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Abstract 

Q.. Gauging with re~pect to scale symmetry, which was actually the first example of 
\­ gauging, is revived as a tool for investigating the properties of conformal field theories. 

It turns out that for a certain class of diffeomorphic- and Weyl-invariant theories the 
gauge-potential may be replaced by the Ricci tensor or scalar and this replacement 
allows the improved energy momentum tensor and the Virasoro central charge to be 
derived in a simple intuitive manner. A criterion is derived to determine the class 
of theories for which the replacement is possible and is found to be the curved space 
analogue of the criterion for rigid scale invariance to imply conformal invariance. 

1. Some Ancient History 

We begin by explaining what is meant by Weyl-gauging. Following Einstein's grav­
itational theory, Weyl in 1918 attempted to incorporate electromagnetism into the 
theory by gauging the metric tensor [1] i.e. by letting 

(1.1) 

where I was a constant and the vector-field WJ.' was to be identified with the electro­
magnetic vector potential. It was pointed out by Einstein (in the same paper) that, 
although this idea was attractive, it was physically untenable because it would imply 
that the spacing of spectral lines would depend on the history of the emitting atoms, 
in manifest disagreement with experiment. However, after the advent of Wave Mech­
anics in 1926, the idea was resurrected by London [2] who pointed out that Weyl's 
original proposal was correct but had been applied to the wrong physical situations. 
What London noted was that the usual electromagnetic differential minimal principal 
OJ.' -+ OJ.' + iAJ.' was equivalent to the integral minimal principle 

(1.2) 

and that this was the correct version of Weyl's proposal, in which the constant I 
was chosen pure imaginary and the electromagnetic factor was chosen to multiply the 
Schroedinger wave-function rather than the Einstein metric. The London observation 
was quite profound because it not only laid the foundations for modern gauge theory 
but brought electromagnetism into the realm of geometry. What we shall mean in 
this paper by Weyl-gauging is the extension of the original idea (1.1) to all fields, as 
will be explained in detail in section 7. 

* Talk presented at the Meeting 70 Years of Quantum Mechanics held at the Indian 
Statistical Institute, Calcutta 29th Jan-2nd Feb 1996. 



2. Some Mediaeval History 
To explain the problems which may be tackled by means of Weyl-gauging we consider 
some more recent developments. First, in 1971 there appeared a very interesting 
paper [3] in which it was pointed out that scale-symmetry, like is-symmetry, had 
a quantum anomaly and that for a certain class of Lagrangian field theories scale 
invariance implied conformal invariance. A criterion for this class of Lagrangians was 
given, namely that a current ilL' which they called the virial current, be a divergence. 
Formally 

(2.1) 

for some tensor JIL'II, where 7rIL is the canonical momentum, d is the scale dimension of 
the field, "IlL'll is the Minkowski metric, I;IL'II is the spin-generator and the Lagrangian 
is assumed to be a function only of the first derivatives of the fields. The Lagrangians 
which satisfy (2.1) have never been completely classified but the class includes at 
least the scale invariant Lagrangians which are of the usual renormalizable form. An 
interesting discussion of the quantum aspects of the problem is given in [4]. 

3. Some More Modern History 

More recently, because of the interest in string theory, critical phenomena and statist­
ical mechanics, attention has been focussed on 2-dimensional conformal field theories. 
One characteristic feature of these theories is that the conformal (Virasoro) algebra is 
infinite-dimensional, indeed the parameters are just the harmonic functions, and that 
it admits a central extension with parameter c. Recently, it has been shown that in 
the functional integral formulation of the Wess-Zumino-Witten model both the im­
proved energy-momentum tensor and the value of the parameter c that characterizes 
the extension (and hence the physical model) can be obtained in a simple intuitive 
way by embedding the -theory in curved space [5]. In that case the partition function 

Z(g,...) = f d(4))eJ dz..;g.cwzw (3.1) 

may be regarded as a Schwinger function with external currents gIL'll and its variation 
with respect to gIL'll produces the expectation value of the improved energy momentum 
tensor according to 

(3.2) 

