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ABSTRACT 

Numerical solutions to the two-fermion bound state problem in the 1+1 dimensional 
Yukawa model are presented within the lowest order light-front Tamm-Dancoff approxima
tion (i.e., keeping only two-fermion and two- fermion/one-boson sectors). Our motivation 
is twofold: First, we want to understand the dynamics of the model from the very weak 
coupling domain where the system is governed by non-relativistic dynamics to moderate 
and strong coupling domains where retardation and self-energy effects become impor
tant. Second, we want to develop techniques for solving coupled Tamm-Dancoff integral 
equations, in particular methods that can be generalized to higher order Tamm-Dancoff 
approximations and/or higher dimensional theories. To achieve the first goal we first sim
plify the problem considerably (from a numerical point of view) by the explicit elimination 
of the higher Fock space sector. The resulting integral equation, whose kernel depends 
upon the invariant mass of the state, is solved for the coupling constant, for a given set of 
the invariant mass and fermion and boson mass parameters. To achieve the second goal 
we solve the coupled set of equations using both basis functions and direct discretization 
techniques. Results from these more general techniques are compared with the explicit 
elimination method. 
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I. INTRODUCTION 

The Light-Front Tamm-Dancoff (LFTD) approach1,2 has been proposed recently to 
study relativistic bound state problems in both nuclear and particle physics. The main 
features of this approach are a) quantizing the theory on the light-front rather than the 
conventional equal-time surface, b) constructing a Fock space built on the bare vacuum 
state which is an exact eigenstate of the full light-front Hamiltonian, c) expanding the 
physical state under consideration in terms of bare states and truncating the expansion 
at some level, d) deriving coupled integral equations for the expansion coefficients which 
are the multi-particle amplitudes, e) carrying out renormalizations appropriate for the 
limited Fock space,and f) solving the coupled integral equations for the eigenvalues and 
eigenfunctions of the mass operator. 

The Fock space truncation is forced upon us by practical considerations (unless one can 
find analytical solutions to the full set of coupled operator equations). This has npntrivial 
consequences for the renormalization program of the LFTD approach2• In theories where 
the constituents appear as physical particles in asymptotic states, we need to insure the 
appropriate threshold conditions on multi-particle amplitudes. This can be achieved by 
the introduction of sector dependent counterterms in the light-front Hamiltonian. It is 
worthwhile to emphasize that the introduction of counterterms is necessary whether or 
not the system of equations contains divergences. 

We consider the bound state problem of two non-identical equal mass fermions in the 
two-dimensional Yukawa model presented in Ref. 2. Previously, Brooks and Frautschi3 , 

and Pauli and Brodsky4 have investigated the two-dimensional Yukawa model using nu
merical methods. Brooks and Frautschi used a momentum space lattice in equal-time 
quantization whereas Pauli and Brodsky used a momentum space lattice in light-front 
quantization (Discretized Light Cone Quantization or DLCQ). 

We have two main objectives. First, we wish to study the dynamics of the model 
for the entire range of couplings and mass parameters. Second, we want to develop and 
test methods that are more easily generalized to higher order Tamm-Dancoff approxima
tions and/or higher dimensional theories. Note that the reliability of the Tamm-Dancoff 
approximation itself is not central to this work. 

Our starting point is the coupled set of equations for the two-fermion and two-fermion, 
one-boson amplitudes. To achieve the first goal, it is most efficient numerically to elimi
nate the three particle amplitude in terms of the two-particle amplitude and arrive at an 
integral equation for the two-particle amplitude. The kernel of this equation depends on 
the eigenvalue lvI2. We convert this integral equation into a matrix equation via Gauss
Legendre quadrature and solve for the coupling constant for a given value of the invariant 
mass. We investigate the weak-coupling limit and the effect of self-energies in the strong 
coupling domain. 

. Once we have a quantitative picture of the dynamics we return to the coupled inte
gral equations to carry out our second objective. When we include higher Fock sectors 
it will not be possible to eliminate the higher Fock sectors analytically and arrive at an 
effective equation for the lowest sector. Hence for the very success of the LFTD program 
it is extremely important to develop various numerical methods to solve coupled integral 
equations. In this initial investigation, we employ two methods: a) expansion in basis 
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functions and b) direct discretization. In method a) a 'Basis Function' subtraction scheme 
is developed to handle the renormalization program while in method b) one must em
ploy a subtraction scheme that depends on the discretization. We investigate merits and 
weaknesses of the two techniques. 

The plan of this paper is as follows. In Section II we present the bound state spectrum 
and wave functions found by the explicit elimination method. The basis function method 
is presented in Section III. Section IV deals with the direct discretization method. Our 
conclusions are presented in Section V. Appendix A deals with the analytic solution of the 
Schrodinger equation for the Yukawa potential in one dimension. 

II. EXPLICIT ELIMINATION METHOD 

The two dimensional Yukawa model under investigation is characterized by the La
grangian density; 

(2.1) 

j j 

where L: j is over different fermion types. Light-front quantization of this Lagrangian and 
the derivation of the light-front Hamiltonian P- has been discussed for instance in reference 
2. Here we only \vrite down the simplified Hamiltonian relevant for our two-fermion bound 
state problem. It is given by 

(2.2) 

where 

Pfree = [~ ::k 2~ 
[bt(k)b(k)(m} + ~>(k)) +Bt(k)B(k)(M~ + ~>(k)) + ~m~at(k)a(k)] , 

(2.3a) 

~ [00 dk1 [00 dk2 [00 dk3 8(kl _ k2 _ k3) 
47r Jo kl Jo 27r2k2 Jo k3 

[bt(kl )b(k3 )a(kz) U(kl)U(k3) + bt (k3)b( k1)a t (kz) u( k3 )u(k1) 

+ Bt(kl)B(k3)a(kz) U(kl)U(k3) 

+Bt(k3)B(kl)at (k2) U(k3)U(k1 )] • 

(2.3b) 

The self-inertia 

1 dkl k
f3(k) = P 

00 

(2.4) 
o kl 
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with P being the principal value. Here ml = mf and m2 = MF are the fermion masses, 
mB is the boson mass and A is the coupling constant. The fermion and boson creation 
and annihilation operators obey the quantization conditions 

{b(k1 ), bt(k2)} = 27rk1 8(k1 - k2) , 

{B(k1 ), Bt(k2)} = 27rk1 8(kl - k2) , 

[a(kl),at (k2)] = 27r2kl 8(k1 - k2) . 

We choose the spinor normalization so that 

The fermion number 2 state I w> is expanded as 

in the first Tamm-Dancoff approximation, where ¢2 is the two-particle amplitude and ¢3 
is the three particle amplitude. Introduce the amplitudes 

kl
with x 

P' 

and 
kl k2 

¢3(k1 ,k2,k3) ----+ ¢3(k1 ,k2) ----+ tP3(X,y) , with x = P' Y = P' 

since momentum conservation implies kl + k2 = P, kl + k2 + k3 = P. By projecting the 
equation of motion 

(2.6) 


on to a set of free states we arrive at the coupled system of equations: 

Ymaz 

J dy tP3(X, y) (_1_ + .!. )0(1 - x - y)
)1- x - y 1- x y 

Ymin 

Ym41l: 

tP3(1-y,1-x) (1 1 )0( )
+gmf y -+-- - x+y-lJ d Jx + y - 1 x 1 - y , 

Ymin 
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(2.7a) 

2 m 2m M2 
M 21/J3 (x, y) = (-.L + -.f.. + 1 B ) 1/J3 (x, y)

x y -x-y 
1 1 1+ gMF (- + --) 1/J2(X)V1- x - y y 1- x 
1 1 1+ gmf (- + -1-) 1/J2(1 - y) . (2.7b)

V1-x-y x -y 

Here g = ~, C.T. denotes the counterterms and x and yare light-front momentum 
V 471" 

fractions. Note that we have absorbed the self-inertias into the counterterms in this ex
pression. 

Normalization requires 

(2.8) 

It is worthwhile to make one observation before we proceed. There is an instantaneous 
interaction term in the light-front Hamiltonian (Ref. 2), which connects 1/J3 to itself via 
an integral operator. Such terms, which are absent in the equal-time Hamiltonian, arise 
in the light-front formulation as a result of the elimination of constrained variables. This 
contribution mayor may not be included in the lowest order approximation. However, 
if we include this interaction, the explicit elimination of 1/J3 becomes impossible and \ve 
must solve the explicit 1/J2 plus 1/J3 problem to find the spectrum and wavefunctions. Since 
our major motivation here is to develop and critically evaluate methods for the coupled 
problem, we found it useful to have the solutions in an independent and numerically 
much simpler method. This is a major reason for dropping the contribution from the 
instantaneous term. There is no reason to keep or drop it at this order of LFTD. vVe 
mention that the system of equations is covariant, whether we keep the contribution from 
the instantaneous interaction or not. Thus even after the Tamm-Dancoff truncation \ve 
have a covariant equation. 

