the Green's function approach [7] , used in field theory 

discussions. In Sec. 2, in the framework of generalized quantum system, we will discuss the 

wave operator and the corresponding eigenvalues in perturbation theory. The results of the 

perturbation calculations for the generalized quantum system as applied to Friedrich-Lee 

model are presented in Sec. 3. 

We do perturbation expansion on the inverse of the Green's function for the Friedrich-Lee 

model and in the zeroth order of the perturbation expansion the discrete spectrum is the 

V particle. Consider a typical situation where the bare mass of the V particle is above the 

threshold of the continuum channel. As the interaction is switched on, the discrete state 

moves away from the real axis on to the second Riemann sheet. One may deform the contour 

to expose this resonance pole. It eventually leads to a generalized spectrum consisting of this 

resonance state together with the continuum spectrum defined along some contour r. The 

latter are essential components for the complete specification of the generalized spectrum. 

In Sec. 4, we investigate the related question of the role of the "complex delta" function 

in the description of a resonance state. We observe that the pure exponential decay may be 

obtained when one passes from a lower bounded weight function to its analytic extension 

with support on the full real line R rather than the semi-infinite real line R+. It appears 

that the unboundedness of the spectrum, which violates the general property of the quantum 

system and also of the generalized quantum system, is the very ingredient needed to give 

rise to a pure exponential decay. The main thrust of the present work is summarized in Sec. 

5. 
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2 	 Perturbation theory and the generalized 
quantum system. 

2.1 The wave operator. 

Consider a quantum system with the hamiltonian 

H=Ho+V, 	 (2.1) 

where the free hamiltonian satisfies 

(2.2) 

and the full hamiltonian satisfies 

H"p = {Ho + V)"p = z"p. 	 (2.3) 

Introduce the unnormalized wave operator which transforms the free particle wave function 

"po to the unnormalized wave function "pun, 

(2.4) 

Denoting the difference by 

(2.5) 

the eigenvalue equation of (2.3) becomes 

1 
{Ho + V)"po + H /:::,."p = z"po + z/:::""p, or /:::,."p = z _ H V"po (2.6) 

Thus 

(2.7)""un = ""0 + l!."" = (1 + z ~ H V) ""0 = 1_~oV ""0 , 
where the free Green's function 

1 
Go{z) = R 	 (2.8)

z- 0 

The unnormalized wave operator is given by 

(2.9) 
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So far we have not paid attention to the renormalization of the wave function. In particular, 

for the renormalized wave function ,¢, there is the corresponding renorrnalized wave operator 

0, with the relation 

(2.10) 

In the complex energy plane, the scalar product is defined to be the inner product between 

the wave function and its dual, where the dual wave function is defined by 

(2.11) 

So the scalar product 

(2.12) 

or the renormalized wave function: 

(2.13) 

In a multichannel case, it is convenient to define the free wave function in the basis where 

for the ith free wave function, only the ith element is non vanishing. With this choice of the 

basis vectors, Eqs.(2.12) and (2.13) can be generalized to 

(2.14) 

and 

(2.15) 

Note that D2 and by choice D-l commute with Ho. Hence eqns. (2.3) and (2.4) are 

unaffected by the renormalization. This construction yields the perturbed wave functions to 

all orders. 

2.2 The eigenvalues. 

Our analysis so far does not tell us the location of the singularities of the wave operator n 
except the generic result that they are at the spectra of H. As mentioned earlier we shall 
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follow the conventional approach in field theory and work with the perturbation expansion 

of the Green's functions. The full Green's function is given by 

1 1 
G(z) = H (2.16)1- GoV Go-z-

The spectra are obtained from the singularities of G(z) which are, apart from the spectrum 

of Go{z), the zeros of the denominator, that is the place where Go{z)V = 1. It is possible 

in exceptional cases, for part of the spectrum of Go to be cancelled by the zeros of I-bov; 

that is by the poles of 1 - GoV. Note that since the left-hand-side is a matrix and the 

right-hand-side is a number we are really talking about the eigenvalue of Go(z)V. 

3 Perturbation solution of the Friedrich-Lee model. 

The Hamiltonian for the Friedrich-Lee model and the corresponding equation for the free 

wave functions and that for the total eigenfunctions in the lowest sectors are given by 

(3.1) 

Ho'¢o = z,¢o and H'¢ = (Ho + V)'¢ = z'¢ , 

where the variable w is defined to be along some contour r in the complex energy plane, and 

i(w) = J*(w*). 

3.1 The unnormalized wave operator: 
.. 

In evaluating the wave operator, it is convenient to regroup the perturbation series in terms 

of those which are even power in GoV and those odd in Gov, Le. 

nun = L
00 

(Gov)n = n~~n + n~~d, (3.2) 
m=O 

where 

and 
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G vnevennodd = ~£un 0 un' 

We proceed to evaluate the even part. 