Furthermore 

< TIL >- cR (3.3)IL ­

where R is the Riemann scalar and c is the central charge. Although these results 
were obtained originally only for the free WZW theory, they are actually valid for a 
much wider class of theories, including interacting theories such as abelian and non­
abelian Toda theories, provided that the fields are coupled to the Ricci tensor RIL'II 

and/or scalar R in an appropriate way . For example, for the Liouville theory with 
one scalar field <jJ and potential e<P the coupling takes the form eR<jJ, where e is the 
constant 1+ (1i/47r). In general it is the coupling to R that produces the improvement 



term for the energy momentum tensor, a result that can be seen immediately for the 
Liouville model, since, in the flat-space limit, 

(3.4) 


and the right-hand side of (3.4) will be recognized as the standard improvement term 
[6] [7] for the energy-momentum tensor of that theory. 

4. Present Paper 

What is the relevance of the ancient and mediaeval history to the more recent pro­
cedure of embedding the theory in curved space in order to obtain the improved 
energy-momentum tensor and the Virasoro centre? The answer is that the recent 
procedure does not always work and thus raises the question as to why and when 
it does work It turns out that the procedure works for those theories in which W" 
may be converted by partial integration to its derivatives, which, in turn, may be 
converted to the Ricci tensor or scalar. At the infinitesimal level the criterion for this 
turns out to be just the criterion (2.1) except that the ordinary derivative is replaced 
by the covariant one. What is interesting, however, is that the present derivation of 
(2.1) is based on gauge-theory whereas the former derivation was based on the Lie 
algebra of the conformal group. The alternative derivation thus affords a completely 
new insight into the meaning of the criterion. 

For example, in curved space the scale-invariance ~ conformal-invariance result is 
seen to be a simple consequence of the fact that the conformal group is contained in 
those subgroups of the local Weyl group for which Rand R"II scale homogeneously 
and for which, therefore, the Lagrangian need not be gauged. 

In this paper we shall consider for simplicity only the case of scalar fields. In the 
scalar case the criterion (2.1) reduces to the condition that the virial current be a 
gradient i.e. 

(4.1) 


for some scalar S. The scalar-field Lagrangians for which (4.1) holds are essentially 
the standard Lagrangians which are bilinear in the first derivatives of the fields with 
coefficients which are for the most part numerical but could possibly depend on the 
field in question. A counter-example for which the coefficients depend on other fields 
will be given as illustration. 

5. Rigid Scale Invariance 

Let us consider Poincare-invariant Lagrangians that are quadratic in the first deriv­
atives of a set of scalar fields 4>a denoted collectively by 4>, 

(5.1) 


The condition that a general Lagrangian be rigid scale-invariant is the condition that 
it be invariant with respect to z" ~ '\z" and 4>a ~ ,\da. 4>a where ,\ is constant and 
da is the dimension of the field 4>a. One sees that for n 2:: 3 the condition that the 



Lagrangian (5.1) be scale-invariant reduces the Lagrangian and field transformation 
to 

respectively, where the ha.b are constants and V transforms homogeneously with degree 

and 
2-n

d=-­
2 

(5.2) 

-n 
(5.3) 

where ~ is a single field and f is a constant. Note that because the kinetic term is 
bilinear in all the fields they have a universal scaling index do. = d. 

The case n = 2 is special because the fields ~ are then dimensionless and this allows 
the two possibilities 

(5.4)(a) 

which is the sigma-model, and 

(b) 

where () is a linear combination of the fields ~ and the ~ are the remaining fields. The 
special case of (5.5) in which the Lagrangian takes the form 

(5.6) 

is just the Liouville-model [6] [7] supplemented by some scalar fields ~ whose potential 
V(~) is arbitrary. 