Below boson production threshold, equation (2.7b) is used to eliminate 1/J3 from equa
tion (2.7a) and we arrive at an integral equation for 1/J2 where the kernel depends on the 
eigenvalue M2: 

m2 M2 )
M2 1/J2 (x) = ( (xf + 1 _Fx) + C.T. 1/J2 (X ) 

x-c ( I I) ( I ) 
"I. () x + y 1-X + -yJ~ 0/2 Y 2 M2 2

X - Y M2 _ ~ _ --...L _ mn 
c y I-x x-y 

I-X-f 
dy (l~X + i) (~+ l~Y)J 1 1/J2 (1 - y) 2 :.2 -x-y M2_s.._Mp mn 

( x y l-x-y 
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2 2+ g mf 
(

tP2 X) 

X-€J dy
-x-y M2 

I I )2 
(x + y 
m 2 Af2 __' __F 

m'2 
__B 

€ Y I-x x-y 

l-x-€ 

J dy 

1 - X - Y M2 _ '2 M'2m, _ --E.. _ 
x y 

( _1_ + 1)2
I-x y 

'2' m B 
l-x-y 

(2.9) 

Here the second. and third terms on the right-hand side of the equation represent one
boson exchange, and the fourth and fifth terms represent self-mass correction. We have 
introduced a cutoff € on the loop variable y. Note that in the limit € -t 0 boson exchange 
terms are finite but self-mass correction terms diverge like log f. 

Next we specify the counterterms. They are fixed by the renormalization condition 
that above the scattering threshold, free asymptotic fermions should propagate with their 
physical masses. This threshold is given by the zeroes of the complete coefficient of 1/J2; 
i.e., above threshold 

2 M2
M2 = mf + __F_. (2.10)

X I-X 

The counterterms are then given by 

C.T.= 

l-x-€ 
(J.-x+y)2

dy < very 2 2'J - M F (1-x-y)2+ mB(1-x)y 

(2.11 ) 

Note that the counterterms also diverge like log € as € -t 0, which cancels the log € 

divergence of self-mass correction terms. 
We now proceed to the analysis of the renormalized two-body bound state equation 

given by equation (2.9) along with equation (2.11). For simplicity we set the two fermion 
masses to be equal. All dimensionful quantities, M, mB and g are measured in units of the 
fermion mass. To begin the process of building physical intuition in terms of light-front 
variables and LFTD we start with the weak binding limit. It is shown in Ref. 2 that in 
the extreme weak-coupling limit (binding energy B << m F) the above equation reduces 
to the momentum space Schrodinger equation with a Yukawa potential. Next we drop 
the self-mass corrections and counterterms from equation (2.9) and analyze the resulting 
equation, which is called the light-front ladder approximation. This provides a quantitative 
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picture of the effects of retardation and relativistic kinematics. Finally we study the full 
equation (2.9) without further approximations. Using the counterterm of equation (2.11), 
self-mass corrections are now taken into account. 

A. Schrodinger equation 

In the limit of extremely weak coupling, the integral equation reduces to the 
Schrodinger equation in momentum space2 

(2.12) 

Here q is the relative momentum. In light-front variables, this equation is 

r1
m} _ M2] x _ ..\2 

dy 1[x(l - x) 'l/;( ) - 27r Jo (y(l - y))3/21f(Y) m2 [ 2x-l _ 2y-l P+m 2 . 
f v'4x(l-x) V4 y(1-y) B 

(2.13) 
Here the variable x is the light-front momentum fraction. The variables x and q are 

related by x = !(1 - J q ). The analytic solution to equation (2.12) in coordinate
m;+q2 

space is given in Appendix A. We also solved equations (2.12) and (2.13) numerically 
via Gauss-Legendre quadrature. We studied the solutions for three values of the boson 
mass squared: m'iJ = 0.05,0.5, and 3.5. The invariant mass of the lowest bound state 
(M2 = 4mF[mF - ED for the three choices of boson masses are given in Fig. 1. We note 
that the invariant mass of the bound state approaches zero faster, the smaller the boson 
mass. Of ~ourse, the solution of the Schrodinger equation is not to be trusted when the 
invariant mass deviates considerably from the threshold value (in the present case 4m}). 
For a given value of the coupling constant, the number of bound states increases as the 
boson mass decreases. The ground state wavefunction for m'iJ = .5 obtained from the 
solution of equation (2.13) is plotted in Fig. 2 for 9 = .1 and 9 = .4. For weak coupling 
the wavefunction is strongly peaked about light-front momentum fraction x :::::: ~ but as 
the coupling strengthens, medium to high momentum components build up indicating a 
possible breakdown of the non-relativistic approximation. To get a quantitative picture of 
this breakdown, we turn to the study of relativistic effects. 

B. Light-front ladder approximation 

We start from equations (2.9) and (2.11) and drop self-mass corrections and countert
erms. The resulting equation is called the light-front ladder approximation, or LFLA. Here 
one takes into account relativistic kinematic corrections and retardation effects (indicated 
by the presence of the invariant mass M2 in the kernel). The equation was discretized using 
Gauss-Legendre quadrature. We have solved this equation to find the coupling constant 
for each given value of M2, for boson masses m1 = 0.05,0.5, and 3.5. The convergence 
of results with respect to the order of the quadrature was found to be slower as the boson 
mass became lighter. In all cases the relativistic effects are found to be repulsive, i.e., for 
a given value of the invariant mass LFLA requires a larger coupling constant compared 
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to the Schrodinger equation. In this case also the invariant mass decreases and eventually 
becomes negative as the coupling strength increases (see Fig. 3). 

Once again the question is in what domain of the coupling constant can one trust the 
results. To get a quantitative picture we return to equations (2.9) and (2.11). 

C. Lowest order Light-Front Tamm-Dancoff: 

Explicit elimination 


Once we include the self-mass effects, the renormalized equation which we call first 
light-front Tamm-Dancoff, or FLFTD has the same structure as LFLA. Hence we again 
solve for the coupling constant for various values of mass parameters after discretization 
via Gauss-Legendre quadrature. In Figs. 3a, 3b and 3c we present the invariant mass 
versus the coupling constant for Schrodinger equation, LFLA, and FLFTD. 

We observe that the three approximations are fairly close to each other in the weak 
coupling domain. In the strong coupling domain two effects are observed. First, the 
self-mass effects are more repulsive than retardation effects. Second, the invariant mass 
initially decreases but eventually becomes independent of the coupling constant as the 
coupling constant increases. It can be shown that after the introduction of counterterms, 
the eigenvalue M2 depends only on an effective coupling constant 92 = f(g2) where f(g2) 
approaches an invariant function of momentum fractions as 9 becomes large. 

The two-particle amplitude "p2 of the ground state is presented in Figs. 4a, 4b and 
4c. The spread of"p2 as the coupling increases is clearly visible. 

Although we are analyzing a covariant approximation to the full Tamm-Dancoff prob
lem, the question arises concerning the reliability of the lowest order approximation. An 
obvious method is to include higher Fock space states and study the convergence of the 
invariant mass. An alternative is however available in the present approximation scheme. 
The explicit elimination method gives us the two particle piece"p2 of the full state"p. Since 
we know the invariant mass of this state and the coupling constant we can utilize equation 
(2. 7b) to explicitly calculate the three particle amplitude I "p3 >. By normalizing the full 
state I 'II > we evaluate the contributions to the norm, NORM2 and NORM3, from the 
two-particle and three-particle states respectively; i.e., 

NORM2 = [dX 1,P2(X) 12 , (2.14) 

and 
l l Xr r -

NORlvI3 " Jo dx Jo dy I "p3(X, y) 12 (2.15) 

We plot these norms versus the coupling constant in Figs. 5a, 5b, and 5c. We can probably 
trust the lowest order approximation only in the region where NOR112 > NOR:rvr3. Froln 
the figures it is clear that the region where the self-mass effects become important is 
also the region where the approximation (i. e., the truncation of Fock space to the lowest 
two sectors) starts to break down. Thus in the strong coupling region, even though the 
invariant mass stabilizes, (i. e., becomes independent of the coupling strcngth), the state is 
mainly a three-particle state. Thus the lowest order approximation is questionable in thc 
region where the self-mass corrections become important. In the present work, however, 
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this is of little concern to us since our major motivation is to develop techniques for solving 
coupled integral equations. 

III. SOLVING THE COUPLED TAMM-DANCOFF EQUATIONS USING 
BASIS FUNCTIONS 

In the previous section the coupled Tamm-Dancoff equations, equations (2.7a) and 
(2.7b), were analyzed by first eliminating the three-particle wave function 'l/J3 in the second 
equation and plugging back into the first equation for 'l/J2. In this way the full solution 
to lowest order Tamm-Dancoff in the charge two sector was obtained. In this and the 
next section we experiment \vith other methods for solving equations (2. 7a) and (2.7b). In 
particular, we will retain both 'l/J3 and 'l/J2 and reduce the problem to a linear eigenvalue 
problem for M2. The main goal here is to develop methods that are more easily generalized 
to higher order Tamm-Dancoff and/or higher dimensional theories. One must keep in mind 
that it will not always be possible to eliminate all but one of the amplitudes and end up 
with a single integral equation such as equation (2.9). In fact, in general it is not even 
possible to eliminate one amplitude. We will have to learn to work directly with the 
coupled equations. In this section we discuss a method in which both 'l/J2 and 'l/J3 are 
expanded in terms of basis functions. In the next section we report on results obtained by 
direct discretization of equation (2.7). Since in this simple 1+1 dimensional model results 
obtained via other methods (e.g. from the previous section) are available, we have an ideal 
laboratory in which to gain familiarity with and test these more general approaches. 

Basis functions have been used for several decades in quantum chemistry to solve 
many-body Schrodinger equations5 . The wavefunctions are expanded in terms of a finite 
nurnber of basis functions (e.g. Gaussians) and one ends up with a finite matrix diagonal
ization problem. One important objective of the present work is to investigate whether 
basis functions can also be applied to the Tamm-Dancoff equations. A major difference 
between quantum chemistry and the current field theory applications is that the latter 
involves renormalization and the elimination of infinities via counterterms. Can renormal
ization be implemented with only a small number of basis functions? We have expended 
considerable time trying to come up with a practical renormalization scheme within the 
context of using basis functions and a finite matrix representation of complex field theoretic 
bound state equations. 

