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Abstract: We consider a stationary source emitting letters from a finite al­
phabet A. The source is described by a stationary probability measure a on the 
space 0 := AlN of sequences of letters. Denote by On the set of words of length 
n and by an the probability measure induced on On by a. \Ve consider sequences 
{rneOn : n E IN} having special properties. Call {rneOn: n E IN} a sup­
porting sequence for a if limn an[rn] = 1. It is well-known that the exponential 
growth-rate of a supporting sequence is bounded below by hSh(a), the Shannon 
entropy of the source a. For efficient simulation, we require r n to be as large 
as possible, subject to the condition that the measure an is approximated by the 
equipartition measure f3~n, the probability measure on On which gives equal 
weight to the words in r n and zero weight to words outside it. We say that a 
sequence {rneOn : n E IN} is a reconstruction sequence for a if each r n is in­
variant under cyclic permutations and limn JJ~n = am for each m E IN. We prove 
that the exponential growth-rate of a reconstruction sequence is bounded above by 
hsh(a). We use a large-deviation property of the cyclic empirical measure to give 
a constructive proof of an existence theorem: if a is a stationary source, then there 
exists a reconstruction sequence for a having maximal exponential growth-rate; if a 
is ergodic, then the reconstruction sequence may be chosen so as to be supporting 
for a. We prove also a characterization of ergodic measures which appears to be 
new. 

Key Words: asymptotic equipartition property, empirical measure, stationary, 
ergodic, Kolmogorov, reconstruction, large deviations 
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1 Introduction 

Let !1n denote'the set of words of length n formed using letters taken from a finite 
alphabet A of size r; if r n is a subset of !1n , then we denote the number of elements 
in rn by #rn- Let !1 := A

JN denote the set of all sequences of letters from A - the 
set of words of infinite length. Suppose the source emitting the letters which form 
the words is described by a stationary probability measure a on the the space !1j 
can we find a sequence {rn C !1n : n E IN} of sets of words of increasing length from 
which we can reconstruct the measure a ? 

Take A = {I, O} with a the Bernoulli (k, ~) measure on !1 = AJN. Define, for n such 
that ~ is an integer, 

1 n 1 
r n := {a E !1n : - L aj = -} ; (1.1 ) 

n j=1 3 

these are the words of length n in which the relative frequencies of ones and zeroes 
are kand ~. We claim that the measure a is determined completely by the sequence 
{rn C !1n : ~ E IN}. 

The first step is to construct a sequence of equipartition measures. Define {3~n 

to be the probability measure on !1n which gives equal weight to the words in r n 

and zero weight to words outside it: for each subset ~n of !1n , put 

{3rn[~ J = #(~n n rn) (1.2)n n #r · 
n 

For m < n, every measure An on !1n induces a measure Am on !1m via the projection 
X~ : !1n -+ !1m which selects the first m letters from a word of length n. We claim 
that 

lL~ {3~n[a] = am [a] (1.3) 
¥-elN 

for every a E !1m and every m E IN; here am is the measure on !1m induced by the 
measure a on !1 via the projection Xm : !1 -+ !1m which selects the first m letters 
in an infinite sequence. But the set {amra] : a E !1m, m E 1N} is precisely the data 
required, according to Kolmogorov's Reconstruction Theorem [K], to determine the 
measure a completely. Our claim (1.3) can be proved using a conditional limit 
theorem of van Campenhout and Cover [CC]; see (6.13) of Section 6. 

We say that a sequence {rn C nn : n E IN} is a reconstruction sequence for a if 
each r n is invariant under cyclic permutations and 

lim{3rn = am (1.4)
n m 

for each m E IN ; an alternative definition of the concept is discussed in Section 6. 
The concept of a reconstruction sequence for a is illustrated by the example of 
the sequence {rn C!1n : n E IN} defined by (1.1). 

For efficient simulation, we would like the sequence to grow as fast as possible so 
that we have large samples of words of reasonable length. Consider the sequence 
constructed using a thickened shell: 

1 n 1r! := {a E !1n : 1- L aj - 3"1 ::; 8} ; (1.5) 
n j=1 
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this sequence has a faster growth-rate than the sequence defined by ~1.1) j it is a 
reconstruction sequence, but not for 0': for 0 < d < ~, the sequence {prn } converges 
to ci the Bernoulli (1 + d ~ - d) measure on O. This can be deduced from a 

, 3 '3.. 	 1 
conditional limit theorem proved In [LPSl] (see also [LPS2]). (For d ~ 6' we recover 
the Bernoulli (~, ~) measure.) 

These examples illustrate a property of reconstruction sequences: they cannot grow 
too quickly. In fact, we have the following upper bound on the growth-rate: 

• 	If {rneOn: n E IN} is a reconstruction sequence for 0', then 

lim sup .!..log #rn :::; hSh (0'), 	 (1.6) 
n n 

where hSh(O') is the Shannon entropy of 0'. 

There are reconstruction sequences which grow very slowly; in Section 6, we give a 
proof of the following result: 

Let 0' be a stationary source; then there exists a reconstruction sequence 
{rneOn: n E IN} for 0' which has zero growth-rate: 

(1.7) 


We have the following existence theorem: 

• 	 Let 0' be a stationary source; then there exists a reconstruction sequence for 
0' having maximal growth-rate. 

We turn our attention to another property which a sequence of sets of words may 
have: we call a sequence {rneOn: n E IN} a supporting sequence for 0' if 

(1.8) 


where an is the probability measure induced on On. 

The sequence defined by (1.5) is, for all values of d > 0, an example of a supporting 
sequence for the Bernoulli (~, ~) nleasure while that defined by (1.1) fails to be. 

A supporting sequence cannot grow too slowly. We have the following lower bound 
to the growth-rate: 

• 	If {rneOn: n E IN} is a supporting sequence for 0', then 

(1.9) 


For economical coding, it is important to have a supporting sequence which grows 
as slowly as possible. We have the following existence theorem: 
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• 	 Let 0: be an ergodic source; then there exists a supporting sequence for 0: 

having minimal growth-rate. 

Since the Shannon entropy is a lower bound on the growth-rate of a supporting 
sequence and an upper bound on the growth-rate of a reconstruction sequence, a 
sequence which has both properties has a growth-rate equal to the Shannon entropy. 

Let us examine how we can modify the construction (1.5) in order to get a sequence 
which is both a reconstruction sequence for 0: and a supporting sequence for 0:. 

Define 
1 n 1 

r~:= {a EOn: 1- L:aj - -31::; logn/vn}. (1.10) 
n j=l 

We can use the conditional limit theorem in [LPS1} to prove that the sequence {r~} 
has the reconstruction property and the Central Limit Theorem to prove that it has 
the supporting property for the Bernoulli (k, ~) measure. 

