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ABSTRACT. Quantum one-dimensional systems of particles interacting via singular" col
lective" (depending on all the position vectors of particles) vector electromagnetic potential is 
considered in the thermodynamic limit. The reduced density matrices in the limit are com
puted for the cases of short-range interaction and one-dimensional analog of Chern-Simons 
interaction (j-th "collective" vector electromagnetic potential of n particles equals the partial 
derivative in the position vector of the j-th particle of the Coulomb potential energy of a system 
of n charged particles). 
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1 INTRODUCTION 

1J - dimensional systems of n:particles with singular magnetic interaction are characterized by 
the" collective" vector electromagnetic potential aj (Xn), Xn == (Xl,"" xn) E HV.tn , which de
pends on the differences Xj - Xk of the position vectors of particles and has a mild singularity(in 
the neighborhood of hyperplane Xj == Xk it behaves as IXj - xkl-n), and the Hamiltonian Hn 
defined on coo(IRon), IRon == IRvn\ Uj<k(Xj == Xk) , 

Hn = ~ t(Pi - aj{Xn))2,Xn = (Xl, ...X n) E IRvn , (1.1 ) 
3=1 

v 

aj(Xn) E coo(~n),. (pj - aj)2 == L(pj - aj?,pj == i- 18j , 
a=l 

The motivation to study such systems originates from the 2-d Chern-Simons (C-S) system 
which is believed to describe a phenomena of high temperature superconductivity based on the 
mechanisn of the Bose condensation of clusters of anyons,i.e.particles with exotic statistics[1-3]. 
C-S system corresponds to the case 

(1.2) 

where 8j ix the partial derivative with respect to xj, ES is the antisymmetric tensor, there is a 
summation over the index {; 

UC(CS)(Xn) == L (J'j(J'k¢C(CS)(Xj - Xk), (1.3) 
l~k<jy~n 

2 
X 1 2¢c(x) == lnlxl, ¢cs(x) == arctan -1' X == (X , X ) 
X 

(J'j is the charge of the j-th particle. The existence of anyons is explained by the singularity of 
C-S potential and equality (2): interaction is gauged out (formally) and the singular phase has 
discontinuity on union of hyperplanes Xj == Xk that "spoils" symmetricityor antisymmetricity 
of a complex wave function. 

C-S particle system is derived in Topological Electrodynamics( Maxwell term is dropped 
in the Lagrangian containing C-S form). There are many interesting conjectures concerning 
the phase structure of the system[4-5]. But up to now a mechanism of Bose condensation was 
not established. The description of anyons in the zero-temperature 3-d Lattice Scalar Quantun 
Topological Electrodynamics (QED) in rigorous terms was given by Frohlich and Marchetti in 
[6]. A change of a phase diagram produced by the topological (C-S) term is poorly explored 
in the zero-temperature Lattice QED. Anyons at non-zero temperature up to now were not 
discussed in the framework of the Constructive QFT and QSM. 

If the vector collective potential aj satisfies the condition 

(1.4) 
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there exists the simplest selfadjoint extention Hn of Hn, which generates a contraction semig
roup unitary equivalent to semigroup, whose infinitesimal generator is the minus one-half vn
dimensional Laplacian. It is not difficult to check that for the Dirichlet boundary condition 
and the Maxwell-Boltzmann(M-B) statistics the grand canonical partition function coincides 
with the grand partition function of free particles. 

The conjecture that the system is equivalent to the free particle system in the thermo
dynamic limit seems plausible only for the case of short range magnetic interactions( U is 
expressed through k-particle "magnetic potentials" integrable by k-1 variables) when the re
duced density matrices are easily computed in the thermodynamic limit. The existence of 
the matrices for long-range magnetic interactions ( k-particle "magnetic potentials" are not 
integrable) is an open problem (we solve the problem for the simplest 'integrable' 1-d system). 

For the case of Fermi or Bose statistics the aforementioned selfadjoint extension for the C-S 
system produces the system of free anyons. Another extension introduces interaction between 
them. . 

One-dimensional systems with singular magnetic interactions are also interesting. There 
are also anyons in the systems but they appear as a result of special selfadjoint extensions of the 
n-dimensional Laplacian restricted to Co(lRQ) or fIn (a simplest class of them are considered 
in this paper). The collective vector potential aj creates interaction between them. 

Earlier selfadjoint extensions, corresponding to jumps of partial derivatives of a wave 
function on the hyperplanes where the position vectors coincide, were considered in [7-8]. 