There is a wide range of different basis sets that one could contemplate testing. Given 
that there is almost no data on basis functions in field theory, we decided to rely initially 
on the experience of quantum chemists and try Gaussians. We have also worked with 
sines, a basis set that has the advantage that all integrals can be carried out analytically. 
Generically, the amplitudes 'l/J2 and 'l/J3 are represented as; 

(3.1a) 

'l/J3(X, y) L bkFk(X, y) 
k 

L b(ij)¢i(X)¢j(Y) , (3.1b) 
(ij) 
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with 

(3.2a) 

or 

(3.2b) 

Note that we do not require our basis functions to form an orthonormal set; however, we 
do require that the three-body basis functions be products. 

After inserting the above expansion into (2.7), one has; 

Yma.z" J 	 1<Pi(X)<pj(Y) 1+ gMF L,; b(ij) dy (-- + - )8(1 - x - y) 
. . y'1 - x - y 1 - x Y 

(') Ymin 

Yma.z 

<Pi(1 - y)<pj(1 - x) 1 1 
+ gmf b(ij) dy 	 (- + -1-)8(x + y - 1) ,L. . J y'x + y - 1 x - Y 

(I) Ymin 

(3.3a) 

2 M2 22" ) ( " mf F 	 (mBM 	 .L.t b(ij)<Pi(X <Pj y) = .L.t b(ij)(- + - + 1 ) <Pi(X)<pj y) 
(ij) (ij) x Y - x - Y 

1 1 1 
+ gMF Laj (- + --)hj(x) 

) 
. v'1 - x - y y 1 - X 

111 
+gmfLaj (-+--)hj(l-y). (3.3b) 

. y'1 - x - y x 1 - y
) 

We have left the counterterm (C.T.) unspecified for the time being. 
To convert equation (3.3) into a matrix equation one operates with Jdx hk(x) on (3.3a) 
and with Jdx Jdy 8(1- x - y) <Pk(x )<Pl(y) on (3.3b) . Suppose one uses N2 basis functions 
for 'l/J2 and N3 total number of products for 'l/J3 (N3 = n3 x n3, where the indices i and 
j in (3.1b) run from 1 to n3)' One then ends up with matrices of size N x N , where 
N = N2 + N3 . The eigenvalue equation becomes 

N N 
M2 L AabXb = L(B + BC.T·)ab)(b , (3.4) 

b=l b=l 

10 



where ...;"(b = aj or b(ij). \Vhen 1 ~ a, b ~ J.V2 , we have 

A.b = J1 

dx h.(x)hb(X) , (3.5a) 
o 

(3.5b) 

1-£ 

B~f·T.) = Jdx h.(x)(C.T.) hb(X) . (3.5c) 
E 

A.b = J
1 

dx J
1 

dy 6(1 x - y)<pk. (x )<pl. (y )<Pi. (x )<Pi. (y) , (3.6a) 

o 0 

X maz Ymaz 

B.b = Jdx Jdy 6(1 - x - y) 

Xmin Ymin 

When 1 ~ a ::; N2 and N2 + 1 ::; b ::; N , we have 

e(l) e(2)
Bab = ab + ab , (3.7) 

Xmin Ymin 


X maz Ym4:r: 


C~~) = gmf J dx J dy6(x +y 
Xmin Ymin 

(3.Sb) 

Finally, for N2 + 1 :::; a ~ Nand 1 ~ b ~ N 2 , we use 

(3.9) 
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All other matrix elements vanish. In principle, one now just has to carry out the integrals 
in equations (3.5) through (3.8) to evaluate all matrix elements and then diagonalize to 
obtain eigenvalues and eigenfunctions. There are however some subtle points that need to 
be emphasized. First of all one must choose the limits of integration carefully, so that not 
only the 8-function constraints are satisfied, but also so that singularities of the integrands 
are avoided. For instance, in (3.5b) and (3.5c) €'s have already been inserted to avoid end
point singularities at x = 0 and x = 1. The dependence on this type of € disappears in the 
final answers for eigenvalues, since upon diagonalization the bound state wave functions are 
such that they vanish around x = 0 and x = 1. For sine basis functions (equation (3.2b)) 
expressions such as· h j ( x )I x are also finite everywhere from the beginning. However, for 
Gaussian basis functions one needs to retain a nonzero € at intermediate stages of the 
calculation. 

The cutoff dependence of some of the other matrix elements, equations (3.6) through 
(3.8), is more subtle. We know from the previous section that without the 'counterterm' 
, one will have log € singularities in general. So in the present formalism a similar log € 
dependence must show up upon diagonalization through an interplay of matrix elements 
in (3.6) and (3.8), if the basis is sufficiently large. In our calculations with Gaussian 
basis functions all our integrals "vere done using an 'Adaptive Gauss Quadrature' routine 
from the Quadpack6 Library. The CPU time required was sometimes fairly large making 
this method impractical for larger calculations without some modifications. After some 
experimenting, we found it most convenient to introduce cutoffs into equations (3.6) and 
(3.8) in the following way; 

X 17la .:z: Y17la.:z: l-E l-Y-ElJdx Jdy e(l - - Jdy J dxx y) -------+ 

X 171 in Y17lin E El 

X 171 a.:z: Y17la:z: l-E l-El

J dx Jdy 8(x + y - 1) ---7 Jdy J dx (3.10) 

X 171 an Y17lin E l-Y+El 

€1 was taken to be €/lO (the relative factor of ten is arbitrary; the only requirement 
being € > 2(1). We will show below that for a wide range of €'s a log € dependence in 
the eigenvalues can be reproduced approximately when the counterterm is omitted. To 
further optimize the numerics (both in terms of CPU time and proper € dependence) \ve 
have taken the following steps. First, we include the square root factors appearing in (3.8) 
into our definition of 1/J3; that is instead of (3.lb) one has; 

(3.1b' ) 

with fi(X) given again by the left-hand-side of (3.2a) or (3.2b). Equations (3.6) and (3.8) 
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are then modified to; 

Aab = j'dY l-T"dX(l- x  y) fk. (x)f,.(y)f;.(x)fj.(Y) , (3.6a') 

€ €l 

(3.6b') 

(3.8a' ) 

(3.8b') 

Most of our calculations were done using equations (3.6') and (3.8'). Another advantage of 
this form is that for sine basis functions all integrals can be carried out analytically. As a 
final step to save on CPU time, for Gaussians we have carried out some partial integrations 
analytically (e.g. in (3.6b')) to isolate singular parts. 

As a next step one must specify the 'counterterm', B(C.T.). Our renormalization 
prescription is the same as in the previous section. When'ifJ3 is eliminated explicitly in favor 
of'ifJ2 as in section 2, one has an analytic form for the 'self-mass' contribution (equation 
(2.9)); and it is straightforward to read off what the appropriate counterterm should be. 
In the approach of this section, the analogue of 'self-mass' corrections emerges only upon 
diagonalizing and solving equation (3.4). Should one in this case nevertheless use the same 
'counterterm' as in equation (2.11) ? Will 'counterterm' plus 'self-energy produced after 
diagonalization' lead to the correct finite correction to the binding energy? If one uses a 
complete ( and hence in principle infinite) set of basis functions for 'l/J3 the answer to these 
two questions is yes. The whole purpose of using basis functions however is to choose them 
cleverly so that one can reproduce the correct physics with only a small nUlnber of them. 
It is very probable that a much smaller number is needed to get the finite contributions 
accurately, than is necessary for the singular parts that will be eventually canceled. So 
one would like to come up with a subtraction scheme that is capable of canceling basis 
function dependent singular parts, but still leads to correct finite parts consistent with our 
renormalization prescription. The need for a general basis dependent subtraction schenle 
becomes clear if one considers using sine basis functions. In that case all integrals in (3.6') 
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and (3.81
) are finite and no log € terms will show up . Obviously, one should not introduce 

a counterterm like that in equation (2.11) which has a log € divergence. On the other hand 
even in this case one needs a finite renormalization to ensure correct threshold behavior, 
so one cannot ignore the counterterm altogether. \Ve describe below a so-called 'Basis 
Function' (BF-) subtraction scheme which can be applied to any set of basis functions, 
in particular to both the Gaussian and the sine basis functions. Regardless of whether 
a log (€) dependent or just a finite counterterm is called for, the BF-subtraction scheme 
is set up to satisfy our renormalization prescription described in Sec. II and lead to the 
correct binding energy. What is still required, however, is that the set of basis functions 
be sufficiently clever and complete so as to get the finite parts to reasonable accuracy. Let 
us rewrite equation (3.4) as 

(3.11) 

...12,3 and B 2 ,3 are the N2,3 x N2,3 matrices corresponding to equations (3.5) or (3.61
), and 

the 6(i)'s are the N2 x N3 matrices given in (3.8 /). One can now proceed with the analogue 
of eliminating 7/;3, One first expresses X3 in terms of X 2 and then inserts the result into 
the equation for X 2, 

(3.12) 

M2 ...12 X 2 = (B2 + B(C.T.») X 2 
+ (6(1) + 6(2»)(M2 ...13 - B3 )-1(6(1) + 6(2))TX2 (3.13) 

where T denotes transpose. 

