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The theory of dielectric relaxation In a planar ensemble of
pelar molecules 1s presented for a model where dlpecles retate in an

Intermolecular conservatlve double well pctential, having a proflle
7 = U sin®8. The evelution of wide band dielectric spectra
s ,
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demonstrated when the potential depth U_ 1s varled; an isotroplc

and anisotropic medium being taken as examples. The spectra

comprise the Debye relaxation and the quasi —regonant Poley
abgerption reglon. The vrigerous theory 1s comparsd with a
gimplified one which was called the hybrid quasi—elastic bond /

(=3 &R

extended diffusion model . This approximation 13 valld

-
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for a
qualitative description and also for the guantitative one at the
1/2

large field parameter p = [Uo/{RET)}

For p » 1 the spectrum comprises one narrow absorption band and ong Debye

that
reiaxation region considerably shifted to low frequencies. It is shown,in the

[

long lifetime limit fU . there exists a minimum absorption band ZKQL(P). The

quantity Ll\%tmcomes small if the parameter p >> 4. The dielectric relaxation in

ice 1 is discussed with regards to this phenomenon.
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1.The Problem of Narrow Lines in a Classic Ensemble of Polar
Molecules

During the last few years considerable attention has been paid to

elaboration of molecular models of dlelectric relaxation in strong
absorbing polar liquids. A possibility was demonstrated’ ® —
+——to describe %using such models the evolution of the
spectrum of the orientational relaxation due to temperature change.
A low frequency —> wing of this spectrum falls usually intothe
microwave reglcn while the, ¢
(quasi-resonance Poley absorption falls into'FIR spectral reglon.

Let us list the typlcal dielectric propert:!a%a of polar liguids:

a) a considerable ( several times or inYorder of magnitude)
rise of the frequency w, of a maximum absorption comparing
frequency m_ oz The latter rTefers to the meaximum rotational
gpectrum absorption due to the same (83 1in, liquid ) polar
molecules;

b) The rrequencty w,0f maximum dielectrlic loss, &f =

D
=maxle"(w)], 1s onMwo orders of magnitude less than the Irequency
-1 a,
w , the Debye relaxation iime 1, = @, belng , characteristic

parameter of a liquid;

¢c) the wide ©band Aw, of the absorption spectrum 1s
commensurable with the frequency w, of the absorption peak. Thus,
in "simple"” polar liquids

. - P d ' - ~ - -
Wy, > Woeg 5 W ;xsuL 3 Aw o wp (1.4)
The analyvtic theoryA i » ignores guantum effects and so it is
. . . m
based on classical descriptions. This ass%tlon is also made in our calculations

These are valid not_ 2

C because of limitations Imposed on a maximum radiation frequency w
~(as one sometlmes considers) but because the time T, during which
the local liquid structure exists, 1s small: t7' is ususlly not
less than w, ,the frequency of maximum absorption:

T Ty, T m.,’. 1.2)

Simplifying the situation, one may "Justify" the applicabllity
0of classlc descripticen by the following argument. Because of
frequent ccllision 1in ligquids the superposition of individual
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rotational 1lines occurs and consequently the glscrete rotational
gpectrum does not appear as a rule. In stmﬂgﬁ abscrbing liquids,
unlike polar gas, the time T between cclililslons is less®than the
collislon time T, :

{1igquid}: T < T 3 {gasgl}: T »>» T_. (1.3)

It 1s because of this reason, the term "collislon time", having a
definite meaning in case of a gas, becomes vague In case of a
liquid.Apart jrom  this, gquantum rotational lines characterizing a

gas of weak Interacting polar molecules shift considerably due to fl:e
strong intermolecular field.

N
 We shall prove in the present investigation that in classical theory

a new property of narrow absorption band is attributed to the effect of a strong

conservative field on librating dipolﬁf;)

o

o af »
-A dipole 1s a classicr,Totor (for simrliclity we assume that 1t
has 8 form of 3 linear molecule) which 1s characterized by a moment
0of 1inertis I and by a dipole moment p. Note that In a atrong
intermolecular fileld one narrow abacrptlion band arisea as {f an
envelope of a quantum spectrum werecompregsed {nto a narrow classical
d and wereahlfted to higher frequencies.
(The Debye relaxation time increases substantiaslly 1in this case a8
compar'ed with 8 typlcal liquid:

T <K Ty 3 T2 WS
-gtate of substance, D’ ° L ! (4.4)
{che.racterized by a }: Tk TY as Ae A e N
NArrow absorption line =Y s - R s A