1 	 ( f(w") )
A - 0) ( 0 f(w") ) 0 A- rna 

GoV = 01110 D(w - w') !(w/) 0 = !(w) 0 ' ( 
A-W A-W 


Note that the isolated zero of (1 - GoV) occurs at A - M for 


f (w") j (w") dw"
f (). -mo)(). - WI) = 1 j 


)._11110 < ... > 0) f /(w)f(w) 
- 0 /(w). f(w') , where < ... >= dw A - w ' 

( 
A -w (A - rna) 

(G~~r 	 )0 

- 0 /(w) . < ... >. f(w') . 


A-W A-rna A-rna 

The even part is given by: 

1+ < ... > + « ... »2 +... 	 0 1 
neven= A-rna A-rna (3.3) 

un [ 0 6(w' _ w) + /(w) . f(w') . 
A - w O:(A) 

The odd part is: 

f(w') < ... > f(w')
+ - 

nOOd = G vneven 	 A - rna A - rna O:(A) 
un 0 un 	 (3.4)( 	 jew) . :-1110 

0 )
A- w O:(A) 

f(w') 
O:(A)

-	 (3.5)( !(W) ~ ).-1110 )0
A- w O:(A) 
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Using (3.3) and (3.5), (3.2) becomes: 

A - rna few) ) 
a(A) a(~ (3.6)nun = f.......(w). A - rna f() f(') .
( 6(w-w')+~.~

A - w a(A) A - w a(A) 

For definiteness, we consider the wave operator, with the eigenvalue of the discrete state 

labelled by M, where a(M) = o. For the resonance pole, M is a complex number. It gives: 

A-rna few') )
(A - M)a' a(A) 

(3.7)nun = A - rna lew)
( 6(w - w') + lew) . few') 

(A-M)a' A-W A- w a(A) 

For the discrete solution, we have used: a(A) ~ (A - M)a', with a' = ~I..\=M. The pole of 

Go at A= mo is cancelled by a zero of (1 - GoV)-l at A= mo. 

3.2 Renormalized wave operator: 

We proceed now to evaluate the appropriate matrix to incorporate the effect of renormal

ization. 

(3.8) 


We leave it to the reader to verify that the off diagonal elements do vanish. The (1,1) element 

is given by: 

A-rna )A - rna A - rna lew) a(A) 
(ii(oX) , ii(oX) . M - w) ( oX - mo. few) 

a(A) M-w 

....... 2 

= (A - rna)2 [1 + Jdw f(W)f(W)] = ~ (A - mo) (3.9)

a(A)a(A) (M - W)2 a' A - M ' 

a' = 1 + Jch;.; i(w)f(w)where 
(M - w)2 

was used. And the diagonal elements for the continuum is given by 
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BN>' - D>.,(w)D>.(w) 

- ( 
J(A')' 
a(X) , 6(>' 

f(w)J(A') ) 
- w) + (X  w)a(X) 

( ~~~~ 
6(>' _ w) + i<w) 

A  w 

. f(>.) 
O:(A) 

) 
• 

J(A')f(A) I 

- a(A/)O:(A) + 8(A 
f(A)J(A') J(A/)f(A) 

- A) + (A' - A)O:(A/) + (A  A/)O:(A) 

J(A/) -1 
+ a(A/) . A_ A' 

[ a(A/)
A _ A' 

O:(A) ] f(A) 
- A _ A' + 1 O:(A) 

I 

== 8(A - A) (3.10) 

To arrive at the last term in the second last step, the following identity was used, 

J J(w)f(w)dJ.v == 1 [a(A/) _ O:(A) 1]
(A' - W)(A  w) A - A' A - A' A - A' + . (3.11) 

Collecting the terms, we get 

(3.12) 


Notice that the renormalization, in this case, only affects the discrete state wave function, 

not the continuum state wave function. The D2 matrix implies that 

V;;(A- M) 0 )
and D>:l(W) == 0: AO- mo .

( 8(A - w) 
(3.13) 

So the renormalized wave operator: 

f(w')(>.>'--:::)al O:(Al 1 V;;(A) - M 

- A-mo J(w)
( 6(w _ w') + f(w) f(w') ( \j 11l{) 


(A - M)o:' M - w A - w O:(A) 


f(A)Jc; 1
O:(Al (3.14)- ( 1 J(w) 6(A - w) + f(w) . f(A) . 


V;;M-w A - w O:(A) 
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4 

It is gratifying that the results obtained here through perturbation calculation is the same 

as those obtained from solving the theory exactly[3]. This is, of course, not unexpected. We 

have seen that by applying perturbation theory on the generalized quantum mechanical 

system, one arrives at the spectrum which contains explicitly the discrete "resonance" state 

together with the deformed contour which is a necessary component in the specification of 

the generalized spectrum. Since the generalized spectrum is completely equivalent to the 

spectrum of the original theory defined along the real axis, the generalized spectrum would 

imply for instance the non exponential decay character near the time t = 0, i.e. the presence 

of the Zeno region[8] in the survival probability. 

Lower bounded support, complex delta 

function and pure exponential decay. 