Let us examine this construction more closely. It selects those words of length n 
for which the relative frequency of ones lies in a closed neighbourhood of k (and 
hence the relative frequency of zeroes lies in a closed neighbourhood of ~). We can 
think of the measure Q as being described by a vector (k, ~). Introducing a relative 
frequency vector 

Rn(a) 	 (1.11) 

we can re-write (1.10) as 
(1.12) 

where Fn is the closed ball of radius log n/vn centred on the point (k, ~). In other 
words, what we have done is to define a mapping Rn from On to the space of 
Bernoulli measures and a decreasing sequence {Fn} of closed neighbourhoods of 0: 

in the space of Bernoulli measures whose intersection is 0:, and taken rn' to be those 
words a E On for which Rn(a) lies in Fn. This choice has some nice properties: 

1. 	 the set rn' is invariant under cyclic permutations of the letters in the words 
- this is important because the measure Q which we are attempting to ap­
proximate is stationary; 

2. 	 the set r n' is nonempty for all n sufficiently large - this is important because 
we want to condition on it. 

In order to prove our existence theorems, we need to generalize the construction 
which produced the sequence {rn'l. We introduce a class of sequences called canon­
ical sequences; to define these, we make use of the cyclic empirical measure, a 
mapping Tn from 0 to Mt(O), the space of probability measures on O. 

The cyclic empirical measure is a generalization of the relative frequency vector 
which will do what we want in the general case - its precise definition will be given 
later. For the present, we will describe it in terms of its marginals. For each w E 0, 
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we have a measure Tn(w)[·] defined on subsets of OJ the projection ~X"m : 0 -+ Om 
induces a measure Tn,m(w)[·] on the subsets of Om: 

(1.13) 


For m ::; n, and a = (aI, ... , am) E Om, we can describe Tn,m (w )[a] directly. Consider 
the n cyclic permutations of the word Xnw = (WI,' .. ,Wn): 

(1.14) 

then Tn,m(w)[a] is the fraction of these in which the first m entries coincide with 
a = (aI, ... ~ am). Thus Tn,l(w)[al] is just the relative frequency of the letter al 
in the word Xnw, Tn,2(W)[( at, a2)] is the relative frequency of the adjacent pair 
(aI, a2) in the (cyclic) word Xnw, and so on. We take rn to be the set of words 
Xnw = (WI,'" ,wn) in nn for which Tn,m(w)[a] is close to om[a] for all m ::; nand 
all a E nm • The sequence {rn} is a canonical sequence. 

Of course, it is necessary to say what we mean by 'close to'; that is what is 
accomplished by the formal definition: let {Fn} be a decreasing sequence of closed 
neighbourhoods of 0 in the space of measures whose intersection is 0; for each n, the 
measure Tn(w) depends only on the first n coordinates of wand so T;;l Fn determines 
a subset r n of nn; a sequence {rn C nn :n E IN} constructed in this way with r n 

nonempty for all n sufficiently large, is called the canonical sequence based on 
{Fn}. The definition of Tn ensures that the set rn is cyclically invariant. 

Our reason for introducing the concept of a canonical sequence is the following result 
which holds for an arbitrary stationary source 0: 

• 	 Every canonical sequence for 0 is a reconstruction sequence for o. 

All we have done so far is to push the problem of existence one stage back: does 
there exist a canonical sequence for an arbitrary stationary source 0 ? There is no 
difficulty in finding a sequence of neighbourhoods which contract to 0; the problem 
is to prove that the subsets r n which they determine are non-empty - at least for 
all n sufficiently large. One way of doing this is to show that the growth-rate of 
{rn} is strictly positive; this will be the case if the sequence of neighbourhoods of 0 

contracts sufficiently slowly. Our strategy is to start with an arbitrary sequence of 
closed neighbourhoods contracting to 0 and slow its rate of contraction until we are 
sure that the corresponding subsets rn are growing fast enough; to check on this, we 
use large-deviation theory. (In fact, we use only the most basic result of the theory: 
the large-deviation lower bound, a direct consequence of the existence of the rate­
function; see [LP], for example. A derivation of the large-deviation properties of 
the cyclical empirical measure which we require can be found in [LPS].) We prove 
the following result: 

• 	 Let 0 be a stationary source; then there exists a canonical sequence for 0 

having maximal growth-rate. 

A canonical sequence is not necessarily supporting. In the case of a Bernoulli mea­
sure, we were able to use the Central Limit Theorem to find a rate which makes the 
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sequence {R;;l Fn} supporting; in the general case, we do not have such a precise 
estimate available. Nevertheless, when the measure is ergodic we are able to use the 
Ergodic Theorem to prove the existence of a canonical sequence which is supporting. 
The converse also holds so that we have the following characterization of ergodic 
measures: 

• 	 Let 0: be a stationary source; then 0: is ergodic if and only if there exists a 
canonical sequence which is supporting for 0:. 

We have seen that canonical sequences of subsets are useful and arise naturally in 
the reconstruction problem for stationary sources. It is instructive to compare them 
with the set of 'typical' sequences of letters associated with an ergodic source. Let 
0: be an ergodic source; there exists a set d(O:) c 0 with O:[d(O:)] = 1 such that 
each sequence w in d(O:) determines 0: uniquely (see Section 6) . For a stationary 
source 0:, a canonical sequence plays an analogous role: let {rneOn: n E IN} be a 
canonical sequence for 0:; any sequence {an Ern : n E IN} of words determines 0: 

uniquely (this is proved in Section 6). A canonical sequence has some advantages 
over the typical set: one is that every stationary source has a canonical sequence ­
it is not necessary that the source be ergodic; another is that a canonical sequence 
is associated with an increasing sequence {:Fn : n E IN} of a-algebras, where :Fn is 
generated by the first n coordinate functions, while the typical set ~(o:) is in the 
tail a-algebra so that the first n coordinates of an element of d(0:) are irrelevant. 

To put our results in context, it may be useful to recall the Asymptotic Equipartition 
Property: in terms of the concepts used here, the conclusion of the theorem of 
Shannon-McMillan-Breiman ([S], [M], [BD, may be stated: 

Let 0: be an ergodic source; then for each 8 > 0 there exists a sequence 
{r~} which is supporting for 0: and whose growth-rate satisfies 

hSh(O:) :5 liminf.!.log#r~ :5 limsup.!..log#r~ :5 hSh(O:) +8. (1.15) 
n n 	 n n 

It follows from the construction used in the proof that each word a Ern satisfies 

(1.16) 

where b is the base of logarithms used in the definition of the Shannon entropy (see 
(2.15) below); this is the origin of the name asymptotic equipartition property. 
The sequence {r~} is a not a reconstruction sequence for 0:. In Section 6, we discuss 
how this construction may be refined to yield a sequence which has both properties. 
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2 Statement of Results 

In Section 2, we make precise the concepts introduced informally in Section 1 and 
sketch proofs of our main theorems. The main result of this paper is an existence 

theorem: 

Theorem 2.1 Let a be a stationary source; then there exists a reconstruction se­
quence for a having maximal growth-rate. If, in addition, a is ergodic, then the 
reconstruction sequence may be chosen so as to be a supporting sequence for a. 

