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Abstract: 

The structure of avalanches in the Abelian sandpile model is analyzed. It is shown that 
an avalanche can be considered as a sequence of waves of dec~easing sizes. Being more 
elementary events, waves admit the representation in terms of the q-component Potts 

/ model in the limit q -+ O. The decrement of waves follows the power law with the 
I exponent a simply related with basic exponents of the sandpile model. Using known

1\\ exponents of the Potts model, we derive a from scaling arguments. 
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The sandpile model was introduced in the work [IJ by Ba.k et ale to manifest the nature 

of "self-organized criticality" (SOC). The Abelian version of the model got most popular 

as it turned out analytically tractable [21. Several characteristics of the Abelian sandpile 

were evaluated exactly: the total number of allowed configurations in the SOC sta.te [21, 

the fractional number of sites having a given height [3,4], some height-height correlation 

functions [3,5], the expected number of topplings at a given site due to a particle added at 

another one [2]. 

Nevertheless, exact values of exponents characterizing avalanche processes remained un­

known. The distribution of avalanches obeys the power law peS) ~ S-'" in which S is 

the number of distinct sites toppled during the relaxation. Exponents corresponding to the 

mass and linear extent of avalanches can 'be expressed in terms of T [6,7]. Initial simulation 

studies of sandpiles [1] gave T = 1. The first theoretical predictions based on a continuous­

energy model [8] and a Flory-like approximation [9] justified this result. Later on, Manna 

[10] undertook large-scale simulations and obtained the Value T = 1.22. Meanwhile, the 

data of majority of numerical experiments were roughly consistent with T =7/6 [6]. Sim­

ple mean-field arguments by Christiansen and Olami [7] led to a somewhat smaller value 

r = 23/21. 

Recently, Pietronero, Vespignany and Zapperi [12] have presented a renormalization 

scheme of a new type that allowed them to estimate critical exponents of the sandpile 

model. They obtained r = 1.253. 

Determination of T needs a detailed analysis of the relaxation process. It would be 

desirable to represent the whole avalanche as a series of more elementary events and to 

express T via auxiliary exponents. The first step in this direction has been made by Dhar 

and Manna who introduced the notion of inverse avalanches [13]. It was shown soon that 

there exists a direct procedure leading to the same representation of avalanches [14]. New 

objects representing basic elements of the avalanche were termed "waves of toppling". 

In this Letter, we use the wave construction for finding the critical exponents of the 

2D Abelian sandpile model. We will show that a typical avalanche can be considered as a 
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sequence of waves of decreasing sizes. Each site involved into a wave topples only once. This 

permits us to define a spanning tree representation for waves and to find their distribution 

exactly. The decrement of size s of subsequent waves ~s follows also the power law ~s sQf"J 

where the exponent a is simply related to T. The problem of evaluation a can be formulated 

in terms of spanning trees or equivalently of the q-component Potts model in the limit 

q -i> O. Using known exponents of the latter model, we will derive the exponent a from 

scaling arguments. We estimate a from simulations and find good agreement between the 

measured and derived values. 

The model we consider is a cellular a~tomaton defined on a N x N square lattice C. The 

sandpile is characterized by the number of .particles or integer heights z. at all sites i and is 

specified by two rules: 

(i) Adding a particle at a random site: z. -i> Zi + 1; 

(ii) Toppling of unstable sites: if any Z. > 4, then Zj -i> Zj - ~ij for all j E C. 

The toppling matrix ~ is the discrete Laplacian which has, in the case of a square lattice, 

non-zero elements ~•• =4 for all i and ~.j = -1 for all pairs of adjacent sites i and j. It is 

convenient to introduce an additional site io connected with all boundary sites to be a sink 

of toppled particles. 