The analogue of the self-mass graphs are given in this formalism by, 

(3.14) 

where; 
A A A2 

D = M A3 -B3' (3.15) 

The boson exchange graphs are given by 

(3.16) 

A Let us first see what would happen if B(C.T.) in equation (3;13) were replaced by 
-S, for some fixed value 11/12 = 1v15 . Such a counterterm would ensure that self-mass 

14 



contributions vanish identically for that one particular value of ..'fI.12. For any other value 
the infinite parts would still cancel (one can argue that the infinite parts are independent 
of ]",12 ), however a finite part which depends on the arbitrary value .A1J would remain. So 
this procedure does not yet quite lead to our desired renormalization prescription. One 
needs a further finite subtraction to go from fixed M2 to M2 satisfying the renormalization 
prescription of section 2. This finite correction can be obtained by taking the difference of 
the expression for the self-mass equation (2.9) evaluated once for M2 ::::;; m}/x+M}/(l-x) 
and the second time for M2 = M6. The full counterterm then becomes; 

(3.17) 

(3.18a) 

1-E 1-E1 

B~f·T.b)(MJ) = g2 Jdx h.(x) hb(X) Jdz (1 : z)2 

E E1 

(3.18b) 

where, 

(3.19a) 

I-x 
G2 = ~~----~--~----~------------~----------~--------------m} (1 - x) (1 - z) + M} z x (1 - z) + m~ (1 - x) z - MJ z x (1 - z) (1 - x) , 

(3.19b) 

1
G3 = -::-::~----~--~::--- (3.19c)

M} (1 - z)2 + m~ z 

G4 = ~2~(~--~)--(~--~)----~----_x------------~------~--~x)' (3.19d)
I-x z I-z +MJ.x(l-z)+m1xz-MJzx(l-z)(1m f 

The left hand side of (3.17) should be independent of lvfJ. In most of our calculations 
we have used MJ (mf + MF )2. We have checked that changes in MJ of 10% lead to 
differences in eigenvalues comparable to our other systematic errors (usually less than 1 % 
). Note that fj(C.T.b) and the difference S(M2)-S(MJ) ,which is the combination relevant 
for equation (3.13), are both finite. For Gaussians, fj(C.T.a) = S(MJ) is used first to get 
rid of infinities, and iJ(C.T.b) then makes finite corrections to eliminate MJ dependence 
and implement our renormalization prescription. This procedure also works for sine basis 
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functions, for which S(A12) and S( ..'1~) are individually finite. All this assumes that the 
basis functions are representing 1j;2 and tP3 sufficiently well so that the finite parts of all 
integrals are accurately reproduced. The main goal of the present investigation is to gather 
data on the number and types of basis functions required to achieve this. So we turn now 
to some of our actual numerical results. 

To get some feeling for how to expand a typical wave function in terms of Gaussians of 
type (3.2a) one can try to fit some of our results for ?/J2 of the previous sections. There is a 
huge amount of freedom in choosing the centers of the Gaussians (the Vk 's) and the width 
(the Uk'S). One can.decide to work with only a small number of different Vk'S (0 $ Vk $ 1 ) 
and many different Uk'S or vice versa. We have found that good fits to ?/J2 can be obtained 
with 6 Gaussians (two widths each at three different centers). The optimal choices for 
the parameters does depend on the coupling and masses. The question is whether the 
same ?/J2 and the corresponding ?/J3 consistent with equations (2.9) and (2.11) will follow 
automatically from direct diagonalization and what the criteria for a good choice of basis 
functions will he when the exact results are not known. 

When we started playing with Gaussian basis functions we were immediately faced 
with the problem that due to the infinity of possibilities there is no systematic way to build 
up larger and larger sets and test convergence; that is there is no obvious initial minimal 
set to start with, to which one can add new Gaussians in a well-motivated manner. The 
situation is different with sine basis functions where one can just let the parameter k in 
(3.2b) take on larger and larger integer values. It will not be possible to describe the 
entire history of how we ended up using the Gaussians that we chose. In many cases it 
was just 'trial and error' until the, in the present situation, known eigenvalues were well 
approximated. Some of the sets used are tabulated in Table 1, and are denoted 'set A', 
'set B' etc. 

In the first round of calculations we kept the same set of basis functions for fixed 
m f ,MF and m B and tried to reproduce the correct eigenvalues for a range of coup1ing~1 g. 
In Fig. 6a, 6b, and 6c we show the lowest eigenvalue versus g for three different values of mB 

for sets A and D, and compare with the results from section 2. As in the previous section 
all masses are measured in units of the fermion mass (also mf = MF as before). One sees 
that even with a small number of Gaussians reasonable agreement is found with the known 
results especially for the two smaller values of m1. This gives us some confidence that 
the subtraction scheme described above is implementing our renormalization prescription 
correctly. To check on the € independence we plot in Fig. 7 the lowest eigenvalue versus 
€} for one particular choice of masses and basis set. We also show what happens if no 
counterterm is included and verify an approximate log € behavior. Finally in Figs. Sa, 8b, 
and 8c we present results for sine basis functions together with the exact results. Again 
agreement is good except for large mB and large g. vVe recall that the singularity structure 
of matrix elements are very different for sines compared to Gaussians and are encouraged 
that both types of basis functions give the same finite physical results. 

To summarize the data presented so far, it appears that a small number of suitable 
basis functions reproduce the eigenvalues well. This is true even if we do not choose to 
optimize by using different basis functions for different couplings. Before going on to 
discuss wavefunctions we mention some of the problems that emerge when the calculations 
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are scrutinized in more detail. The first issue becomes apparent when we ask ourselves the 
question, how would one choose one set of basis functions over another if one did not know 
the true results. The problem is a serious one since, as can be seen in Fig. 6 and Fig. 8, 
the eigenvalues do not necessarily approach their correct values monotonically from above. 
vVe believe that due to nonlinearities in our complicated subtraction scheme a variational 
principle is lacking in our calculations. vVe describe below one consistency requirement 
which tells us how close we are to the true result, but there is certainly room for better 
ideas to get around this problem. The second issue has to do with. our experience that 
adding more basis functions does not necessarily improve things. This phenomenon is well 
known to quantum chemists and can be traced back to numerical instabilities from using 
nonorthogonal basis functions (sines are also not 'orthogonal' for tP3 due to the 9-function 
in (3.6a)). The left-hand-side of (3.11) is not proportional to a unit matrix, so one is 
dealing here with a generalized eigenvalue problem. Denoting the matrix on the left-hand
side by A, one sees that instabilities could arise if A has very small eigenvalues, or in other 
words if near 'linear dependencies' occur among the basis functions. Attempts to date to 
construct appropriate linear combinations of basis functions which do not suffer from linear 
dependency problems, have not proved to be useful. To solve the generalized eigenvalue 
problem we used the Eispack7 routine RSG which uses a Cholesky decompositionS of the 
matrix A . This routine is able to handle situations where the determinant of A is fairly 
small. However, for large basis sets, eventually one ran into numerical problems and the 
whole method collapses. Because of this we did not attempt to expand tP3 with more than 
n3 X n3 = 6 x 6 basis functions. Fortunately in most cases it was not necessary to go 
to larger sets, since n3 X n3 = 4 x 4 or even 2 x 2 already gave respectable answers. It 
is mainly for large m'iJ and large coupling that we would have liked to test larger basis 
sets. Having the ability to go to larger basis sets also gives us more leverage in choosing 
our initial minimal set. The way things now stand, it is crucial that one come close to 
the correct result right away before the method breaks down. So the two major problems, 
the lack of a variational principle and the 'almost linear dependence' problem ( it is not 
excluded that the two problems are related ), could present a bottleneck for applications 
of basis functions in the future. Clearly a lot more work needs to be done on these issues 
and perhaps more sophisticated numerical techniques developed. 

We now look at wave functions in more detail for two values of couplings 9 = 0.110 and 
9 = 0.517 and for m'iJ = 0.5 . After diagonalization the coefficients aj and bij are known 
and one can reconstruct tP2 and tP3 from (3.1a) and (3.1b') . To come up with quantitative 
estimates of how well the \vave functions are doing we have looked at several quantities. 
First one can check whether the relative normalizations of tP2 and tP3 come out correctly. 
We calculate NORM2 and NORM3 defined in (2.14) and (2.15) and compare with results 
for the amplitudes from the previous section (called 'exact' results in the Tables). Other 
measures include; 

DEVWF2 = J1 

dx (I'W· c'(x)I-I'/>2(x)I)2 , 
o 
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J1 

dx J1 

dy 0(1 DEVWF3 = x - y) (ItP;xact(x, y)1 - ItP3(X, y)l) 2 • (3.20) 

o 0 

Finally, if the 'exact' results are not available one can still check how well the relationship 
between tP2 and tP3 as given in equation (2. 7b) is satisfied. One can take the tP2 that came 
out of diagonalization and use equation (2.7b) to construct a tP3(X, y) which we will denote 
,(f;3 . This ,(f;3 can then be compared with the actual tP3 obtained through diagonalization, 
giving 

DEVWF = J1 

dx J1 

dy 0(1 - x - y) (1~3(X, y)1 -ltP3(X, y)l) 2 • (3.21 ) 

o 0 

In Tables 2a and 2b we tabulate various quantities for g = 0.110 and g = 0.517 
respectively, for several basis sets listed in Table 1. For the g = 0.110 data one sees that 
the [6 + 2 x 2] basis sets get the eigenvalue to about 1% and the [6 + 4 x 4] sets to better 
than 0.1 %. NORM2 is also respectably reproduced. We note that for this weak coupling 
most of the wave function resides in tP2 with minimal contribution from tP3. Hence NOR:NI2 
and DEVWF2 are more important than NORM3 and DEVWF3 . In Figs. 9a and 9b we 
plot tP~ (x) for the basis set L (the worst DEVWF2) and for set J (the best D EVvVF2) 
together with the exact tP~. 