We will give a constructive proof of this theorem. A by-product of this investigation 
is a characterization of ergodic measures: 

Theorem 2.2 Let a be a stationary source; then a is ergodic if and only if there 
exists a canonical sequence for a which is supporting for a. 

This section is, to some extent, self-contained: we recall the definitions and results 
required to understand the concepts defined here. We state six lemmas, indicating 
roughly on what their proofs depend; we prove our existence theorem using the first 
five - the sixth is used to complete the proof of the characterization of ergodic 
measures. The reader who is prepared to accept the lemmas need read no further. 

The first two lemmas are proved in Section 3 using properties of the specific .in­
formation gain defined there. The third lemma is crucial: it states that every 
canonical sequence is a reconstruction sequence; it is proved in Section 4. 

To construct sequences with the required properties, we make use of the cyclic 
empirical measure to define canonical sequences of subsets. The sequence of 
probability distributions of the cyclic empirical measure with respect to the uniform 
product measure on n satisfies a large deviation principle with the specific informa­
tion gain as rate-function. This is exploited in Section 5 where the fourth, fifth and 
sixth lemmas are proved. 

Some of the ideas have their origin in statistical mechanics; some readers will find 
reference to this confusing while others will find it enlightening. Having in mind 
those in the first category, we make no reference to statistical mechanics in the body 
of the paper; for the others, we provide in the final section, Section 6, a commentary 
on the concepts and results. 

We now make precise the structures we are considering. The space n = AN 
is the space of infinite sequences with entries taken from a finite alphabet A = 
{a(l), ... , a(r)} having r > 1 letters; the map Xj : n~ A is the coordinate projection 
onto the jth factor in the product. Let Fn = O'(Xb' •. , xn) be the O'-algebra gener­
ated by the first n coordinate functions and let F = 0'(Xn : n E 1N) be the O'-algebra 
generated by all coordinate functions. Since Acontains r elements, the O'-algebra Fn 
is generated by the rn atoms {Aa = X;la : a EAn}, where Xn : n ~ nn := An is the 
projection onto the first n coordinates. Sometimes the discussion can be clarified by 
working on nn rather than n. Let a be a probability measure defined on F. On nn 
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we ~ave an, the image measu.re defined on the subsets of On byan[B] = a[X;l B]. 
EqUIvalently, one could consider a on 0 restricted to the a-algebra Fn. The two 
viewpoints are complementary. 

Recall that, for m < n, every measure An on On induces a measure Am on Om via 
the projection X~ : On -+ Om which selects the first m letters from a word of length 
n; since Xm = X~ 0 X n, it follows that if the measures {An: n E IN} are induced 
from a probability measure A on F so that for all n E IN we have 

(2.1 ) 

then they satisfy the compatibility conditions 

Am = An 0 (X~)-l (2.2) 

for all m E IN and all n > m. Conversely, Kolmogorov's Reconstruction Theorem 
[K] implies that given a sequence {An : n E IN} of probability measures satisfying 
the compatibility conditions (2.2), there exists a unique probability measure A on 
F such that for all n E IN the probability measures An are given by (2.1). 

For a function f : 0 -+ lR, we write f E Fn to mean that f is Fn-measurable and 
bounded; we write f E Jioc to mean that there exists a finite n with f E Fn. We 
use the notation Mt to denote the space of probability measures on (0, F) with 
the coarsest topology for which each mapping 

Mt :3 A ~Jf dA E lR (2.3) 

is continuous whenever f E Jioc: this is called the bounded local topology. In 
Section 1, we encountered the following notion of convergence: a sequence {A(n) : 
n E IN} of probability measures on F converges to the probability measure v in the 
sense of convergence of finite-dimensional marginals if, for everym E IN and 
every a E Om, 

(2.4) 

In the present set-up, convergence of finite-dimensional marginals is equivalent to 
convergence in the bounded local topology; this can be seen from the following 
considerations: A~) [a] is the integral of the indicator function 

la(w) = {I if WI =.aI, ... ,Wn = an (2.5)o otherwIse. 

of the atom X;la of Fm and the set {1a E Fm : a E Om, m E IN} spans Jioc. 

We use a product probability measure j3 on (0, F) as a reference measure; we take 
j3 to be the measure on F which, for all n E IN, assigns equal probability to each of 
the rn atoms of Fn , so that ,B[Aa] = r-n for each a E On. Notice that for rneOn, 
we have 

#rn ( )IBn [r n] = #On . 2.6 

Let a be a probability measure on (0, F)j we may think of a as characterizing the 
statistical properties of the source of the words, and we shall refer to Q itself as the 
source. 

http:measu.re
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We recall the definitions of stationary measure and ergodic measure. \Ve define 
the shift operator S on n by 

k E]N. (2.7) 

The shift S acts on functions f : n -+ IR by composition: 

Sf:=foS. (2.8) 

We define the action of S on a measure a by 

f f d(Sa) := f (Sf) da. (2.9) 

From the shift operator, we construct the averaging operator: 

. 1 k-l . 

Ak:= - LS1
• (2.10) 

k j=O 

A source a is stationary if it is invariant under the shift: for all B E F, 

arB] = a[S-1 B] . (2.11 ) 

A stationary source a satisfies the Ergodic Theorem: 

Let a be a stationary probability measure; for fELl (a), the limit 

J(w) := lim(Anf)(w) (2.12) 
n 

exists a-almost surely and the function w I-t J(w) is shift-invariant and 
satisfies 

(2.13) 


A source a is ergodic if it is stationary and it assigns probability zero or one to each 
invariant subset: for all B E F such that S-1 B = B, either a[BJ = 0 or a[BJ = l. 
\Ve have the following Corollary to the Ergodic Theorem: 

If a is ergodic, then the limit (2.12) is constant for a-every wand hence 

J(w) = In fda, a-a.e.. (2.14) 

Recall that hsh ( a), the Shannon entropy of a stationary source a, is non-negative 
and given by 

(2.15) 

where the logarithm is taken in some fixed base b > 1. 

Definition 2.1 Let a be a stationary source. A sequence {rneOn: n E IN} is 
said to be a supporting sequence for a if and only if the condition 

lim an[rn] = 1 (2.16)
n-+oo 

holds. 
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Example A simple example of a supporting sequence is {rn = On : n EN}. The 
elements of this supporting sequence are too big: in the context of data compression, 
the goal is to choose the sets r n to be as small as possible, consistent with condition 
(2.16) holding. 

A lower bound on the exponential growth-rate of a supporting sequence is provided 
by the following result, a consequence of elementary properties of the specific infor­
mation gain; it will be proved in Section 3, Proposition 3.1. 

Lemma 2.1 Let a be a stationary source. If {rneOn: n E IN} is a supporting 
sequence for a, then 

(2.17) 


This result motivates the following definition. 