We begin with several definitions. Denote the spectral function of a quantum system by 

O'(w). The corresponding temporal function, which is its Fourier transform is given by 

oo 
O'(t) = i dwu(w)e-iwt 

• (4.1) 

When the spectrum is lower bounded, L is finite. An unbounded spectrum corresponds to 

having L = -00. The initial temporal function, i.e. the function evaluated at the initial 

time, t = 0, is given by 

= i oo 

0'(0) dwu(w) . (4.2) 

We proceed to consider an unstable quantum system, which is defined by including a term 

10
of the type 

00 

dwp(w)8c (w - z), 

where the "weight function", p(w) is the restriction to the semi-real axis R+ of a function 

analytic in the lower halfplane. The complex delta function be is the so-called Gel' fand

Shilov complex delta function [9] (a generalization of the delta function along a contour 

considered by Nakanishi[10] and by Sudarshan, Chiu and Gorini[3]). Its contribution to the 

initial temporal function is given by 

(4.3) 
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where p{z) is obtained as the analytic continuation of p{w) to the complex point Zl' When 

Z is real, 8c{w - z) reverts back to the usual Dirac 8-function. The integral ranges from 0 

to 00, because along the negative real axis, p{z) == O. The time translation operation on the 

temporal amplitude is constructed in the following manner, 

(4.4) 

If the spectral function contains a complex delta function factor, the temporal function 

becomes 

(4.5) 

Superficially this would seem to offer an example which says that a spectrum bounded from 

below could lead to a purely exponential decay. This is a misleading interpretation, however. 

We recall that the weight function may be analytically extended through the use of Hardy 

class functions defined by 

_ -1. roo dw p{w)., (4.6)
27rt io w - z + u 

(4.7) 

Here p{w) is expressed in terms of the sum of two analytic functions W+(w) and W_(w). One 

can also verify that for the time translation operation forward in time 

T (t)W+(z) == W+(z, t), and T (t) W_(z) == 0 . (4.8) 

For the backward time translation, we have 

(4.9) 

Now it is instructive to look at the integrand of Eq. (4.5). For definiteness, consider the 

case of forward propagation. The integrand may be re-expressed in terms of its analytic 

extension Pext{z) == W+{z) 
tI 

00 

~ 1 1. [1 + 1]e- 'ztdz Pe:x:t{z) -2 . . I 

-00 7rt Z - Zl + tf Z - Zl - tf 

001 1 d Pe:x:t{Z )e-izt 
-- z---- (4.10)

27ri -00 Z - Zl + if 
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5 

where in the last step we use the fact that for positive t the integral can be closed in the 

lower halfplane. Since the second term does not contain singularity in the lower half-plane 

so the integral vanishes. Only the first term survives, which involves integrating over the 

unbounded spectrum, which extends from -00 to 00. Thus for t ~ 0, we have 

__1_100 dzPext(z)e-izt 
21l"i -00 z - Zl + if. 

[Pext{zl)e-imt] e-~t ( 4.11) 

The last step is obtained by closing the contour of integration in the lower halfplane, which 

picks up the pole contribution at z = Zl = m - i~, leading to a pure exponential decay as 

displayed. 

We see that the delta distribution for complex z, is really defined only for p(w) which are 

restricted to R+ of analytic functions and the computation uses an ordinary function on the 

Hardy class function W+ =pext which is the analytic extension of p{w) to -00 < w < 00, 

so there is no mystery in getting the exponential decay. Also we observe that the analytic 

decomposition of Eqs. (4.6) and (4.7) may be carried out for any integrable function p(w), 

not necessarily analytic. So our result of Eq.{4.11) is general. 

Summary 

We have studied the perturbation theory of Friedrich-Lee model in the generalized space 

where the energy variable may be complex. We find that the conclusion which we reached 

earlier based on a solvable model continues to be true in perturbation theory. When doing 

the perturbation theory, to avoid the convergence difficulty, one needs to deform the contour 

to expose the resonance pole contribution, in order to be able to isolate the discrete state 

contribution. In this case, the continuum states must be defined along a contour which 

passes below the resonance pole. In other words, the corresponding continuum spectrum in 

its entirety cannot be along the real axis. Furthermore, by applying the Cauchy theorem the 

generalized spectrum obtained containing the second sheet discrete state and the continuum 

states along the contour, is equivalent to the Friedrich-Lee spectrum along the real axis. 

In this sense we disagree with the assertion of Petrosky, Prigogine and Tasaki that within 
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the perturbation theory, the system admits a discrete spectrum plus a continuum spectrum 

defined along the positive real axis. We also show that although the use of the notion of 

the complex delta function gives the appearance that a pure exponential decay results from 

a lower bounded spectrum, we explictly display through the use of analytic extension, that 

pure exponential decay property is directly associated with a spectrum which is not bounded 

from below. 

We thank T. Petrosky and S. Tasaki for discussions on their work. This work was 

supported by the U. T. Department of Energy Grant DOE-FG05-85ER-40-200. One of the 

authors (G. B.) would like to thank Austin Gleeson and Peter Riley for hospitality at the 

Department of Physics, University of Texas, where this work was done. 
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