Turning to the g = 0.517 data, again the [6 + 4 x4] sets do better in terms of M2 and 
NORM2 and NORM3. For DEVWF2 one notices that sometimes by going to larger basis 
sets this quantity gets worse although DEVl-VF2 + DEVWF3 improves. For this larger 
coupling feedback from tP3 onto tP2 is important ( this is also evident from the relative 
sizes of NORM2 and NORM3). When comparing the four [6 +4 x 4] sets (A,C,D and E) 
we see that the latter two have significantly better DEVWF2, although their eigenvalues 
are worse. Here by worse we mean by about 1 % and for,this coupling we certainly do not 
claim to have things under control to better than 1% or 2%. In Figs. lOa, lOb and lOc ,ve 
show tP~ (x) for sets A, D and F. These plots visualize the same information contained in 
DEVWF2. Of course when NORM3 is comparable to or larger than NORM2, doing well 
in tP2 is not the only criterion for a good wave function. In Table 3 we list DEVvVF of 
equation (3.21). If one did not know the exact result the only information available would 
be M2 and DEVWF. One sees that DEVWF does not differentiate between the four [6 + 4 
x 4] sets and one would have to quote something like the average and standard deviation 
of the four M2 values as ones best estimate. DEVWF does seem to see the difference 
between the [6 + 4 x 4) and [6 + 2 x2] basis sets and in particular to disfavor the lo,v 
eigenvalue of set H . In the future it is worthwhile trying to come up with other criteria 
for choosing one basis set over another. At the moment we do not have a systematic way 
to test convergence. We can only give some statistical estimate from among basis sets 
with reasonable DEVvVF values. If a large number of basis sets with small DEV\VF give 
similar eigenvalues one has some confidence that one is close to the true lvI2 . 

Finally we discuss the wavefunctions using sine basis functions. In Figs. 11a and lIb 
we plot t/J~(x) using 12+ 4 x 4 sine basis for m'h = .5 and 9 = .110 and .517 respectively. In 
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the two particle sector we have used only the sine functions which are symmetric under the 
interchange of x and 1- x. \Ve recall that using sine basis functions the convergence of the 
eigenvalue was generally from above as the number of basis functions were increased. The 
exception was the case m1 = 3.5 in the strong coupling domain where the convergence was 
from below. The sine basis functions do not have the problem, that the Gaussians have, 
of not telling us how to choose one basis set over another or how to add basis functions. 
In addition the sine basis functions allow us to compute matrix elements analytically. 

IV. SOLVING THE COUPLED TAMM-DANCOFF EQUATIONS USING DI
RECT DISCRETIZATION 

There are many ways to develop discretized versions of the coupled integral equations 
found in any Tamm-Dancoff approximation. Generically one tries to utilize quadrature 
rules to replace the integrals occurring both in the LFTD equations and the normalization 
condition with discrete sums. It is possible to discretize the equations of motion directly, 
or to discretize the expectation value of p2 for fixed P+. In both cases one replaces the 
original problem of finding the full amplitudes by a problem of finding the value of the 
amplitudes at a prescribed set of points. This last quantity then forms a vector, and the 
equations of motion become a matrix equation. Just as quadrature rules are often related 
to basis functions, such discretization techniques are related to basis function techniques; 
however, we will not explore this relationship. We begin by briefly discussing the general 
problem of choosing quadrature rules, and then rapidly turn to the simple choices that we 
have investigated. As discussed in the last section, any numerical algorithm must include 
a prescription for computing counterterms. In this section we again take advantage of the 
simplicity of the first Tamm-Dancoff approximation to analytically determine the mass 
counterterm appropriate for each discretized equation of motion, and completely avoid 
the larger issue of how one should determine these counterterms in higher Tamm-Dancoff 
approximations. 

Having decided to employ quadrature rules, we still have an infinite number of options. 
We must decide on a multi-dimensional grid, and we must select weights to associate 
with each point on the grid in each integral. Obviously the grid and weights should 
be chosen to provide accurate estimates of the integrals occurring in the normalization 
condition and in the expectation value of p2. Since these integrals depend on the unkno\vn 
amplitudes, quadrature rules must be chosen that are accurate for a wide range of functions. 
We are forced to employ the same grid in all integrals, but we are free to use different 
weights in each integral. Ideally we would like to choose a formula that is suited to 
adaptive quadrature, because we may not know anything about the shape or strength 
of the amplitudes a priori. This means that we would like to have the freedom to set 
down an initial grid and then improve the resolution in any given region depending on 
the initial solution of the LFTD equations. Putting these considerations together we have 
decided to examine relatively simple few-point quadrature formulae. A major difficulty in 
the development of accurate formulae is the fact that we are faced with multi-dimensional 
quadrature. 

We have investigated only the simplest quadrature rules. First, we always use the 
same weights in all integrations. Second, we assume a product rule for the weights in 
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multi-dimensional integrals, and this is probably one of the largest sources of error in our 
calculations. A product of one-dimensional weights leads to errors in multi-dimensional 
integrals that fall off less rapidly than the one-dimensional errors, regardless of the one
dirnensional quadrature formula employed. This problem is exacerbated by the fact that 
some integrands diverge along the edges and in the corners, as discussed below. As a result 
we usually found little benefit to using anything more sophisticated than a trapezoidal rule. 
In fact we have never observed significant improvement in any result from using quadrature 
rules more complicated than the trapezoidal rule. vVe will briefly discuss improvements 
resulting from using grids in which the end-points are not simply removed. 

In order to choose a grid, consider the discretization of the LFTD equations, equations 
(2.7a) and (2.7b). For every grid point x = Xn we choose for 1/;2(X), we must include the 
grid points (x, y) = (xn, y) and (x, y) = (x,l - xn) for 1/;3(x, y) and vice versa. In other 
words, \ve must include the points (x, y) = (xn,l - xm ) for all allowed nand m. The 
implications of these constraints are readily seen by examining the triangular region of 
momentum space in which the three-body amplitude lives. For fermion momenta x and y, 
and boson momentum z, momentum conservation implies x + y + Z = 1. This constraint 
leads to an equilateral triangular surface in momentum space, as shown in Fig. 12. Note 
that \vhen one moves parallel to any boundary, the variable that vanishes on the boundary 
stays constant. The constraint x + y = 1 is met only on the bottom boundary of the 
triangle, and \ve construct the grid for 1/;2 on this boundary. Given a set of grid points for 
1/;2 (x) on this boundary, it is easy to see that the above constraints imply that the grid 
for 1/;3 (x, y) is obtained by drawing lines parallel to the other two boundaries from each 
such point, and using the points where these lines intersect as the grid for 1/;3 (x, y). This 
procedure is easily generalized to arbitrarily large many-body spaces, where one must dra\v 
hypersurfaces through each point Xn, parallel to all hypersurfaces on which one momentum 
vanishes and construct a grid using the points at which these hypersurfaces intersect within 
a hyperpyramid. 

We have now constructed the most general grid we can use, and it is specified once we 
choose the grid points for 1/;2. Before proceeding to the next step of determining \veights, 
note that one of the major disadvantages of using grids is now apparent. The number of 
grid points one must employ to obtain a given resolution in the two-body space, N, gro\ys 
like Nm-l where m is the maximum number of particles allowed by the Tamm-Dancoff 
truncation. vVe will consider cases \vhere lV is of order 102 , so that the number of grid 
points is of order 104 in our extremely simple example. This already leads to a potentially 
difficult matrix problem, so \ve use the Lanczos algorithm to generate low-lying eigenvalues 
and eigenstates. 9 ,10 The advantage of grid methods is that the matrix elements of p2 are 
easily found and can be expressed in analytic form. We saw in the last section that this 
need not be the case for many choices of basis states, and when we use Gaussian basis states 
we must use numerical quadrature to compute matrix elements. An additional advantage 
is the obvious check on convergence provided by increasing the number of grid points. '\~e 
have found no instability in the method as the number of grid points is increased. To 
the contrary, the most efficient method for computing accurate eigenvalues with a grid is 
to extrapolate the eigenvalues that would be obtained in the continuum from a series of 
results on small grids. 
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The simplest grids are equal-spaced, and an obvious choice is to divide the line 0 < 
x < 1 into JV + 2 equal segments, discarding the end-points. Once one has chosen a grid, 
it is next necessary to choose weights. The simplest choice is to use equal weights; i.e., the 
trapezoidal rule. \Ve will refer to the combination of equal spaced points with end points 
removed and equal weights as a basic grid. A promising method for choosing weights is 
to adjust them so that the quadrature formulae yield exact results for amplitudes that are 
piece-wise polynomial. In addition to the basic grid, we have studied one and three panel 
equal-spaced grids, using the trapezoidal rule and Simpson's rule; and we have studied one 
and three panel Gauss-Legendre grids. In each case, the quadrature rule was chosen for 
the two-fermion momentum, after which the three-body grid was constructed following the 
procedure outlined above. Given a three-body grid point (x, y), the weight for this point 
was chosen to be the product of the weights for the points x and 1 - y on the two-body 
grid. This completely specifies all grid points and weights. 