In this paper we investigate one-dimensional systems of r sorts of particles with M-B 
statistics with magnetic interaction for which eq.( 4) holds and 

U(Xn) = :E O'jO'k¢>(Xj - Xk)' (1.5) 
l~k<j~n 

At first we compute the reduced density matrices in the thermodynamic limit for the case of 
short range ,Pair "magnetic potential" ¢> E COO (1R\O) nLl(1R) and the class of selfadjoint ex
tensions of Hn,correspondig to jumps of a wave function on the hyperplanes where the position 
vectors of particles coincide. Then we study the system with long range pair "magnetic poten
tial" ¢> = Alxl. It turns out that if O'j E ,'ll then the reduced density matrices are nontrivial 
in the thremodynamic lin1it if the differences of variables sit on the lattice 21T,-2 A-1 'll. 

It is not difficult to show that this system can be derived from the 2-d electrodynamics 
with the additional term Aoal Al in the Lagrangian( Maxwellian term has to be omitted). 

MAIN RESULTS 

Let's consider the Hamiltonian fIn with aj satisfying eqs.( 4),(5) and the case v=1. From 
simple equality 

it follows that 
(2.1 ) 
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where On, iL j are operators of multiplication by functions U(Xn), aj(Xn), respectively, and iI~ 
is the minus one-half n -dimensional Laplacian, restricted to Cg:>(lRo)· Now let's define several 
functions 

U€(Xn) L E*(Xj - xk)fj,k(O"l, ... , O"n), 
l~k<j~n 

€*(x) = arccos €(x), €(x) = I:I' a.e., 

U*(Xn) == U(Xn) +U€(Xn), 

where fjk are functions on a discrete set. By D(A) we'll denote the domain of the operator 
A and by O~(€) the operator of multiplication by the function U*(€)(Xn). These operators are 
unitary and the equality 

exp{iO~}C~(~) == C~(lR~) (2.2) 

holds.As the result the set exp{iO~}D(H~) is dense in L2(lRn). It is the domain of the selfad
joint operator H n 

Hn == exp{iO*}H~exp{-iO~} (2.3) 

PROPOSITION 1 Operator Hn is a selfadjoint extension of the operator Hn. 
PROOF follows immediatly from the eq.(1.2) and the fact that the operators of partial 

diffirentiation commute with the operator exp{+(- )iO~} on Cgo(lR~). 
Operator Hn is the infinitesimal generator of the contraction strongly continuos semigroup 

P~ == exp{iO~}exp{-tH~}exp{-iO~} 

and by the "core theorem"its core coincides with exp{iO~}S(IRn) [9]. 
We'll assume in what follows that 

(2.4)f'kJ, 

Now we consider the system in the interval [-L,L] with the Dirichlet boundary condition on its 
boundary, i.e.with the Hamiltonian Hn,L 

(2.5) 

where the semigroup Pci(n,L) is generated by the n-dimensional Laplacian with the Dirichlet 
boundary contition onthe boundary of [-L,L]. Let's define the reduced density matrices for the 
systems of r sorts of particles (O"j E ~(r), ~(r) is the set of r elements) with the M-B statistics 
[10-11]. 

(2.6) 

where coincides with the numerator in (1.4) for the case the sums in 0"; are performed 
over the set ~(r), Za is the activity of the particle with the" charge" 0", f3 is the inverse 
temperature, p&)(XnIYn) is the kernel of the operator P~L' The reduced density matrices in 
our case are functions in 0"1, ... , O"m,since the Hamiltonian is diagonal in variables that describe 
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the inner degree of freedom. In order to simplify notations we don't indicate this dependence 
in pA. 

LEMMA 

For the system with the Hamiltonian defined be eqs.(1.4),(1.5) the following equality is true 

pL(XmIYm) exp{i[U*(Xm) - U*(Ym)]} II
m 

ZO"l;P~L/xkIYk)exp{GL(Xm' Ym)}, 
k=l 

L m 

GL(Xm, Ym) L:Zq J{exp{i[?=O"O"j(4)*(Xj - x) - 4>*(Yj - x)]} -l}P~L)(xlx)dx. 
q -L J=l 

where P~L/xIY) is the integral over the Wiener measure concentrated on paths, starting at 
zero moment from x and arriving in y at the moment {3, of the characteristic function of paths 
that are strictly inside [-L,LJ. 

4>*( x) 11:0<:*(x) + 4>( x). 