Definition 2.2 Let a be a stationary source. A sequence {rneOn : n E IN} lS 

said to have entropic growth-rate for a if and only if 

(2.18) 


As a first step in the definition of a reconstruction sequence, w'e define a class of 
probability measures, the equipartion measures. In Section 1, we defined them 
'downstairs' on On: the equipartition measure j3~n determined by the subset rn of 
On is the probability measure on On which gives equal weight to the words in r n 
and zero weight to words outside it. Here we define them 'upstairs' on 0 with the 
aid of the reference measure (3. 

Definition 2.3 Let r n be a s'ubset of On with (3n[rn] > 0; we call the probability 
measure given on :F by 

(2.19) 


the equipartition measure determined by r n' 

Notice that, for each subset ~n of On, we have 

(2.20) 


Although the original measure {3 is stationary, the equipartition measure {3rn is 
not stationary unless r n = On. Since we wish to use equipartition measures to 
approximate a stationary measure a, we have to do something about this. The most 
elegant solution is to define a reconstruction sequence with the aid of the averaging 
operator (2.10): a sequence {rneOn: n E N} is a reconstruction sequence for a 
if limn An{3rn - a. \Vhile readers familiar with ergodic theory may find this 
definition natural, others may find it puzzling. For this reason, we prefer to adopt 
a definition in which the averaging is performed 'downstairs' on On rather than 
'upstairs' on 0; the connection between the two definitions is discussed in Section 
6. We use Un, the cyclic permutation operator acting on On : 

(2.21 ) 
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Definition 2.4 Let a be a stationary source. A sequence {rn C nn : n E 1N} zs 
said to be a reconstruction sequence for a if and only if 

1. 	 for all n sufficiently large, ;3n[rn] > 0; 

2. each r n is invariant under the cyclic permutation (jn; 

.'1. the corresponding sequence {;3rn} of equipartition measures converges to a: 

limf3rn = am 	 (2.22)
n m 

for each m E IN . 

For reconstruction sequences, we have the following upper bound on the exponen­
tial growth-rate; it will be proved in Section 3, Proposition 3.2, using the lower 
semicontinuity of the specific information gain. 

Lemma 2.2 Let a be a stationary source. If {rn C nn :n E IN} is a reconstruction 
sequence for a, then 

(2.23) 


We have the following obvious corollary: 

Corollary 2.1 Let a be a stationary source. If a supporting sequence for a is also 
a reconstruction sequence for a, then it has entropic growth-rate. 

Examples: 

Take n = {I, O}lN with f3 the Bernoulli (~, ~) probability measure. Let a be the 
Bernoulli (~, ~) measure. Define 

(2.24) 


• 	If 8n < -, 
1 

then rn = 0 unless n is divisible by 3; limn -n 
1 log #rn does not 

3n 
exist. 

• 	If 8n = ...!:..-, then for each n E IN there is exactly one k so that a Ern implies
3n 

I:~ aj = k, and #rn = (k)' A direct calculation shows that {rn} is a 
reconstruction sequence for a. A simple computation using Stirling's formula 
shows that {rn} has entropic growth-rate. It is not supporting. 

• 	If 8n = log n/Vii, then the Central Limit Theorem shows that {rn} is sup­
porting for a. Direct arguments show that it is also a reconstruction sequence, 
hence has entropic growth-rate. 

• 	If 8n = 8, where 0 < 8 ::; k is a constant, then the sequence is supporting, 
but not a reconstruction sequence, for a. It is a reconstruction sequence with 
entropic growth-rate for the Bernoulli p-measure with p = ~ +8. However, it 
is not supporting for this p-measure. 
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One may also ask if a sequence can be both supporting and have entropic growth­
rate for two distinct measures. To see that this is the case, let 0: be the Bernoulli 
(~,~) measure and let 0:* := to: + to:; define 

(2.25) 


and let r~ := rn U rn' With dn = log njy'ii, the sequence {r~} is supporting and 
of entropic growth-rate for 0:, a and 0:*. It is a reconstruction sequence for the 
non-ergodic 0:*. 

Sets forming a reconstruction sequence may grow very slowly; for examples with 
zero exponential growth-rate, see Section 6. 

Our existence proofs make use of a construction which gene~a1ises that used for a 
Bernoulli measure in the above examples. Define the blocking operator Pn : 

Pn(W) = (WI,." ,Wn,WI,· .. ,Wn, .. .). 	 (2.26) 

which is .1'n-measurable since Pn(w) depends only on WI, ... ,Wn' Next we define 
the cyclic empirical measure . 

(2.27) 


in the space Mt(O) of probability measures on (0,.1'). Since the map Tn : 0 -+ 
Mt is .1'n-measurable, the inverse image T;l A of a subset A of Mt is determined 
completly by the first n coordinates. 

Definition 2.5 Let Tn : 0 -+ Mt(O) be the cyclic empirical measure. A sequence 
{rneOn: n E IN} is said to be a canonical sequence for °: if and only if 

1. 	 there exists a decreasing sequence {Fn} of closed neighbourhoods of °: whose 
intersection is {o:}; 

2. 	 each set r n is given by 
(2.28) 


3. 	 for all n sufficiently large, ,Bn(rn] > O. 

In this case, we shall say that the canonical sequence {rn} is based on the sequence 
{Fn }. 

The key to the proof of our main theorem is a conditional limit theorem; this is the 
subject of Section 4. It says that if {rn} is a canonical sequence for the stationary 
measure 0:, then the sequence {j3r n} of conditioned measures converges to 0:: 

Lemma 2.3 Let °: be a stationary source; every canonical sequence for °: is a re­
construction sequence for 0:. 
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This result is an easy consequence of the cyclical invariance of the sets r n and the 
compactness of the space M t (n). 

A great advantage which comes from working 'upstairs' on n is that we have available 
results on the large deviation properties of the cyclic empirical measure. The results 
we need are summarized in Section 5; proofs can be found in [LPS]. We use the 
large-deviation lower bound to prove the existence of a canonical sequence for a 

stationary measure. 

Lemma 2.4 Let Q be a stationary source,. then there exists a canonical sequence for 
Q having entropic growth-rate. 

Since the alphabet is assumed to be finite, the existence of a decreasing sequence 
of closed neighbourhoods contracting to Q is easily established; the large-deviation 
lower bound is used to control the rate at which the sequence contracts to Q so as 
to ensure that, at least for all n sufficiently large, the sets rn = XnT;:l Fn satisfy 
;3n[rn] > O. We do so by exhibiting a sequence {rn} whose growth-rate is bounded 
below by the Shannon entropy of Q; it then follows from Lemma2.3 and Lemma 2.2 
that the growth-rate is entropic. 

A canonical sequence for Q is not necessarily supporting; however, when the source 
is ergodic, we can use the Ergodic Theorem in place of the la~ge-deviation lower 
bound to control the sequence of contracting neighbourhoods. In this way, we can 
ensure that the sequence we construct is supporting and, by Lemma 2.1, canonical. 
This is done in Section 5, Proposition 5.2, establishing the following result: 

Lemma 2.5 Let Q be an ergodic source,. then there exists a canonical sequence for 
Q which is a supporting sequence for a. 