Perhaps the most tedious step in the development of numerical algorithms is assigning 
indices to each point on the grid. For the two-body grid this is trivial, and one has an 
index i which runs from 1 to N. On the three-body grid we need a vector index I that runs 
from 1 to N(N -1)/2, so that we can treat all quantities with arguments in this domain as 
vectors. This is necessary both for efficient storage and to allow the code to be vectorized. 
However, there is no natural way to sequence the points on this grid, making I an awkward 
index for most purposes, as will become all too clear below. Consider the momenta x and 
y. For a given point I on the grid, we can find x by drawing a line parallel to the left side 
of the triangle in Fig. 12 and determining its intercept on the lower boundary. This means 
we would like to be able to use an identity of the type XI = Xi. To find y we would dra\v 
a line parallel to the right side, and try to use an identity such· as YI Yj = 1 - xi' \Ve 
will assume that every point on the three-body grid is specified by an index I with which 
we also associate these indices i and j, and we show this relationship where necessary by 
writing lij, i, and j,. In order to avoid confusion we will use the letters i and j to refer 
to indices that run from 1 to N, and the letter 1 to refer to indices that run from 1 to 
N(N - 1)/2. 

After discretization, the normalization condition, equation (2.8), becomes 

N 2 N(N-I)/2 2 

1 = ~ w(i) (.p2(Xi») + t; w(i,)w(j,) (.p3(X( i,),l- X(j')) . (4.1) 

Our aiIn is to convert the original coupled integral equations into a single matrix equation, 
so we want to \-vork with vectors that have a unit norm. vVe restrict ourselves to positive 
weights and define the vectors c2(i) and c3(1) so that 

(4.2) 

and 

(4.3) 

Given a grid, weights and state vectors, it is relatively straightforward to determine 
the discretized LFTD equu;tions that result from equations (2.7a) and (2.7b). They are 
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A12 c2(i) = (m} + 8(i) + lvI} + Ll(i)) c2(i) 
Xi 1 - Xi 

~ {fIJf(j) (1 1) (1 )+ gm f L - + - C3 ji 
. Xi - X}' Xi X}"

}=l !!if')(1 1 ')+ gMF LN ~~ " 1 _ . + 1 _ . c3(lij), ( 4.4a) 
.. x} X, X, x}
}=z+I 

(4.4b) 

Note that in the first sum to occur in equation (4.4a) the indices on 1have been reversed. 
In the first sum as j increases one moves parallel to the right side of the triangle in Fig. 12, 
while in the second sum one moves parallel to the left side. We have dropped the subscripts 
on i and j in equation (4.4b), but their values are specified by l. We have introduced the 
counterterms 8(i) and Ll( i), which are adjusted so that self-mass corrections vanish when 
M2 = m}/xi + M}/(l - xd. This is accomplished uging 

i-I (.) ( ) 2 (2 2 2)-1C(') 2 2 W J 1 1 mf mB mf 
uZ -gm -+- --+ -- ( 4.5a) 

- f~Xi-Xi Xi Xi Xi 'Xi xi-xi 

( 4.5b) 

When one goes to the continuum limit these counterterms insure that the mass of all 
two-fermion scattering states is correct regardless of their relative momentum. This in 
turn allows one to construct well separated wave packets that propagate as free fermion 
packets with the correct mass. 1,2 In the continuum lilnit equation (4.5) amounts to an 
infinite number of renormalization conditions that require one to determine a complete 
function. On the grid one cannot construct states in which two fermions are separated by 
an arbitrarily large distance, and these counterterms do not fix the discrete nlasses at which 
scattering state eigenvalues occur. Rather, they fix the limits approached by the discrete 
eigenvalues as the continuum limit is approached (i.e., as the number of grid points is taken 
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to infinity). We should note that this counterterm includes the self-inertia. Typically one 
would not be able to analytically determine the counterterm that properly fixes the mass 
for all scattering states. This is accomplished by a function of the momentum fraction x, 
and not by a simple constant, and only in the lowest order Tamm-Dancoff approximation 
is it possible to analytically compute the self-mass correction as a function of momentum 
fraction. Vve do not address this central point in this article. 

We should note that renormalization requires delicate cancellations that directly in
volve the eigenstates. For the Yukawa model in 1+1 dimensions on the light front, a 
logarithmically divergent self-mass counterterm cancels an interaction between the two
body and three-body sectors. Numerical calculations may need to accurately determine 
the eigenstates near the edges of momentum space, where small errors in the eigenstates 
might leave large counterterms uncancelled. This point is clarified by considering the 
expectation value of the invariant mass, 

If we consider a state in which C2( i) = C2bin, and let n be near the middle of the grid 
where we expect the two-body wave function to peak, we find that the mass counterterms 

contribute (b(n) + ~(n))(c2)2 to the mass. As N ~ 00, both ben) and ~(n) diverge 
logarithmically. The terms that cancel these divergences come from the last two terms in 
equation (4.6), and the cancellation is entirely the result of C3(lnj) and C3(ljn) falling off 
in the 'correct' manner near the edges of the grid. The eigenvalue problem is equivalent 
to minimizing the mass. Regardless of how well one chooses weights in order to obtain an 
accurate estimate of the mass for a given trial state, the mass of the trial state is sensitive 
to its value near the edges of the grid as we let N ~ 00. This is a potentially large source 
of error for many numerical algorithms, and the problem will be worse when one deals 
with quadratic divergences in 3+1 dimensions. 

The severity of the renormalization problem in 1+1 dimensions depends on how im
portant the eigenstate at the edges is for an accurate determination of the mass and other 
observables after the cancellation of the mass counterterms. For exaluple, \vhen the cou
pling constant is weak the eigenstates peak sharply in the central regions of momentum 
space and the edges do little except cancel the mass counterterm. In this case, one can 
simply use cutoffs that remove the edges and still compute observables to high accuracy 
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after incorporating the dependence on the cutoff's in the counterterms. In these simple 
cases it is easy to see that the exact eigenstate is accurately approximated by its perturba
tive form near the edges of the grid. However, as the coupling is strengthened, the binding 
energy increases and the eigenstates develop non-perturbative components near the edges 
of the grid. Here one is forced to move cutoff's near the edges, and more accurately com
pute the eigenstate throughout the entire allowed momentum space. Similar eff'ects can 
be seen in the basis function calculations. When the edges begin to become important, 
it may become necessary to employ quadrature rules that are accurate for logarithmically 
divergent integrals, since it is only the finite remainder after removing this divergence that 
is important to the.-observables. As a result one begins to see increasing errors in all the 

-simple quadrature rules that we have employed; however, as we will see below these errors 
are not unmanageable. 

At this point we have completely specified a Hamiltonian matrix of dimension N(N + 
1)/2, and we need to evaluate its lowest eigenvalues and eigenstates. This matrix is not 
sparse, and we want to allow N to become relatively large. While these matrices are not 
so large that we must adopt special methods to study them, in anticipation of future work 
in which additional Fock space sectors are included and/or 3+1 dimensional theories are 
studied, we have chosen to use the Lanczos algorithm.9 ,Io This algorithm is useful when 
one wants to find only the lowest eigenvalues and eigenstates of a large matrix, and the 
matrix elements are easily computed. This is exactly the kind of problem we have. 

We will briefly describe the Lanczos algorithm and refer the reader to the literature 
for more extensive discussion. Given a M x M Hamiltonian, H, one first chooses an initial 
state, I<PI >. A second state is generated by applying the Hamiltonian and orthogonalizing 
with respect to the first state, 

(4.7) 

where 

N z is a normalization constant. One next generates additional states by repetitive appli
cation of the formula 

(4.8) 

It is readily shown that in this basis the original Hamiltonian is tridiagonal, and one 
computes the matrix elements in the process of generating the states. The main advantage 
of the algorithm is that one can stop this process at some value of i = imax « .AI, 
and diagonalizing the resultant imax X imax tridiagonal matrix yields an approximation 
to the lowest eigenvalues and eigenstates of the original matrix. One can improve these 
approximations by generating a new guess from the resultant eigenstates and starting 
the process over again. vVe iterate this process until a specified accuracy is obtained, as 
signalled by the change of a specified eigenvalue. 

24 



Let us turn to the results. \Ve discuss only the basic grid, for which 

X;= N~l' w(i) = N~l' i=1,2, ... ,N. (4.9) 

\Vith few exceptions the results from other simple grids are qualitatively identical to those 
obtained \vith the basic grid. In Figs. l3a, l3b, and l3c we show the lowest eigenvalue 
versus 9 for the same three values of m'iJ used in Figs. 7a, 7b and 7c, and compare to the 
results from Section II. In each case, we show the results of using N -:- 15 and N = 45 grid 
points for tP2. There is no simple way to study the accuracy of 'comparable' basis function 
and grid calculations, because at this early stage of investigation we have no good way to 
decide which calculations are comparable. We will elaborate this slightly in the conclusion, 
but in this section we will simply avoid any comparison. The first thing to note is that for 
sufficiently large N the grid results converge to the exact result with a well-defined leading 
error that is order 1/N. To see this we show in Figs. l4a, l4b, and l4c the grid results for 
the last points in Figs. l3a, l3b and l3c, as a function of the number of grid points used, 
N. In addition we show the result of using Richardson extrapolation to remove the leading 
1/N and the 1/N 2 error in the grid results. It is clear that in all cases, for sufficiently large 
N this extrapolation significantly improves the mass estimate. We have also investigated 
the use of higher order extrapolations and found that one can readily remove 1/N3 and 
higher order errors, subject to the constraint that the mass eigenvalue must be computed 
to sufficient accuracy. Results can easily be obtained to four or more significant figures 
using this technique. We have not shown extrapolated results in Figs. l3a, l3b and l3c 
because they lie on top of the exact results. These conclusions hold for all grids that we 
have investigated. One can employ a trapezoidal rule and keep a point near the edge of 
momentum space, or use Gauss-Legendre points and weights, and the error still goes like 
l/iV. 