THEOREM 1 

Let the condition of the Lemma be satisfied and 4>(x) E coo(IR\O) nL1(IR) , then the 
thermodynamic limit of the reduced density matrices are given by 

p(XmIYm) = lim pL(XIYm) (2.7)
L-oo 

exp{i[U*(Xm)-U*(Ym)]} II
m 

ZqkPg(XkIYk) L: exp{G~(Xm' Ym)+G1r (Xm, Ym)}Xrr(Xm, Ym), 
k=l 

where S2m is the permutation group of 2m elements, X1r is the characteristic function of the set 
V1r(l) < V1r(2) < ... < V1r(2m) , V2m = (Xm' Ym), 

x))} - l]dx, 

2m V'l1"(s+l) m 

G1r (Xm' Ym) = L:L:Zq(27r{3)-t J [exp{i?=O"O"j(4)*(Vj X) - 4>*(Vj+m - X))} -l]dx. 
8=1 q V 

1r
(s) J=l 

THEOREM 2 

Let 4>(x) = "xlxl , and E(r) C ,'ll, and the following condition be satisfied 

Xj YjE27r,-2"x-1'll, (2.8) 

then the reduced density matrices in the thermodynamic limit is given by (1. 7) provided G~ is 
equal to zero. If (1.8) is not satisfied then the matrices in the limit are equal to zero. 
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3 PROOFS. 

Let's start from the Lemma. In all formulas instead of A we'll write L. The semi group P;'L 
has the kernel 

where 

P~L)(Xn IYn) == II 
n 

p~L)(xjIYj) (3.1) 
j=l 

It is obvious that 

where 
m n 

W*( ..Ym)IX:) == L: L: O"kO">I>*(Xk - x~).
k=lj=l 

Hence 

X II
m 

P~L)(XkIYk) II
n 

p~L)(x~lx~)exp{i[W*(x~IXm) - W*(x~IYm)]}
k=l j=l 

Substituting this equality into eq.(1.6) we prove the main formula of the Lemma. In order 
to pass to the thermodynamic limit or to prove the THEOREM 1 we have to represent the 
n-dimensional space as a union of not intersecting sets of ordered variables. Each such subset 
is labelled by the element of the group of permutations of 2m elements. Then we split the 
interval of integration in the expression for GL(Xm , Ym ) into three intervals. In the first interval 
Xj, Yj > x, in th second Xj, Yj < .r and the third is the compliment of these intervals to [-L,L]. 
So 

The terms with ¢t(Xj - x) cancel exactly the terms with ¢t(Yj - x) under the sign of integral 
in the expression for GI. Since the pair "magnetic potential" ¢(x) is integrable then we pass 
to the limit L ~ 00 in the integral. Since the integral over the third interval (function G1r) 
does not depend on L we obtain the main formula of the THEOREM 1, since p~L)(xlx) tends 

to (27l"j3)-t when L tends to 00 . In order to prove the THEOREM 2 we have to prove that 
GI is equal to zero if variables sit on the defined lattice or tends to -00 if the variables are not 
on the lattice. This can be shown easily since we can compute the function. Really 

X V 
7r(l)

m 

GI(Xm, Ym) == L: zo-[[exp{i L: O"O"jA(Xj - Yj)} 1] J P~L)(X Ix )dx+
j=l0- -L 
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m L 

+[exp{-<L l7l7jA(Xj - Yj)} - 1] f 
j=l 

V1l'(2m) 

In order to have GL is equal to zero we have to demand that Xj - Yj E 21rA-1,-27l. From 
the computed expression for· the function GL it follows that it tends to -(X) if the differences are 
not on the lattice and P~L)(xlx) tends to (21r/1)-t in the limit of infinite L. theorem is proved. 

DISCUSSION. We established that in the thermodynamic limit the behavior of the re
duced density matrices for short-range pair magnetic interactions and the long-range C-S type 
magnetic interaction differs essentially. But there is the common property: on the diagonal 
they coincide with the free particle reduced density matrices.The question in what respect do 
the systems differ from the free particle system remains opened. In the next paper we'll show 
that the similar results hold for the systems with the Fermi and Bose statistics for two simplest 
cases: 1\:0=0,1. The second case corresponds to impenetrable free bosons. It is known that 
there is no condensation in such the system [12] and that it is equivalent on the thermody
namic level to the free fermion system (fermionization of the system).It can be stated that 
impenetrable bosons is an example of simplest anyons. The proof of the absence of the con
densation is not trivial. This is a good hint that the thermodynamic equivalence to free particle 
systems does not automatically yield an equivalence on the level of an algebra of observables 
and its symmetries. It is known that in one-dimensional. Bose gas in an external potential 
there is a condensation [13].Is there a condensation in the system of impenetrable bosons with 
a long-range magnetic interaction ? The problem of condensation in systems of 1-d anyons 
is very interesting and may clarify in some sense the same problem for 2-d anyons. Besides 
that an investigation of 1-d anyons may clarify rigorous picture of connection of anomalies and 
bosonization in 2-d systems,including the SchwiIl:ger model. 
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