All stable configurations of heights which are allowed in the SOC state have the same 

probability [2]. To determine if a given configuration is allowed, Majumdar and Dhar [6] have 

introduced a "toppling from sink" together with a given order of preference for ~uccessive 

topplings of sites. By this procedure, one adds a particle to each site connected with io. All 

sites of C topple exactly once if and only if the configuration is allowed. Drawing all bonds 

connecting pairs of sites toppled at successive moments of time, one obtains a spanning 

tree covering a given lattice. The point io is the root of the tree To. The collection of all 

possible rooted spanning trees {To} is in one-to-one correspondence with the set of allowed 

configurations. 

An avalanche is a perturbation of a stable state. It begins when a particle is dropped 

on a site of height 4 and stops when all sites become stable again. The Abelian property 

3 



admits an arbitrary order of topplings of non-stable sites during an avalanche. To introduce 

the waves of topplings, we carry out the process of relaxation in a specific way [14}. As 

usual, let us start with adding a particle to the site i of height 4 in an allowed configuration 

C. Topple it once and then topple all sites that become unstable keeping the site i out of 

the second toppling. We call the set of toppled sites "the first wave of topplings" . 

The site i loses 4 and receives m particles (0 =5 m =5 4) besides the added one during the 

first wave. If the resulting height Zi = 5, we topple the site i the second time and continue 

the avalanche not permitting this site to topple the third time. The set of relaxed sites at this 

stage is "the second wave". The process continues producing intermediate configurations 

C1, C2, ••• C" until the site i becomes stable and the avalanche stops. 

All sites involved into the k-th wave (k ~ 1) topple only once during this wave. Indeed, 

to topple a site i twice, we have first to topple one of its neighbor sites il' The second 

toppling at il is possible only after a second toppling at its neighbor il =F i2' Continuing, 

we obtain the chain it, i2'" which contains the initial site i for the finiteness of the wave. 

However, by definition, the site i topples once during the given wave, therefore other sites 

of the wave topple once, as well. 

The construction of waves admits a spanning-tree interpretation. For this purpose, we 

introduce the sandpile model on an auxiliary lattice £,', consisting of the original lattice 

£', the site io, connected with boundary sites of £, and an additional bond connecting the 

site io and a given site i insi.de the lattice. If we consider the toppling from the sink for 

each allowed configuration on the new lattice .c', we obtain, as a result, the set of spanning 

trees covering .c' and having the root io. The trees obtained are of two classes. The first 

consists of trees without the bond (io i) and therefore coincides with the set of one-rooted 

spanning trees {To} defined above. The trees of the second class contain the bond (io i). 

On removing the bond (io i) a subtree of the whole tree gets disconnected. We obtain a 

two-rooted spanning tree on the original lattice .c consisting of two components T: and T~ 

having the roots at the sites i and io• 

Now, we can select a particle dropped on i among all particles added to sites connected 
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with i o• This particle can be considered as a perturbation giving rise to an avalanche on .c. 
Since the site i on the lattice £" is connected with io, it topples only once and this avalanche 

is actually the wave. The corresponding subtree T/ and its supplementary component T6 

are the graphic portrait of intermediate configurations Cle appearing after a k-th wave. To 

construct the subtree corresponding to the first wave, one can start with a configuration C 

which is allowed simultaneously on the lattices £, and £". To select exactly the k-th wave 

for an arbitrary k, one can first add k - 1 particles at i and then apply the toppling from 

the sink. An allowed configuration on £, appears again after the last wave. 

The graph representation of waves enables us to link the toppling process with the lattice 

Green function G = ~-1 that is the solution of the Poisson equation with the boundary 

conditions Gio ; = 0 for all j E £'. In [14] the following proposition has been proven: For a 

lattice £, with an additional vertex io 

Gi; =N(i,;) IN (1) 

where N(i,;) is the number of two-rooted spanning trees having the roots i.and j such that 

both the vertices i and j belong to the same subtree; N is the total number of spanning 

trees on £'. 