The following question arises. Does there exist a molecular system in which a
considerable narrowing of an absorption, tand may be
interpreted as an influence on a c¢lassic/ dipole of an effective
intermolecular field? One example 1s more or less evident. It 1s
lce 1 where the resonant sbsorptlon bands are several times
narrower than In water, while the shift of the centre.?__% absorption
peaks %o higher frequencies 1s about ten per cent . On the
other hand, in the case of 1ce the relaxation time 1s many orders of

magnitude greater  than in water,
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It should be noted right asay that both in ice  and in Tiquid
water fwo guasl-resonant absorption hand are characteristic. This
gltuation 1s more Intricate tham” simple liquids. This fact

- complicates the interpretation but has no great significance since when water

freezes both the absorption bands in the spectrum of of orientational relaxation
becomes narrower and both shift.

For the study of the dielectric relaxatlion characterized by
the properties (1.4), we use an appreximation of plane trajectories
(a planar ensemble). We chq%e the ———>potential profile

U =U_ 1 - cos®e;, (1.5)

where ¢ 1s an angular shift of a dipole relative to the symmetry
axis of a potential U. This profile 1is called the double well
potential (DWP).

In an introductory section 2 the basic relations needed for further consideration
are Prgsented. In Sec. 3 taking an>
éx‘ample cf an 1scotropic pelar medium we shall discuss the results
of rigorous calculations for the DWP model with the profile (1.5).
In section 4 4————= we shall show that a hybrid quasi-elastic
bond / extended diffusion (QEB/ED) model 13 also applicable and that

pproximate analytical expressions are much Simpler than in the
gtrict DWP model. In 3ec.5 on an example of an anisotropic medium
we shall turn tc the main effect of this work - to the narrowing of
absorption lines due to action of a8 strong potentlal (1.5). In the

final section 6 the relation of the field models of molecular rotation / dielectric

relaxation to ice I is investigated.

2. The Approximation of Instantaneous Collision: General Expressions

The  dielectric response of an {sotroplc medlum to
reorientations of dipcles 1s characterized by the complex
susceptibility y(w) = ¥° - { x".The complex propagation constant

* ’ ‘ ’ =
R "= B + {k° and dielectric permittivity €= " + [ " of a plane

i r!‘-‘.& il e Tk

electromagnetic wave are related one to another by the equation

/ x 3 . )
=27/ =% (n+ 1), g e (20D
where/Lstar +» denotes complex conjugation. Let n, be an

the
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optical refractive Index. If one ignores the difference between an
internal and macroscopic electromagnetic field In a medium, then

]

€ is related to {. by

e¥(w) = n° + 4m* (). (2.2)
Thus the ccnstant is related tc the complex susceptibility by
the equation

Qs

2
P, 2
R = —-;[Mcx + nMJ, (2.3)
CC. W
Equation (2.2) may be replaced by
¥ -nfec*+ 2
= =X W) (2.4)
4T 3&

when the difference beiween mteI'}élBl and macroscopic fields 1s
approximately taken Into consideration , eq. (2.3) being retained.
In an antactropic polar medium the dlelectiric susceptibllity

X 13 a temsor. In this workk,we shall calculate right away the
acalar quanti{ty k, the real partvof which determines the phase
veloclity of an electromagnetic wave in a medium, while the
Imaginary part k" determines the absorption coefficlent a:
: o weT{w)
K4 =737Taﬁr. : (2.8)
ANISOTROPIC  MEDIUN. We introduce Mgn erfective complex
auaceptibility x of an anisotroplc medium , which 1s related to
the propagation constant kB (2.3), _ '
the relation € to x agaln 82&3taken in the form (2.2) or (2.4). The
cause of an anisotrepy 18 an  existence of an uniaxial
Intermolecular potentlal U(%), ¥ being the angle between the the
gymmetry axis Z of the potential U and the dipole moment vector
d(t) of a reorientating linear molecule. Note that 1f the

directions of the local symmetry axes are random then in various points of the

ole

a dielectric sample the medium becomes isotropic.

We assume that the linearly polarized electric fleld E(?)
— >» varies harmonically in any point of a medium:

o7 T E(t) = B_sin (@t + 7). (2.6)

We denote parallel and orthogonal directions of the amplitude
vector Em tc the gymmetry axis, by symbols ; and ,. The problem 1=
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golved 1f the frequency dependenc-es xa(w) and XJ_(“’) are found for

two crossed orientations since for an arbitrary angle @ between Z
and B the susceptibllity X 13 a known rational function of xu(m)
and xL(w).