An examination of Figs. l3a, l3b and l3c shows that the error for a given grid size 
tends to grow as the coupling constant increases, just as we saw in the basis function 
calculations. The grid results continue to approach the exact results as a power series in 
liN; however, as the coupling grows this series converges more slowly for a given N. We 
have not shown this, but the behavior one sees as a function of 9 is somewhat like that 
seen in going from Fig. l4a to Fig. l4b. In Fig. l4a one can see that the grid calculations 
converge rapidly towards the exact result even near N = 5; whereas in Fig. l4b one 
must go to grid sizes around N = 40 before the results even begin to move towards the 
correct answer as the number of grid points is increased. We have not fully understood 
this behavior, but several clues are provided by an examination of the eigenstates. 

As 9 increases, the binding energy increases, the eigenstates are increasingly domi
nated by the three-body component, and the eigenstates begin to spread evenly through 
momentum space except at the edges where the states are supposed to go to zero. This 
behavior is readily seen in Figs. 4a, 4b and 4c. In Figs. l5a, l5b and l5c we show tP2(X) 
from the above grid calculations and compare to the exact results, for several sets of pa
rameters. These figures reveal that the grid states closely resemble the exact states \vhen 
they are strongly peaked near x 1/2. However, as the states spread and develop signifi
cant strength near the edge of momentum space one begins to notice that the grid states 
either do not approach zero at the edges of momentum space at the proper rate or do not 
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approach zero at all. This problem is not due to the use of the Lanczos algorithm. It may 
be .due to errors in the quadrature estimates of the contribution to the invariant mass from 
the edges of momentum space. In Fig. 15d we show the result of using the trapezoidal 
rule but keeping one of the grid points very near the edge of momentum space, with the 
same parameters as the state shown in Fig. 15c. Clearly this improves the behavior of the 
state near the edge of momentum space in this case, but there are other parameter sets 
for which all grids that we have studied lead to states with some form of spurious behavior 
near the edge of the grid. Even in these cases one can obtain accurate estimates of the 
eigenvalues, but it is likely that these edge problems increase the coefficients of each term 
in the 1/N expansion of the error. 

To complete our discussion of the grid calculations we sho\v in Figs. 16a and 16b a 
comparison of exact and grid calculations of 1f;'#, (x) for the same sets of parameters used in 
Figs. 9 and 10 respectively. One sees that even on relatively small grids it is possible to 
obtain reasonable approximations to the wave functions when they peak near x = 1/2. 

To summarize, simple quadrature rules provide discretized versions of the LFTD equa
tions that yield accurate, systematically improvable eigenvalues and eigenstates. One can 
use relatively small grids and Richardson extrapolation to obtain accurate results, with 
increasing errors when NORM2 becomes small and the eigenstate develops an important 
component along the edge of the grid. The program is easily vectorized because 85% of 
the computer time is spent generating new states, as in equation (4.8). The primary limi
tation for these methods in more difficult calculations comes from the exponential growth 
of the number of grid points as the dimension of the Fock space is increased either to allow 
additional particles or additional spatial dimensions. A second source of difficulty comes 
from the need to set up increasingly complicated grids in higher dimensional spaces while 
referring to all quantities as vectors. 

SUMMARY AND CONCLUSIONS 

In this work we study the two-fermion bound state problem of the 1+1 dimen
sional Yukawa model in a truncated Fock space which consists of two-fermion and bvo
fermion/one-boson sectors. First, by the explicit elimination of the three body state, we 
arrive at an integral equation for the two body state which contains one-boson exchange 
and logarithmically divergent self-mass corrections. This equation is renormalized using 
sector dependent counterterms. For various mass parameters we study the non-relativistic 
limit (Schrodinger equation), light-front ladder approximation, and the full integral equa
tion. We find relativistic effects to be very important in the strong coupling domain, where 
the invariant mass becomes independent of the coupling constant due to self-lnass correc
tions and counterterms. The results of this method of calculation serve as a testing ground 
for more elaborate methods to solve the coupled set of equations. 

To solve the coupled set of equations, we employ two methods: a) expansion in basis 
functions and b) direct discretization. In the following we illustrate the distinct features 
of these two methods of solution. 

Let us first summarize the aspects of basis function expansions. This nlethod has 
been in use for several decades in fields employing non-relativistic many-body techniques, 
for example, quantum chemistry. In this method Inany-body amplitudes are expanded 
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in basis functions and the coupled set of integral equations are converted into a matrix 
equation which is then solved for the eigenvalues using standard techniques. Let us first 
emphasize the essential complications that arise in the field theory calculation. In a typical 
non-relativistic many-body problem, after the elimination of center of mass motion, the 
problem is set up in terms of relative momentum variables which are unconstrained. In 
the present field theoretic problem, the light-front approach enables us to perform frame 
independent calculations; however, the momentum fraction variables that appear have to 
add up to one, which poses severe constraints. As a result, multi-dimensional integrals do 
not factorize into products of one dimensional integrals. A second major problem is that 
of renormalization.-Our familiarity with divergent diagrams of field theory is in the basis 
of plane wave states. In the present work divergent diagrams arise as a result of matrix 
diagonalization and they are generated in a non-plane wave basis. Thus the counterterms 
generated via conventional perturbation theory are inappropriate in our context. We use 
sines and Gaussians as two sets of basis functions and end up with finite and divergent self
mass contributions respectively. To be efficient, the renormalization is to be carried out 
with a small number of basis functions. We introduce and implement a 'Basis counterterm' 
renormalization program towards this goal. As a result both types of basis functions, even 
though drastically different in characteristics, give the same finite physical results within 
numerical accuracy. 

Since the basis counterterms naturally involve the basis functions, the Hamiltonian 
depends on the basis functions. As a result we lack a variational principle and the ground 
state eigenvalue is not guaranteed to be above the ~rue value. Thus the convergence to the 
true result is sometimes from above and sometimes from below. 

Let us now compare and contrast sine and Gaussian basis set calculations. Using sine 
basis functions, after performing a few tricks, all intt:!grals except those involving some 
parts of the counterterms can be evaluated analytically. Further, all integrands are free of 
singularities. The matrix dimensions are also very small. Thus the CPU time needed for 
the whole calculation is relatively very low. With sine basis sets, improved eigenvalues are 
obtained by merely increasing the number of basis functions. Our choice for the basis is not 
orthogonal in the three particle sector and numerical inaccuracies due to non-orthogonality 
set in quickly as the number of basis functions increases. With Gaussian basis functions, at 
most only one integration may be performed analytically due to finite limits of integration. 
Thus most matrix elements involve two-dimensional numerical integration with singular 
integrands. To save CPU time we found it necessary to redefine amplitudes and perform 
some partial integrations. For the choice of Gaussians we are faced with infinite possibilities 
and have to resort to a 'trial and error' method. We find that even with a small number 
of Gaussians one can obtain eigenvalues accurate to a few percent. Here also we are faced 
with non-orthogonality problems for large basis sets. Since there is no simple rule for 
adding more basis functions to improve results, we have performed consistency checks on 
the wavefunctions. 

There are two major problems that need to be investigated further. One is the non
orthogonality issue. In the present work we have used a product ansatz for the three body 
sector. One may study alternatives. The other problem is consistency criteria when the 
choice of basis states offers infinite possibilities as is the case of Gaussians. 
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We have also directly discretized the LFTD integral equations, and studied the depen
dence of the masses and eigenstates on the grid and quadrature weights employed. vVhen 
one uses a product rule to determine the weights for multi-dimensional integrals, there 
is no apparent advantage to using a quadrature rule more complicated than trapezoidal. 
Errors always behave as lIN for N-point grids and one can easily use Richardson extrap
olation to improve results. The counterterms depend on the grid employed, but for our 
simple calculations it was possible to analytically determine this dependence. In principle 
the mass counterterm is a vector that must be determined a posteriori by fitting observ
abIes. In our calculation we have adjusted the mass counterterm to properly fix the masses 
of well-separated fermions; however, such scattering observables are not easily computed 
using the methods we have studied and may be of little use in future calculations. Our 
calculations are most successful when the coupling is not too large, and there is some hope 
that one can use analytic techniques to determine counterterms for small coupling even in 
more complicated calculations. 

The primary limitation of direct discretization is the rapid growth in the number of 
grid points, and thereby in the dimension of the mass matrix, as the number of Fock 
states or spatial dimensions is increased. If one sets up a grid in the manner we use, the 
Fock space sector with the most particles automatically contains the largest number of 
grid points, even though one would like to include such states with low resolution. This 
is possible using basis functions, where one can arbitrarily choose the number of functions 
employed in any sector. Beyond this significant limitation, direct discretization offers 
many important advantages. The mass matrix elements can all be computed analytically, 
allowing one to employ the Lanczos algorithm and extremely large matrices. The resultant 
code is readily vectorized, allowing one to efficiently use supercomputers. Errors are well
behaved as the number of grid points is increased, allowing one to use extrapolation and 
effectively compute with extremely large matrices. 