In Section 5, we use the compactness of Mt to prove the converse of Lemma 2.5: 

Lemma 2.6 If there exists a sequence which is both canonical and supporting for a 
stationary source a, then Q must be ergodic. 

We are ready to prove Theorem 2.1: 

Lemmas 2.4 and 2.3 together prove that if Q is a stationary source, then there exists 
a reconstruction sequence for Q having entropic growth-rate; Lemma 2.5 proves that 
if the source a is ergodic, then the reconstruction sequence may be chosen so as to 
be supporting for Q. 

Lemma 2.6 is the converse of Lemma 2.5; together they prove Theorem 2.2. 
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3 Information Gain 

The principal tool in the proofs of Lemma 2.1, the lower bound on the growth-rate 
of a supporting sequence, and Lemma 2.2, the upper bound on the growth-rate of a 
reconstruction sequence, is the specific information gain. 

Definition 3.1 The information gain of the probability measure A with respect to 
the probability measure p is given by 

D(A II p) := Jd)"log ~~ (3.1) 

when A is absolutely continuous with respect to pj otherwise D( A II p) .- +00. 

Definition 3.2 The specific information gain of the probability measure A with 
respect to p is given by 

(3.2) 

We always have D( A II p) ~ 0, h( AI,B ) ~ 0; if D( AII p ) = 0, then A = p, but the 
corresponding result for h( AIp) does not always hold. However, if a is stationary 
and p is a stationary product measure, then 

(3.3)h(alp) 

\Vhen A is a finite alphabet with r letters, and ,B is the uniform product measure, 
this yields 

h( a I,B) = logr - hSh(a). (3.4) 

Likewise, when A is a finite alphabet and rneOn, we have 

(3.5) 


Henceforth we will replace #fn by .8n[rn) and hsh(a) by -h(a 1.8) in the statements 
of the propositions. Modified in this way they hold in greater generality; this is 
discussed in Section 6. 

Proposition 3.1 Let a be a stationary source. If {fn} is a supporting sequence for 
a, then 

(3.6) 

(3.7) 
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~ a[fn] log a[fn] +a[O \ f n] log a[O \ fn) - a[fn] log p[fn). (:3.8) 

The inequality follows by dividing by n and taking lim SUPn' using a[fn] -+ 1. 0 

Lemma 2.1 follows using (3.4), (3.5) and (3.6). 

There are some results of a more technical character which we require concerning 
cyclic symmetrization and the specific information gain. We collect them in a lemma; 
they are proved in Section 8 of [LPS]. The space 0 has a natural decomposition 

into a product space 
o = On X O~ , (3.9) 

and the measure prn is the product measure of p~n on On and 13 on O~. Notice that, 

for each subset ~n of On, we have 

(3.10) 


Lemma 3.1 Let (Ol,Ft) and (02,F2) be measurable spaces. Let 0 = 0 1 X O2 

with F the corresponding product a-algebra. Let A and 13 be probability measures 
on (0, F) with AI, A2 and PI, 132 denoting the restrictions to F1,F2 considered as 
sub--(J'-algebras of F. Assume 13 = 131 0132. Then we have . 

D( Allp) = D(AIIA1 0 A2) +D(A111p1) + D( A211p2) . (3.11 ) 

We are now in a position to prove the upper bound on the growth-rate of a recon­
struction sequence. 

Proposition 3.2 Let a be a stationary source. If {rn} is a reconstruction sequence 

for a, then 

lim sup !..log Pn[rn] ~ -h(alp) . (3.12) 
n n 

Proof: By direct calculation, we have 

(3.13) 

so that 

(3.14) 

Next we make use of the cyclical invariance of rn: for any integer k such that k+m < 
n, the projections of prn on the a-algebras a(xt, ... , xm) and a(xk+b ... , Xk+m) a~ 
the same. Let m < nand q(nlm) be the largest integer smaller than n/m. From 
Lemma 3.1 we have 

(3.15) 
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Since liIlln f3rn = Q, it follows from the lower semicontinuity of D( . II f31.rm ) on the 
space of measures on Om that 

Hence 
(3.17) 

o 
Lemma 2.2 follows using (3.4), (3.5) and (3.12). 
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4 A Conditional Limit Theorem 
We state and prove a conditional limit theorem. We shall need the following. lem~a 
which exploits the invariance of the reference measure (3 under the the cyclIc shift 

° operator Sn, defined by: 

° {Wk+1 if k mod n =1= 0; (4.1 ) 
Sn W k:= . ­( ) Wk-n+1 If kmod n - O. 

We sometimes find the following notation useful: let A E ./~·t and 1 E ftoc; we set 

(4.2)(I, A) := f 1dA. 

Lemma 4.1 Let rn be T;:1 B -measurable with (3n[fn] > 0 and let 1 E Fk with 

k :S n; then 
(4.3) 

Proof: Since rn is T;: 1B-measurable, there exists C E B such that rn - {w :
° 0 0 0 . o. 

Tn(w) E C}. Note that Sn is bijective, SPn =Sn Pn = Pn Sn, S';;+J =SJ" and 

° 1 n-1 o. 

An:= - L S~. ( 4.4) 
n j=O 

o ° 
Also Sn Tn(w) = Tn(w), Sn (3 = (3, which imply 

°-1 ° Sn {Tn E C} = {Tn E C} and Sn (3[ 'I{Tn E C}] = (3[ 'I{Tn E C}]. (4.5) 

Since 1 E Fk with k :S n, we have 1 = 1 0 Pn so 

in f(w) (3[dwl{Tn E e}l - in f 0 Pn(w) .t (3[dwl{Tn E e}l (4.6) 

- in(I, Tn(w)) (3[dwl{Tn E C}l· 

o 
A second ingredient in the proof of our conditional limit theorem is a lemma which 
states a simple consequence of the compactness of Mt; we shall need it again in 
Section 5. 

Lemma 4.2 Let a be a stationary source and let {rneOn: n E IN} be a canonical 
sequence for a based on the sequence {Fn }. Then for each f E Jioc and each e > 0 
there exists N(f, e) such that whenever n ~ N(/, e) 

Fn C {A E Mt: I{/,A) - {/,a)1 < e}. (4.7) 

Proof: {Fn} is a decreasing sequence of closed neighbourhoods of a whose inter­
section is {a}. We then have 

n(Fn \ {A E Mt: I{/,A) - (/,a)1 < c}) = 0. (4.8) 
n 

We deduce there exists N so that ~v \ {A E Mt : 1(/, A) - (/, a)/ < e}) = 0 because 
Mt is compact, so we have (4.7). 0 
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Theorem 4.1 Let a be a stationary source; every canonical sequence fo'r a lS a 
reconstruction sequence for o'. 