The wave distribution follows immediately from Eq.(l) and the known asymptotics of 

the Green function G(r) ,..., In r. Indeed, the probability P(rw ~ ri;) that the radius of the 

wave r w is not less than the distance between i and j is 

(2) 

Since the waves are compact, their sizes scale as s ,..., r2. Then, the asymptotic distribution 

of sizes D(s) is 

dr 1 
D(s) = D(r)- ,..., - (3)

ds s 

where D(r) = dP(rw ~ r)ldr = 1/r 

The one-fold toppling of all sites in a wave is equivalent to a pass of particles over the 

boundary of the wave from sites inside the wave to neighboring sites outside. Typically, this 
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leads to squeezing the next wave with respect to the previous one because a part of sites 

losing particles becomes unable to topple next time. So, the waves of increasing numbers 

W}, W 2, ••• , Wn belonging to the same avalanche are generally of decreasing sizes s}, S2, "'Sn. 

An avalanche stops just at the moment when the boundary of the last wave reaches the 

initial point i. 

Self-similarity of avalanches implies self-similarity of their components. Therefore, one 

can expect that the difference between successive waves ~s =Sk - Sk+l obeys also a power 

law 

(4) 

The exponent a, if exists, can be related with r by a scaling relation. Let n denote the 

number of waves in an avalanche which coincides with the number of topplings at the site 

i. 	Equation (4) can be rewritten in the differential form ds/dn f">J sa or 

1
dn f">J -ds 	 (5)

sa 

The wave of size s belongs to an avalanche of size S ~ s which has the probability 

P(S ~ s) f">J SI-'T. Then, the distribution of waves belonging to diverse avalanches is 

D(8)f">J _1_ 	 (6)
sa+'T-l 

Comparing (6) with (3), we obtain the scaling relation 

(7) 

Majumdar and Dhar [6] introduced an exponent y assuming that n scales with the size of 

an avalanche as n f">J 8'11/2. To be consistent, the exponents a and y must be related as 

2a+y=2 	 (8) 

We have studied the statistics of waves numerically generating 106 avalanches on the lattices 

of sizes up to N = 500. In Fig.I, we have plotted ~s versus the wave size s on a log -log 

scale, which displays a clear power-law behavior. 
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In [15], Grassberger and Manna have introduced clusters of sites An which toppled ~ 

n times, n ~ 1, during an avalanche. If waves of a given avalanche obey the relations 

::::> ::::> ••• ::::> Wn strictly, the structure of waves coincides completely with that ofWt W2 

clusters {A}. At the same time, Dhar and Manna who investigated inverse avalanches 

registrated situations when the wave Wk overlaps the preceding one Wk- t • They argued 

that these events are nevertheless relatively rare and on the average the last waves scale as 

the clusters of maximal topplings. Our simulations show generally that the distributions 

of waves {W} and clusters {A} follow the same asymptoticallaw (4). Taking into account 

these observations, we neglect the overlapping of waves and deal only with the decreasing 

of waves. 

The above construction allows us to determine Q from scaling arguments. To this end, 

we have to link the decrease in the size of waves .68 with the spanning tree characteristics. 

Given a rooted tree Ti and two sites it,i2 E Ti, we shall say that the site it is a predecessor 

of i2 if the unique path connecting i2 and the root i passes via it. Let T; be the subtree 

corresponding to the wave Wk. As all sites involved into Wk topple exactly once, all internal 

sites of Wk remain unchanged. The wave Wk+t following Wk will repeat its order of topplings 

until the relaxation process reaches the boundary of Wk. Accordingly, the subtree T;' that 

represents Wk+t will coincide with T; until its sites have no predecessors among the boundary 

sites of Wk. Denote by Bj a set of sites of T; having a boundary site i as a predecessor. If 

the site i gets stable with respect to the next wave Wk+t , all sites of B j get stable too as 

the toppling process penetrates into Bj via the point i. As a result, the sites of B; as well 

as the site i itself contribute to .68. Generally,.68 consists of all boundary sites it, i2'" of 

the wave Wk getting stable with respect to Wk+t and of sites of all sets B;1' Bj2 , ••• having 

it, i2, ... as predecessors. 