When investigating the dependence of X on & we distinguish two
mechanisms of the wave - medium Interaction ————— for molecular
rotation at equilibrium due to: a) the periodic rotation of a
dipole in a potentinl well of a prescribed profile; and b) the
stochastic EBrownianl reorientation of molecules. With regard to al we calculate

the spectral function (SF) and denote it K{z). It should be noted that K{z) differs
from the SF L(z) introduced in work” by the multiplier 3 <q2>, which 1s not dependsn-
on the radiation frequency @) and which will be difined later. The frequency
dependence of K(z) describes the dielectric response in the FIR spectral range. Here
z defined by z = x + 1 y i1s the normalized complex frequency, x = rlw and y =V2/f
being respectively the normalized radiation frequerncy and the frequency of "strong”

. _ . 1 172 - .
collisions, Iz' = [I / CZKE.} is a normalizing parameter, KB is a Boltzmann

constant, T is absolute temperature and I is the moment of inertia. The K(z)

11

function is proportional to the spectrum of the autocorrelation function of the

electric moment vector (u (_t‘), which is performing undamped (periodic) rotation in a
W

potential U( ﬁ] :

€K
K(z) = 3 1z<qof(q—qo>e‘mdcp>, 2.7)
0

Here the following dimensionless variables are used: the time
@=t/m q@=q@ =pg/ I where u, 13 the projection of the
electric moment vector § on the directlon of the amplitude fleld
vector E,g, u o= 1], 2 ig the value of g(¢) at the moment @ = 0 of
a “stron:g collisicn".The q coordinate is regarded as a point In a
phase space T, and averaging over I' 1s denoted by brackets <e«++>.
The second factor b) 1is determined by a collision model and
plays an important role only in the low-frequency (Debye) speqctral

egion. For definiteness we take the modified Gross collision model
r «

in which ;( is related to K by the equation
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iy -1
f=8GZKW)[y+—~Mm] : (2.8)
g

where G = W2N / (3 k., T), ¥ 13 a concentration of polar molecules,
& 1s a Kirkwood correlation factor and

o=3[ @ - <@?) (2.9)
L
where (1/3)8 is a dispersion of a q . In all equations below ex;eptsec.6 we
take g = 1, while in Sec.6 a more realistic version of the Gross collision model

in which g differs from 1 will be introduced.

For two cross orientatlons we write % , <0">, Kuor X » <0,

K . while at the "Inclined™ propagatlion of 3 wave
- K(2) = K, (z) cos®0 + K (z) sin®Q. (2.10)

We repeat that © 1s the angle between E and Z.
ISOTROPIC X¥EDIUM. Now we dwell upon an Iimportant case of a
macroscoplc 1iscotropic polar medium. We suppose that only a local

1

anisotropy exists, and that in a macroscopic veolume of a dielectric sample the
-
complex susceptibility is found by averaging e‘$(2-101 opver all angles (f/ . We
shall consider 4 cases:
a) planar engemble:
. 2 N - — : -
> =0, <g> =1/2; o =3/2, Klz) = (4/2)(E; + E); 240

b) quasi-space engemble. In order tc draw neartgfal situation
without substantial mathematlcal complication due tovcalculation of
trajectories in space we may obtaln Ka(z) and Ki{z) functions for
planar trajectories while all averages are found for the "space”
atatistics:

> =0, <¢°> =1/3, 0 =1, K(z) = (L/3)Y(&, + K_ ). (2.12)
Notwithstanding these "tricks”, the integrated sbsorption is only
the half of a strict value because the number of degrees of freedcm
is actually reduced in this appreximaticn:

) 1 - uasl-space
Jwx(w dw = { S } N/ (3T) for {q space } ensemble. (2.13)
m L d A LS L

€
c) For better agreement with experiment inv¥IR spectral region
we may eliminate the last drawback, doubling the value K(z) found
atcve for a quasi-gspace ensemble
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corrected
= 4; K(z) = (2/2)(Ey + K, ); { quasi-space } (2.14)
3 orisem 1n
d) space ensemble [» which the following relaticns hold
> =0, < 2y =4/3, 0 =1, K(2) = (1/3)(Ky + 2K,). (2.48)
and the true Integrated absorption corresponds. Ky and K, must

be found by studying rotations in space.
In the three last cases b, ¢, 4 eq.(2.8) reduces to the
following formula