In conclusion, we have performed a preliminary investigation of the numerical pro
gram to solve coupled integral equations in the light-front Tamm-Dancoff approach to field 
theory. In this work we have just scratched the surface of an enormous and unexplored 
field. We have utilized two vastly different basis functions to investigate various issues, as 
well as a variety of grids. We have also indicated possible avenues of future investigation 
for improvements. 
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Appendix A. Analytic solution of the Schrodinger equation 

We start from the Schrodinger equation in momentum space: 

q2 - , 1jJ(q'),\21+00 

[-+B]1jJ(q)=- dq . (A.I)
2mf 211'" (q - ql)2 + m~-00 

In one dimension the Fourier transform of the one-boson exchange potential is 

Vex) = _~e-mBlxl . (A.2)
2mB 

Thus the Schrodinger equation in coordinate space is 

(-1 ~ _ ~e-mBlxl)1jJ(x) = -B1jJ(x) . (A.3)
mf dx2 2mB 

Introducing the variables, Jl = 2m B , a = ).2, 17 = mfB, k2 = 4~ ,and v = ~, them, 2 
I' m mB B 
-rnB~ 

equation after the change of variable y = e 2 for x > 0 is 

d2 d 
[y2 dy2 + y dy + k2 y2 - v2]1jJ(y) = 0 . (A.4) 

Thus the solution for x > 0 is 

(A.5) 

and the solution for x < 0 is 
1jJ(x) (A.5) 

Here N' is a normalization factor and Jv is the Bessel function of fractional order. Thus 
the solution is 

rnBI:z:1 
1jJ(x) = N'Jv (ke-2-). (A.5) 

Since 
lim 1jJ( x) -+ 0, 

x-oo 

Jv(O) = O. Since the ground state wavefunction is an even parity state \ve have 1jJ(x) = 
"p( -x). For "p(x) to be continuous this implies ~~ Ix=o= O. Thus for the ground state we 
have 

(A.6) 


Since the first excited state is an odd parity state we have, for the first excited state 
Jv(k) = O. 

The eigenvalues can be determined by either graphical methods or numerical proce
dures. 
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TABLE CAPTIONS 

1. 	Examples of basis sets. 
2. 	 a) Eigenvalues and characteristics of wave functions for m1J = 0.5 and 9 = 0.110. b) 

Eigenvalues and characteristics of wave functions for m1J = 0.5 and 9 = 0.517. 
3. 	 M2 and DEVWF for m1J = 0.5 and 9 = 0.517 . 
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FIGURE CAPTIONS 


1. 	 The ground state eigenvalue of the Schrodinger equation M2 versus the coupling 
constant for mt = 0.05 (dashed), 0.5 (dot-dashed), and 3.5 (solid). 

2. 	 The Schrodinger wave function tP(x) versus the momentum fraction x for m'iJ = 0.5 
and coupling constant 9 = .1 (solid) and 9 = .4 (dashed). 

3. a) 	The ground state eigenvalue M2 versus the coupling constant for m'iJ= 0.05 for 
Schrodinger equation (dashed), LFLA (dot-dashed), and FLFTD (solid). b) Same as 
in 3 a) but for m'iJ = 0.5 . c) Same as in 3 a) but for m'iJ = 3.5. 

4. a) 	The two-particle amplitude tP2(X) for m'iJ= 0.05 and 9 = .042 (dotted), .084 
(dashed), 
.22 (dot-dashed), .4 (solid), and .71 (dotted) in FLFTD. b) Same as in 4 a) but for 
m'iJ =.5 and 9 = .110 (dotted), .183 (dashed), 
.375 (dot-dashed), .517 (solid), .842 (dotted), and 1.31 (dashed). c) Same as in 4 a) 
but for m'iJ = 3.5 and 9 = .269 (dotted), .412 (dashed), .773 (dot-dashed), 1.06 (solid), 
1.56 (dotted), and 2.02 (dashed). 

5. 	 a) Two-particle and three-particle norms NORM2 (solid) and NORM3 (dashed) re
spectively for FLFTD for m'iJ = .05 versus the coupling constant. b) Same as in 5 a) 
but for m~ = 0.5. c) Same as in 5 a) but for m~ = 3.5. 

6. 	 a) Ground state eigenvalue M2 versus coupling constant for basis states A (cross) and 
D (diamond) compared with exact result (solid) for m'iJ = .05. b) Same as in a) but 
for m'iJ = 0.5. c) Same as in a) but for m'iJ= 3.5. 

7. 	 Ground state eigenvalue versus the smaller cutoff €l for basis set D without countert 
erms (dashed) and with counterterms (solid) for g= .2 . 

8. a) Ground state eigenvalue M2 versus the coupling constant for sine basis sets [12+4 x 
4] (cross) and [12+6 x 6] (diamond) compared with exact result (solid) for m'iJ = 0.05. 
b) Same as in a) but for mt =0.5. c) Same as in a) but for m'iJ= 3.5. 

9. 	 a) tP~(x) for basis set L (solid) compared with the exact result (dashed) for 9 = 0.110 
and m'iJ=.5 . b) Same as in a) but for the basis set J. 

10. 	 a) tP~(x) for basis set A (solid) compared with the exact result (dashed) for 9 = .517 
and m't =.5 . b) Same as in a) but for the basis set D. c) Same as in a) but for basis 
set F . 

. 11. 	a) tP~(x) for sine basis functions [12 + 4 x 4] (solid) and comparison with the exact 
result (dashed) for g= .110 and m1:J=.5 . b) Same as in a) but for g=.517 . 

12. 	Typical momentum space grid. 'l/J2 (x) is discretized along the lower boundary, while 
the grid for 'l/J3(X, y) is the set of points inside the triangle where lines of constant x 
and lines of constant y intersect. 

13. 	a) Ground state eigenvalue M2 versus coupling constant for a 15 point (cross) and-15 
point (diamond) basic grid compared with exact result (solid) for m'iJ .05. b) SaIne 
as in a) but for m'1:J = 0.5. c) Same as in a) but for m't = 3.5. 

14. 	a) Ground state eigenvalue M2 versus the number of grid points (dotted), along with 
the first (dashed) and second (solid) Richardson extrapolation, for m'iJ = 0.05 and 
9 0.71. b) Same as in a) but for mt = 0.5 and 9 = 6.37. c) Same as in a) but for 
m1 = 3.5 and 9 = 2.16. 
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15. 	a) The two-particle amplitude "p2(X) for m1 = 0.05 and 9 = 0.71, computed on a 15 
point basic grid (dotted), a 45 point grid (dashed), a 75 point grid (dot-dashed) and 
using explicit elimination (solid). b) Same as in a) but for m1 = 0.5 and 9 = 1.31. c) 
Same as in a) but for m1 = 3.5 and 9 = 2.16. d) Same as in c) but using a grid with 
an end-point very near the edge of momentum space. 

16. 	a) "p~(x) for a 15 point basic grid (dotted) and a 45 point basic grid (dashed) compared 
with the exact result (solid) for 9 = 0.110 and m1=.5. b) Same as in a) but for 
9 = .517 and m1 =.5 . 
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TABLE 1 Examples of Basis Sets 

SET SIZE '11 2 '113 


A 6+4x4 

B 6+4x4 

C 6+4x4 

D 6+4x4 

E 6+4x4 

F 6+2x2 

G 6+2x2 

H 6+2x2 

J 6+4x4 

center width center width 

0.0 10 50 0.3 10 50 
0.5 10 50 0.6 10 50 
1.0 10 50 

same 0.0 10 50 
0.6 10 50 

same 0.3 10 25 
0.6 10 25 

same 0.0 50 
0.3 10 
0.45 50 
0.6 10 

same 0.0 50 
0.3 25 
0.45 50 
0.6 25 

same 0.3 10 
0.6 10 

same 0.3 25 
0.6 25 

same 0.3 50 
0.6 50 

0.4 150 300 0.0 10 25 
0.5 150 300 0.6 10 25 
0.6 150 300 
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I{ 6+4x4 same 0.0 10 50 

0.6 10 50 


L 6+2x2 same 0.0 10 

0.6 10 


M 6+2x2 same 0.0 25 

0.6 25 
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TABLE 2a Eigenvalues and Characteristics of Wave Functions for 
m~ = 0.5 and 9 = 0.110 

SET M2 NORlv12 NORM3 DEVWF2 DEVWF3 

Exact 3.950 0.925 0.075 

J 3.949 0.950 0.050 0.042 0.051 
[6 + 4 x 4] 

K 3.947 0.951 0.049 0.050 0.054 
[6 + 4 x 4] 

L 3.901 0.941 0.059 0.177 0.060 
[6 + 2 x 2] 

M 3.904 0.966 0.034 0.083 0.052 
[6 + 2 x 2) 
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TABLE 2b Eigenvalues and Characteristics of Wave Functions for 
m'iJ = 0.5 and 9 = 0.517 

SET M2 NORlvJ2 NORM3 DEVWF2 DEVWF3 

Exact 2.800 0.411 0.589 

A 2.792 0.418 0.582 0.115 0.108 
[6 + 4 x 4] 

B 2.804 0.415 0.585 0.098 0.087 
[6 + 4 x 4] 

C 2.798 0.416 0.584 0.103 0.092 
[6 + 4 x 4] 

D 2.827 0.403 0.597 0.012 0.077 
[6 + 4 x 4] 

E 2.819 0.406 0.594 0.014 0.106 
[6 + 4 x 4] 

F 2.837 0.390 0.610 0.077 0.170 
[6 + 2 x 2] 

G 2.761 0.368 0.632 0.141 0.239 
[6 + 2 x 2] 

H 2.626 0.437 0.563 0.079 0.334 
[6 + 2 x 2] 
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TABLE 3 M2 and DEV-VVF for m1 = 0.5 and 9 0.517 

SET M2 DEVWF 


A 2.792 0.068 
[6 + 4 x 4] 

B 2.804 0.081 
[6 + 4 x 4] 

C 2.798 0.075 
[6 + 4 x 4] 

D 2.827 0.078 
[6 + 4 x 4] 

E 2.819 0.100 
[6 + 4 x 4] 

F 2.837 0.168 
[6 + 2 x 2] 

G 2.761 0.269 
[6 + 2 x 2] 

H 2.626 0.338 
[6 + 2 x 2] 
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