Instead of the boundary sites, it is convenient to consider a clos.ed path r separating 

subtrees T: and T~ on the dual lattice £'0 . If one cuts the adjacent bonds of the boundary 

site j, the set Bj will also be surrounded by the closed path 1j on £'0 as B; is a branch of 

the subtree T;. The loop 1j is attached to r and they have at least one common dual bond. 

7 

http:Generally,.68


If several boundary sites i1, i2, ... are in turn predecessors of i, then the cutting of bonds 

adjacent to j creates a dual loop 1; around a combined cluster consisting of sets B;1' Bh, ... 

. In Fig 2, we show a typical cluster r together with the set of loops {1}. By construction, 

two main quantities contribute to .6.s: the length of the contour r and the area of loops {1}. 

Denoting by R a linear extent of the wave Wk, we can estimate the length of the contour 

r as RS/4 since r is a chemical path on the dual spanning tree [16]. Then, the contribution 

from r gives 

(9) 

which implies 5/8 for the exponent Q. We shall see, however, that the leading contribution 

comes from the second quantity determined by the interior of loops {1}. 

Consider a single loop 1. It is characterized by the distance 1 between points x and 

y where it is attached to the contour r and the linear extent r (see Fig 2). The cluster 

surrounded by 1 is an unrooted subtree of the rooted tree. Accordingly to (3), the rooted 

trees are distributed as D(r) l/r. The root can occupy any of r2 positions inside 1.I"J 

Therefore, unrooted subtrees are distributed ~ 1/r3. Let us consider a circle C of radius I 

having the center at point x. The average number of intersections between C and r is of 

order 11/ 4 due to fractal dimensions of the chemical path. The point y can occupy any of I 

points of C with equal probability. Thus, we obtain the ~ymptotical joint distribution of 

loops 1 

(10) 

The maximal extent of both r and 1 is of order R. The minimal extent of r is of order 1 

whereas I is bounded from below by the lattice spacing. Integrating over rand I, we obtain 

the contribution to .6.8 from the single loop 1 

R R 

A-,s - r2D..(l, r)drdl '" Rtf4 (11)J J 
1 , 
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The number of loops is proportional to the length of r, that is RS/4. Then, the total .6.8 

IS 

(12) 

Comparing (12) with (4) and using (7) we finally get Q =3/4 and T = 5/4. 

Our numerical estimation of Q = 0.73 extrapolated to infinite N is quite consistent with 

the obtained value. 

The distribution (10) is based on scaling arguments. To verify its validity, we have used 

an exact result coming from the analogy between a Coulomb gas and spanning trees. Saleur 

and Duplantier [17] evaluated the probability that vicinities of two points x and y separated 

by the distance I are connected by two paths on the tree. They found for large I 

(13) 


To derive (13) from (10), we consider two paths as a loop and compare conditions leading 

to (10) and (13). The distribution (10) is restricted by the presence of the external contour 

r that fixes the position of the initial point x. In the latter case, the point x can occupy 

any site of the perimeter proportional to r S/ 4 • The linear extent r of the loop varies from I 

to infinity, so the integration over r gives 

SD2(l)"'" f 
00 

r /
4D..,(I,r)dr"'" 1~2 (14) 

I 

in accordance with (13). 

If Q is known, other exponents of the sandpile model can be readily found. For instance, 

using the identity [6] 

T" -1 =2(T -1)/(2 + y) (15) 

we find from (7) and (8) the exponent of the total number of topplings T, =6/5. 

The numerical result by Manna for T. = 1.2008 [11] is in excellent agreement with our 

theoretical prediction. 
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Figure captions 

Fig. 1. Double logarithmic plot of averaged decrement As against cluster size s for the 

statistics of 106 avalanches on the square lattice of size L =500. 

Fig. 2. A typical contour r with the set of loops f'Y}' The loop 72 is attached to r in 

points x and y separated by the distance I. The linear extent of 72 is r. 

12 




(Jl. Log(~s)
o o 

. 
o 

)( 

)( 

)( 

)( 

)( 

)( 

(j) 

o 



... " 

Fi ,. 2.. 