Proof: Let {rneOn: n E IN} be a canonical sequence for Q based on the sequence 
{Fn}. Then, by Lemma 4.2, for each j E ftoc and each e > 0 there exists LV(j, e) 
such that j E FN(J,(!) and whenever n 2 N(j, e) we have 

Fn C {A E Mt : l(j,A) ­ (j,O')1 < e}. (4.9) 

It follows that n 2 IV(j, e) and w Ern imply 

I(j, Tn{w)) - (j, 0')1 < e. ( 4.10) 

Since j3rn is supported by rn, we have 

(4.11 ) 


It follows from the above and (4.3) that 

(4.12) 


whenever n 2 N(j,e). This proves that the sequence {j3fn} converges to O'. o 
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5 Canonical Sequences 

\Ve begin by summarizing the ideas of large deviation theory and the single result 
we shall require; proofs can be found in [LPS]. 

Denote by .1Mn the distribution of the cyclic empirical measure Tn : f2 -+ ./\.1t(f2) 
defined on the probability space (f2, F, ;3), where ;3 is our reference measure - the 
uniform product measure: 

(5.1 ) 

For each open set G, define 

1
m[G] := lim sup -log .1Mn [G] , 	 (5.2) 

n n 

m[G] := liminf ~ log .1Mn [G] ; 	 (5.3) 
n n 

the following result is Lemma 8.3 of [LPS]: for each A E Mt, we have 

inf{m[G] : G :3 A} = inf{m[G]: G :3 A} . 	 (5.4) 

Definition 5.1 ([LP]) The Ruelle-Lanford function fl is defined on Mt by 

fl(A) 	 .- inf{m[G]: G :3 A} (5.5) 

- inf{m[G]: G :1 A} . (5.6) 

It is a basic result in Large-Deviation Theory (see [LPD that the existence of the 
Ruelle-Lanford function implies that the large-deviation lower bound holds for open 
subsets: 

• for each open set G, we have 

(5.7) 


In the present case, we have: 

• 	 the Ruelle-Lanford function (RL-function) is given explicitly by 


if A is stationary, 

(5.8)

otherwise. 

The following result is fundamental: it establishes the existence of the sequences 
of closed neighbourhoods of a on which our construction of canonical sequences is 
based. 

Lemma 5.1 Let a be a stationary source; then there exists a decreasing sequence 
{Fn} of closed neighbourhoods of Q in Mt such that 

(5.9) 
n 
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Proof: The statement is a consequence of our hypothesis that the factor spaces of 
o are finite sets, copies of a finite alphabet; it holds whenever the factor spaces are 
standard Borel spaces, for then there exists a sequence {9m} in :Fioc which separates 
J\1.t: if a,..\ are any two probability measures which satisfy 

(5.10) 


for all m, then A = a. In the finite alphabet case, we can take for {9m} the set 
{la E Fn : a EOn, n E IN} of all indicator functions of atoms determined by finite 
words: 

la(w) = {I if WI =.al,'" ,Wn = an (5.11 )o otherwIse. 
We can choose 

Fn := {A E Mt: IJ 9k dA - J9kdal::;~, k = 1, ... ,n}. (5.12) 

o 

We now use the large deviation lower bound (5.7) to prove the existence of a canon­
ical sequence for which a lower bound on the exponential growth-rate holds. The 
proof employs a construction which we call stretching: Let {F~} be a decreasing 
sequence in Mt of closed neighbourhoods of a whose intersection is {a} and let 
{lVm } be a strictly increasing sequence of positive integers; the decreasing sequence 
{F~} defined, for each n E IN, by 

F' '= {Mt if n < Nl ; (.5.13)n' Fm if lVm ::; n < Nm+l , 

is called the stretching of {Fn} by {_Nm}; note that the intersection of the stretched 
sequence is again {a}. 

Proposition 5.1 Let 0 be a stationary source; then there exists a canonical se­
quence {rn} for which 

lim ~ log ,8n[rn] = -h(a I ,8) . (5.14) 
n n 

Proof: Let {Fk } be a decreasing sequence in Mt of closed neighbourhoods of a 
whose intersection is {a}; consider Fm for fixed m. Since Fm is a neighbourhood 
of 0, there exists an open set G such that 0 E G c Fm. It follows from the large 
deviation lower bound (5.7) that 

J-l( a) ::; sup J-l( A) ~ lim inf ~ log lMn[G] ::; lim inf ~ log lMn[Fm] ; (5.15)
>..eG n n n n 

hence, for each m E IN, there is an integer N m such that 

1 1 
J-l( a) - - ~ -log lMp[FmJ (5.16) 

m p 

for all p 2: Nm' We may choose the sequence {Nm} to be strictly increasing. Let 
{F~} be the stretching of {Fn} by {Nm}; define rn by 

(5.17) 
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By construction, for all n such that Nm ::; n < lVm +1 , we have 

1 1 I () 1 (5.18 ) -log !3n[rn] = -log lMn[Fnl 2: I-" a - - ; 
n n m 

it follows that 
(.5.19) 

But a is stationary, so that 
(5.20)I-"(a) = -h(a I !3) ; 

hence we have 
(5.21 )lim inf .!.log !3n[rn] 2: -h(a I !3) . 

n n 
In particular, !3n[rnl > 0 for all n sufficiently large; it follows that {rn} is a canonical 
sequence and that the lower bound holds. The equality (5.14) for the growth-rate 
now follows from Theorem 4.1 and Proposition 3.2. 0 

When the source is ergodic, we use the stretching construction together with the 
Ergodic Theorem to prove the existence of a canonical sequence {rn} which is 

supporting. First we need two lemmas: 

Lemma 5.2 Let a be an ergodic source and let I E :Fioc; then 

(,5.22)lim (I, Tn{w)) = (I, a), a-a.e.. 
n-+oo 

Proof: For I E :Fm, an elementary calculation shows that 

sup 1(1, Tn(w)) - (Anl)(w)l ::; 2(m - 1) sup II(w)l, (5.23) 
wEn n wEn 

so that the sequence {(I, Tn{w))} converges whenever the sequence {( Anl){w)} con­
verges and they have the same limit; since a is ergodic, it follows from the Ergodic 
Theorem that their common limit is (I, a). 0 

Lemma 5.3 Let a be an ergodic source and let G be an open subset 01 Mt con­
taining a; then 

(5.24) 

Proof: Since G is an open set containing a, there exist It, ... , 1m and positive 
numbers e 1, .•• ,em such that 

{A E Mt: 1(lk,A) - (lba)1 < ek, k = 1, ... ,ln} C G. (5.25) 

Since a is ergodic and Ik E :Fioc, it follows from Lemma 5.2 that 

Jh~ (Ik, Tn(w)) = (Ik, a) a-a.e., (5.26) 

so 

J~ a[{w En: 1(lk, Tn(w)) - (Ik, a)1 < ek, k = 1, ... , m}] 1 . ( 5.27) 

It now follows from (5.25) that 

(5.28) 

o 



21 Reconstruction Sequences and Equipartition lWeasures 

Proposi~io~ 5.2 Let a be an ergodic source; then there exists a canonical sequence 
for a whzch zs supporting for a. 