6. Rigid Scale Invariance ~ Rigid Weyl Invariance 

For Poincare-invariant Lagrangians the coordinates x/-4 enter the Lagrangian only 
through the derivatives 8/-4 and the measure dnx. Since the derivatives enter only in 
the bilinear form 1]/-411 •• 8/-4 •• 8 11 and since 

(6.1) 


one sees that the scale transformation of the coordinates may be converted to the 
transformation (6.1) of the metric and conversely. It follows that any rigid scale (and 
Poincare) invariant Lagrangian is invariant with respect to the transformations 

2 (n-2) 
9/-411 -7 A 9/-411 and ~ -7 A- 2 ~ (n ~ 3) ~ -7 ~ or ~ - 2lnA (n = 2) 

(6.2) 
of the metric and field, and conversely. The transformations (6.2), which do not 
involve any change of coordinates, are called rigid Weyl transformations. Thus for 
Poincare-invariant Lagrangians rigid scale symmetry and rigid Weyl symmetry are 
equivalent. The importance of this fact is that, as will be seen in the next sectio;n, 



rigid Weyl symmetry can be converted to local Weyl symmetry by gauging it in the 
usual manner. 

7. Diffeomorphic Invariance 

In order to convert rigid Weyl invariance into a local Weyl invariance we have to let 
,\ ~ ,\(~). But as this means letting the metric become ~-dependent we see that 
the proper context for local Weyl invariance is the curvilinear version of the theory. 
Strictly speaking, since the metric only scales under the local Weyl group, it would 
be sufficient to consider only conformally flat curved spaces. But it will be more 
useful to consider generally' curved spaces, at least for the present. As is well-known, 
any standard Poincare-invariant theory can be converted to its curvilinear version by 
gauging with respect to the diffeomorphic group 

where \lp. denotes the covariant derivative, ~ is a generic notation for the fields and 
9P.1I is a metric that may describe either curvilinear coordinates or a genuine curvature 
of space. In the case of scalar fields ¢ we have, of course, \lp.¢ = 8p.¢. 

8. Standard Weyl Gauging 

Suppose now that we try to extend the rigid Weyl symmetry to a local Weyl symmetry 
by letting ,\ ~ ,\(z) so that the Weyl scaling becomes 9p.1I = ,\2(Z )9p.1I' For the sigma­
model this is automatic because ¢ does not change. For the other two cases, n 2:: 3 
and the Liouville model for n = 2, one has to gauge in the usual manner. For n 2:: 3 
the Weyl gauging consists of letting 

(8.1) 

and for the Liouville model it consists of letting 

8p.e9 ~ (8p. + Wp.)e 9 where Wp. ~ Wp. + 28p.O' (8.2) 

where in both cases O'(z) = In'\(~). Note that for the fields 8 and ;p the gauging is 
inhomogeneous and trivial respectively 

(8.3) 


Thus the diffeomorphic and Weyl invariant version of the action (5.2) is 

(8.4) 

where <jJ.<jJ is shorthand for hab(jJa (jJb and the diffeomorphic and Weyl invariant version 
of the Liouville action is 



The important point is that by partial integration these actions can be written as 

Jv'9{ ~ [8~4>.8~4>1 + V(4)) - ~=:(4).4>)} where =: = V'~W~ - W~W~ (8.6) 

and 

3 = '\7I'WI' (8.7) 

respectively. Thus for these potentials the vector WI' manifests itself only through 
the diffeomorphic scalar 3 and the gauging consists simply of adding terms of the 
form 3(4).4>) and 38 to the respective Lagrangians. 

9. Scaling Properties of 3 

Let X denote any quantity X after a finite local Weyl scaling 9I'J! -t 9I'J! = A(Z)29I'J! 
Since 

(9.1) 

(and E = 1,0 for n 2:: 3, n = 2) the quantities we are most interested in are WI' and 
'\71'. The scaling property of WI' is given in (8.1) and (8.2) and from the definition of 
the Christoffel symbols or from [8] we find that the scaling properties of rl' and '\71' 
are 

(9.2) 


From (9.2) it follows that the scaling property of 3 is 

~ _ \ -2,:;, _ (n - 2) \ -2 [r72 + (n - 2) 81' 8 ] 
...... 1"\ ...... - 2 1"\ V 0' 2 0' 1'0' (9.3) 

Note that the terms in WI' have cancelled on the right-hand side, leading to the 
interesting result that although 3 depends quadratically on WI' the quantity:§; - A-23 
is independent of WI" 

For n = 2 the argument is a little different because 3 = '\7I'WI" However in that case 
rl' scales homogeneously i.e. rl' = A-2rl' and hence 

~ \ -2 ..... _ 2 \ -2r72
'::'-1"\ '::'--1"\ vO' (9.4) 

which is the analogue of (9.3) for the case n = 2. 