Proof: Let {Fk } be a decreasing sequence in Mt of closed neighbourhoods of a 
whose intersection is a; consider Fm for fixed m. Since Fm is a neighbourhood of 
a, there exists an open set G such that a E G c Fm. Suppose that the source a is 
ergodic; then, by Lemma 5.3, we have 

lima[T-1G] = 1 (5.29)
n n 

so there exists Nm such that, for all n 2:: Nm , 

a[T;! Fml 2:: a[Tn-!G] 2:: 1 - 11m. (5.30) 

The sequence {Nm } may be chosen to be strictly increasing. Let {F~} be the 
stretching of {Fn} by {Nm}; put 

f n - XnT;1 F~ . (5.31) 

Then 
(5.32) 


so that 
lim an [fn] = lim a[T;! F~] = 1. (5.33) 

n n 

Hence {fn} is supporting for a; in particular, by Proposition 3.1, .Bn[fnJ > 0 for all 
n sufficiently large so that {fn} is a canonical sequence. 0 

We conclude this section by proving a theorem of relevance to the coding problem: 

Theorem 5.1 Let a be a stationary source. If there exists a canonical sequence fo·r 

a which is supporting for a, then the source a is ergodic. 

We make use of two lemmas. 

Lemma 5.4 Let a be a stationary source. Let {fneOn: n E IN} be a canonical 
sequence for a and suppose there exists a sequence {fk E Jioc : k E IN} which 

separates M t and (5.34)lim sup \(Tn(w), fk) - (a, fk)\ = 0 
n wEr- n 


for each k E IN. If {fn} is supporting for a, then the source a is ergodic. 


Proof: For simplicity, we replace each fk by fk - (a, fk) so that 


(5.35)(A, !k) == 0 for all k E IN ~ A == a. 

Since fk E :hoc, we deduce from (5.34) that 

(5.36)lim sup IAnfk(w)\ - O. 
n wEr- n 

Since !k is bounded and limn a[fn] == 1 by hypothesis, it follows that 

(5.37)lim f IAnfk(w)1 da == O. 
n 10. 
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Now let A be any shift-invariant set with o[A] > O. \Ve have 

(5.38)\L/k da\ = \LS /k da\ == \LAnfk da\ ::; in \Anfk\ da 

because both a and A are shift-invariant. Then (5.37) and (5.38) imply that 

(5.39) 

for all k E IN. From (5.35), we conclude that 

(5.40)o[ 'IA] = 0['] 

which implies that o[A] = 1. Since each shift-invariant set A has either o[A] = 0 
or alA] = 1, we deduce that a is ergodic. 0 

We use compactness to prove the existence of a separating sequence having property 

(5.34). 

Lemma 5.5 Let a be a stationary source and let {rneOn: n E IN} be a canonical 
sequence for a based on the sequence {Fn}; then condition (5.3..4) holds for each fk 
in :fioe. 

Proof: {Fn} is a decreasing sequence of closed neighbourhoods of a whose inter­
section is {a}. It follows from Lemma 4.2 that for each j E }=ioe and each e > 0 
there exists N(j, e) such that whenever n 2 N(j, e) 

Fn C {A E Mt: l(j,A) - (j,o)1 < e}. (5.41 ) 

It follows that n 2 N(j, e) and w Ern imply 

I(j, Tn(w)) - (j, 0)1 < e. (5.42) 

This implies (5.34). o 

Since A is finite, the collection of indicator functions of atoms from 0 for all n n 
is a countable separating set. Taken together, Lemma 5.4 and Lemma 5.5 prove 
Theorem 5.1. 
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6 Commentary 

1. 	~ou~im~it t~~ ex.posi.tion, we have assumed A to be a finite set with /31 the 
qt' prOt a he IstrI.butIo? on 0 1 = A. Our results extend with some modifi­

ca 	Ion 0 t e case In whIch A . . 
. IS a compact metrIc space and /31 a probability 

measure on A Wlt~ /3n on On and /3 on 0 being the product of co ies of /3 
Here are the modIfications which must be made: p 1· 

• 	#rn must be replac~~ by /3n [.rn) and hSh (0:) by -h(0: I (3) in the state­
men~s of the proposItIons; thIS IS done when we come to prove them in 
SectIons 3, 4 and 5; 

• 	 ;he hypothesis '.Let 0: be a stationary source' must be amplified to read 
Let 0: be a statIonary source with h (0: I (3) finite'. 

The results may be further extended to the case in which A is a standard Borel 
space and /31 a. ~robability measure on A, with f3n and /3 the corresponding 
product probabIlIty measures. In this case we need to modify the definition of 
"canonical sequence" so that with rn = Tn- I Fn we require not only that {Fn} 
be a decreasing sequence of closed neighbourhoods of 0: with nFn = {o:}, 
but also that there exists a sequence {Ik} with each Ik E Jioc, such that the 
topology on Mt determined by {fk} separates the points of Mt, and that 
{Fn} is a neighbourhood basis for 0: in this topology. In the non-compact case, 
in general, Lemma 4.2 is no longer valid. However, the conclusions of Lemma 
4.2 hold when f = fj E {fk}, the separating sequence. One proves Theorem 
4.1 by noting that the level sets of h are compact so that the sequence {/3fn} 
has limit points in Mt. The modified Lemma 4.2 shows uniqueness of the 
limit point of {/3fn}, which implies convergence. 

2. 	 The concept of an equipartition measure is inspired by that of a microcanonical 

measure in statistical mechanics. For Gibbs, the microcanonical measure was 

fundamental; the canonical measure, an approximation to the microcanonical, 

was useful by virtue of being more tractable analytically. The idea of bounded 

local convergence is fore-shadowed in the statement of his 'general theorem': 


If a system of a great number of degrees of freedom is microcanoni­
cally distributed in phase, any very small part of it may be regarded 
as canonically distributed. ([G],p.183) 

In the concept of a reconstruction sequence, we turn Gibbs' idea on its head: 
the stationary source corresponds to his canonical measure; our equipartition 
measure corresponds to his microcanonical measure. For us, the stationary 
source is fundamental; it can be approximated by an equipartition measure. 

3. 	 From the point of view of digital computation, a reconstruction sequence is 

more tractable than a stationary measure. Reconstruction sequences may 

prove useful in providing efficient ways of simulating stationary measures. We 

will pursue these ideas elsewhere. 




24 Reconstruction Sequences and Equipartition Jv[easures 

4. 	 The distinction between average and cyclic average becomes negligible as n -+ 
00 because the limit employs Floc: for f E Fm and n >m, an elementary 
computation shows that 

sup I((Anf) 0 Pn) (w) - (Anf)(w)1 ~ 2(m - 1) sup If(w)l, (6.1) 
wEn 	 n wEn 

so the results of this paper hold with the following alternative definition of 
reconstruction sequence: 

Definition 6.1 Let a be a stationary source. A sequence {rn C nn :n E IN} 
is said to be a reconstruction sequence for a if and only if 

(aJ for all n sufficiently large, ,8[rn] > 0; 

(bJ the corresponding sequence {An,8f n} of averaged equipartition measures 
converges to a: 

limAn,8fn = a. 
n 	

(6.2) 

If we use this definition, then canonical sequences have the following important 
property: 

Corollary 6.1 (to Theorem 4.1) Let {rn} be a canonical sequence for the 
stationary source a. Let {r~} satisfy r~ ern and ,8[r~] > 0 for all n suffi­
ciently large. Then {r~} is a reconstruction sequence in the sense of Definition 
6.1: 

(6.3) 

Proof: Let f E Fm; from the proof of Theorem 4.1, for each > 0 thC'(.,., " ere
exists N (f, c) so that n ~ lV(f, c) implies 

sup I(f, Tn(w)) - (f, a) I ~ C. (6.4)
wEfn 

By hypothesis we have for all large n 

(6.5) 

It follows from (6.1) that 

1(/,An,8f~)-(/,a)1 - IAnl,,8f~)-(/,a)1 (6.6) 
2(m - 1)

< c + sup I/(w)/. 
n wEn 


Hence 


lim sup I(I, An,8f~) - (I, a) I < c. 
n 	 - (6.7) 

Since 1 E Jioc and c > 0 are arbitrary, it follows that {An,8f~} converges to 
a. 

o 
Remarks: 
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(a) If.each r~ ~a~ cyclic s~n:rnetry, then the conclusion of the corollary holds 
wIth the orIgInal definItIon of reconstruction sequence, Definition 2.4. 

(b) 	The set r~ can be a singleton or, in the case of cyclic symmetry, contain 
at most n elements. For such {r~}, we have 

lim ~ log # r~ == 0 . (6.8)n 

5. 	 Examples of 'small' reconstruction sequences are provided also by the Ergodic 
Theorem. ~et a be an ergodic measure on (0, .r); we give an example of a 
reconstructIon sequence {rn} for a which grows very slowly: 

lim~log#rn == O. 	 (6.9)n 	 n . 

Let la E .rn denote the indicator function of the atom ..\,;1 a of .rn,where a is 
a word in On; 

la{w) == {I if WI ==.al ,'" ,Wn == an 	 (6.10)
o otherWISe. 


The Ergodic Theorem implies that 


(6.11 ) 

Let ~(a; a) be the set on which the above limit holds; let Ll(a) denote the 
intersection of Ll(a, a) over all words a in On and all n == 1,2, .... We have 
a[~(a)] == 1; hence ~(a) is non-empty. Choose a sequence W* E Ll(a); for 
each n E IN, define r n to be the set formed by the distinct cyclic permutations 
of the word ..Ynw*; then 

lim 	{3rn == a, (6.12)
n 

so that {rn} is a reconstruction sequence for a. 

6. 	 The approach to large deviation theory sketched in Section 1 is described fully 
in [LP]; it has its origins in Ruelle's treatment [R] of thermodynamic entropy 
and Lanford's proof [L] of Cramer's Theorem. 

7. 	 Our conditional limit theorem has antecedents; the earliest we are aware of is 
due to van Campenhout and Cover [CC]: 

Let Yi, y;, ... be i.i.d. random variables having uniform probability 
mass on the range {I, 2, ... , m}. Then, for 1 ::; a ::; m and for all 
x E {I, 2, ... m}, we have 

1 n 
lim Prob{Yi == x I - 2: Yi == a} == (3>'(x), (6.13) 
n ...... oo 	 n . 

no integer 	 t=l 

where 

(6.14) 


and the constant A is chosen to satisfy the constraint Lk k{3>'{ k) == a. 
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A landmark in the development of such theorems is the paper by Csiszar [C), 

in which several important concepts are introduced. 

8. We have shown 	that canonical sequences have the reconstruction property. 
In the case where a is a product measure, we have given other examples of 
reconstruction sequences. In the literature, sequences of the form 

1 an[a) < 1 (6.15)r::= {aE On: l-log-[] -h(alf3)I_ -},
n f3n a 	 m 

are used frequently. vVhen a is ergodic, the Shannon-McMillan-Breiman The­

orem implies that {r:} is a supporting sequence: 

(6.16) 

We can choose the strictly increasing sequence Nm so that n ~ Nm implies 

(6.17) 


Define 
r' 	:= {O~ ~f n < Nt, (6.18) 

n rn IfNmsn<Nm+t; 

in the case of ergodic a, we can use sets of the form (6.15) to generate a 
supporting sequence for a. Straightforward estimates show {r~} to have 'en­
tropic growth-rate. This suggests asking whether a supporting sequence with 
entropic growth-rate is a reconstruction sequence. The example near (2.25) 
shows that, in general, a supporting sequence for a with entropic growth-rate 
need not be a reconstruction sequence for a. We need additional hypothesis 
so that r n does not include points of low a-probability. Here is a result of 

this kind: 

Proposition 6.1 Let a be a stationary product measure and let {rn} be a 
supporting sequence for a. For each (5 > 0, define 

r e { r 1 an[a)

n:= a En: ;:; log f3n[a] < h(alp) - c}. (6.19) 


If for each (5 > 0 

lim Pn [r~] = 0 
 (6.20)

n-+oo Pn [rn] , 


then {rn} is a reconstruction sequence for a. 


Proof: We have 

(6.21) 

so (6.20) implies that the sequence {Anprn} converges to a if and only if the 
sequence {Anprn \r:.} converges to a. Thus it suffices to con~ider the ca~e in 
which r~ = 0 for all c > 0 and all n E IN. For a E On, we have 

(6.22) 




27 
Reconstruction Sequences and Equipartition Afeasures 

where In is given by 

(6.23) 
Assuming r~ = 0, we have 

login 2: n (h(o:/J3) - e). (6.24) 
Then 

(6.25) 
so 

(6.26) 

for every e > 0, because {rn} is a supporting sequence. Any limit point ,X 

of t~e se~ue~ce {AnJ3r n} is stationary. Lemma 8.1 of [LPS] and the lower 
semI-continuIty of the specific information gain imply 

h('x/o:) = O. (6.27) 

Since 0: is assumed to be a product measure, this implies ,X = 0:. But the level 
sets of h are compact, so the sequence {AnJ3rn} converges to 0:. 

Remarks: 

(a) 	If {r~} is a supporting sequence for 0:, then the sequence {rn} given by 

(6.28) 


as given in (6.18), is a supporting sequence for 0:, which satisfies (6.20). 

(b) Under 	the condition that 0: is weakly dependent (see [LPS]), one may 
also deduce (6.27). One can then conclude that ,X is a Gibbs state for 
the interaction associated with 0:; this does not, in general, imply that 
,X =0:. 
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