10. Metrical Weyl Gauging 

We now come to a remarkable feature of these theories, namely that the scaling 
properties of the quantity 3 are (up to a numerical factor) identical to the scaling 



properties of the Riemann scalar R! Indeed with the conventions of [8] the scaling 
property of R is 

(10.1 ) 

which is identical to (9.3) if R is replaced by 8 and 2(n - 1) by (n - 2)/2. Note that 
is true only because the there is no Wp. dependence in (9.3). From (10.1) and (9.3) 
we have 

m == (n - 2)8 - .\-28 == m(il - .\-2 R) where (10.2)
- 4(n -1) 

or equivalently 
(8 - mil) == .\-2(8 - mR) (10.3) 

In other words the combination 8 - mR scales homogeneously. This shows that if 
8 == mR at any scale it is true at all scales. 

But since W p. was introduced only to compensate for the change in the field under 
scaling 8 can be chosen at will at a given scale and hence in particular we can choose 
8 == mR at a particular scale. With this choice we have 

(10.4) 


at all scales. Note that from the point of view of the Weyl field Wp., for which Fp.." is 
not necessarily zero (lOA) is just a scale-invariant choice of gauge-fixing. 

Once (10.4) holds the n 2:: 3 Weyl-gauged action (8.6) becomes the purely metrical 
Lagrangian 

(10.5) 

For n == 2 we may in the same way choose 

(10.6) 


at any scale and it will be true at all scales. In that case the Weyl-gauged action (8.7) 
becomes 

(10.7) 

where we have dropped the term WP.Wp. since it does not couple to the other fields. 
The Actions (10.5) and (10.7) are manifestly diffeomorphic invariant and one can 
verify directly that they are local Weyl-invariant. 

Thus for the above Actions in curved space we have the remarkable result that, in 
contrast to the usual internal symmetry groups, the Weyl group can be gauged without 
introducing a new field in the form of a vector potential. Indeed (10.5) and (10.7) 
could have been chosen as the definition of Weyl-gauged actions. However we have 



proceeded via the gauge-potential WI' so as to bring the argument into line with the 
usual procedure of gauging a rigid symmetry. 

One might ask why the same procedure could not be adopted for the gauge-potential 
WI' itself. For n 2:: 3 there is an equation corresponding to (10.3) for WI" namely 

(10.8) 


and thus it is tempting to set WI' == ~rl'. But this would violate the diffeomorphic 
invariance because from the diffeomorphic point of view WI' is a vector and rl' is 
not (it is a connection). For n == 2 the situation is even worse because rl' scales 
homogeneously and thus there is no equation analogous to (10.8). 

11. Harmonic Weyl Group 

Let us now consider the set of Weyl transformations with respect to which the 
Riemann scalar R (and hence B) scales homogeneously. It is clear that this set will 
form a subgroup and from the scaling property of the Riemann scalar given in (10.1) 
we see that the elements Ah == eUh. are defined by 

(11.1) 


Here it is understood that the transformations defined by (J'h are finite, not infinites­
imal. Note that, in spite of being non-linear in (J'h, the property (11.1) is compatible 
with the abelian nature of the group because the metric also scales. Since the condi­
tion (11.1) reduces to V 2(J'h == 0 for any (J'h for n == 2 and infinitesimal (J'h for any n 

we shall call the subgroup defined by (11.1) the harmonic Weyl group Wh. 

The importance of the harmonic Weyl group from our point of view is the following: 
For general Weyl transformations the local Weyl invariance of the Weyl-gauged ac­
tions (10.5) and (10.7) is due to the fact that the inhomogeneous parts of the Weyl 

. variations of the ungauged part and R-part cancel. Indeed it was to effect this cancel­
lation that the Weyl group was gauged in the first placer But for the harmonic Weyl 
transformations the R-part has no inhomogeneous variation. Hence the ungauged 
Lagrangian must also have no inhomogeneous variation. But since it is rigid Weyl 
invariant, it has also no homogeneous variation. Thus it is scale-invariant. It follows 
that, for the Lagrangians that we have considered we can omit the R-term if we gauge 
only with respect to the harmonic Weyl group. Thus, for these Lagrangians, we have 
the free-lunch 
Theorem I: For Lagrangians that permit metrical Weyl gauging Rigid Weyllnvariance 
automatically implies Harmonic Weyllnvariance 

Here by automatic we mean without any kind of gauging. 

12. The Conformal Group 

The conformal group is defined to be the set of coordinate transformations for which 
the change in the metric can be interpreted as a Weyl transformation i.e. for which 

(12.1) 




The infinitesimal form of this condition, namely 

(12.2) 

is called the conformal Killing equation. It is clear that the Weyl transformations 
ue(z) induced by conformal transformations form a subgroup of the Weyl group and 
we shall call this subgroup the conformal subgroup We. It is natural to ask what is 
the relationship between the conformal subgroup and the harmonic subgroup of the 
Weyl group. To answer this question we take the flat space limit of (12.2), from which 
it is easy to obtain the relations V".E = nUe and hence 

(12.3) 

from which we see that U e must be linear in z for n 2 3 but need be only harmonic 
for n = 2. Thus in the flat space limit the conformal subgroup is a subgroup of the 
harmonic subgroup for n 2 3 and coincides with it for n = 2. This result agrees with 
the well-known fact that in flat space the infinitesimal conformal transformations are 
given by 

ElL = 2(e.z)x lL - eILx2 
U e = 2e.z (n 2 3) and E± = !±(z±) 2ue = a.! (n = 2) 

(12.4) 
where elL is a constant vector and f± are arbitrary differentiable functions. 

13. The Flat-Space Limit 

From the previous section we see that in the Minkowski (or Euclidean) limit the 
harmonic Weyl group is equal to the conformal group for n = 2 and contains it for 
n 2 3. If we combine tliis observation with the equivalence of rigid Weyl-invariance 
and rigid scale-invariance discussed in section 2 we see that in the Minkowski limit 
theorem I becomes 

Theorem II: For Actions that admit metrical Weyl gauging 

Rigid - Seale - I nvarianee ~ Rigid - Weyl - I nvarianee 

~Harmonie - Weyl- Invarianee ~ Conformal- Invarianee 

But this is just the well-known result that for such actions rigid scale-invariance 
implies conformal invariance. However, it shows that the class of Actions for which 
rigid scale-invariance implies conformal invariance are just those for which the Weyl 
gauging can be made metrical. Thus it provides a new criterion for this phenomenon 
to happen, namely that WIL may be converted to g by partial integration. 

One may obtain an intuitive feeling as to what kind of Lagrangians might be expected 
to satisfy this criterion as follows: First, since WIL occurs in the action only in the 
combination aIL + WIL one would not expect Actions containing higher powers than 
quadratic of the first derivatives, or higher derivatives, such as (a¢)4 or (a2¢)2, to 
qualify. Thus, in general, one would expect the criterion to be satisfied for at most 
those Actions which are quadratic in the first derivatives of the fields. Furthermore, 
since even for such Actions the partial integration would be obstructed if the coefficient 



of the kinetic term for a given field depended on any other field, we should expect the 
coefficients to be extremely restricted. Indeed the Actions would be essentially the 
traditional Actions with kinetic terms that are independent of the fields and quadratic 
in their derivatives. 

14. Counter-Example for Quadratic-Derivative Lagrangians 

To illustrate the argument in the last paragraph of section 9 we construct a class of 
counter-examples for which the Action is bilinear in the first derivatives of the fields 
but the coefficients are field-dependent. This class is obtained by considering the 
version of the n = 2 Lagrangian (5.5) in which 

(14.1) 

The Lagrangians (14.1) are in a certain sense the opposite of the Liouville Lagrangians 
for which the coefficient h(~) was attached to the conformal-scalar fields ~ rather than 
n. 	 The Weyl-gauged version of (14.1) is evidently 

(14.2) 

and it is easy to see that unless the coefficient h(~) is a constant the W,.,. cannot be 
converted to 8 plus terms which decouple. According to our analysis, therefore, the 
action (14.1) should not be conformally invariant and this can be verified directly. 
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