-

X" =86z Lz [er+ Wi ]| , (2.16a)
V2, :

which was widely usecz . s,44 Here the spectral function
Lplanar quasi-space (2.16b)
L(z) =y 28 L 1 for {quasi-space with doub- } ensemble, (2.16¢)
planar ling of SF

- (2167

space .space o 16
Lotan.= (W3 CEy + EL )i Igpae = (1/8)(C By + 2K, ). (2.16e)

DEBYE RELAXATION. "Static" (at z = C) value of K = K = K(ly)
determines the parameters of the Debye relaxation, 1l.e. the static
susceptibility )_, the relaxation time 7T, and susceptibility at the
end of the Debye relaxation region (KO is real). The Debye
frequency dependence has the form

iz =y + [xs - xm] {1 - izt, / n] , (2.17a)
80

mzfx @ =x5 = g,_-[xa«- xm] at z =1z, =7/, (2.18a)
and n X" (L) (2.18b)

For the Gross collilsion model, generalized to the case when g # 1,
the above mentioned parameters are related to the spectiral function
K, as fcllcws

Xy = 8G; %, =GE : X;=73 [gox} T, = 8W /K Z_(219)
Thus. the Debye relaxation time 1is propcrtional too andVK . In
our 1mpact theory approximation the 11*’9; time T 1s 8 free model
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The
parameter. \Zxperimentally determined relaxation time T, Strongly
depends on temperature and 8till more strongly cn a phasg gtate of a
dielectric sample. The value of T may be found®ftaking the
prescribed value of T, if one finds the solution (relativert) of

D
the equation
anisotropic
ot/ E(iwty =1,/ 8 { medium } ’ (2.20)
or
isotroplc }

1<@®> - <3 T/ Ln/ty) =T,/ 8 { medium @.21)

Here the r.h.s. is given gg, the experimental data. To the prescribed change of

T, M8y correspond some change of the potential well depth U,
accompanied by the change of the potential profile U(®) and the
life time T. ‘

The Increase of the well depth U, greatly influences the
"statlc” response K, and the dispersion o, these values being
different for the parallel and orthogonal susceptibilities.
Examples of T, dependence on U, and T are given in Sec.4.

In order to iInterpret experimental dielectric spectira one must
describe the frequency dependence e(w) %'f the complex dielectric

permittivity. We emplov eq. (2.8) with g given by

g - aM @ &5 5[@0]-1. (2.22)

For ¢ so defined eq.{2.4) a?g (2.8) give for w = 0 the
permittivity £(w) which 1s equsal tob experimental value g .

3. The Rigorous Theory of Orientational Relaxation
for the Double Well Potential
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THE STEALY STATE PARAMETERS.

For simplicity we consider rotational metlon in a plane, taking
the dependence of the static field E_(8) on the angular shift € as
cozé. Then we come to the double well pouential (DWP)in the form
U(8) = const(®) - { /B (8):

Double well

P?B%'gial }U('O) = U (1 - coscd), E (8) = (Uy/K) cosd. (3.1a)

In this formula we chose the arbltrary constant<>

C™ so that at the bottom of the well U = O. Thus U, 1s the well
depth. The U(®) function has two minima, the dipoles 1n neighbqg'ing
wells have opposite orlentations ond so the average dipole moment

<> of the dlelectric sample 1s zerc. . In such a field model
<g > = <q,>= 0, g =3 2yand 0 = 3¢q% > . (3.1b)

We introduce the static Iielcl parameter p %j(

p=7vU_/RT) (3.1c)

and the normalized Hamiltonian of a dipole h = (the total energy of
a dipole) / (R, T). Denoting by a dot the differentiating over of
the time ¢ = t/m we have

h = %7+ pfsin®e, (3.2)
The integral
‘f‘ o
(@ + @n)P (3.3)

./ n{/{-}E - S{Y}. ’6

1s obtained for the law of motion from (3.2). Putting in (3.2) '8 =
0, we may relate the maximum angular shift @ EI'B]M with the
energy of a dipole h and the static fileld parameter p:

{amsin@"a}mr {h/pa\ }

p=1y NP 1 (3.4)

i 2 t

Thus two sub-ensembles ¢ librators and hindered rotators exist,
the value A = p‘2 being the threshold energy. We dlstinguish these
anh.ansemhleg hy indexes Vv and O, nespp-‘l"!vcﬂv

The quadrature (3.3) can be expressed m‘l:a'ms ei. elliptic
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functions. It may be shown that the pericd & cf the runction @, (¢)

13 determined by the equation p & = 2K(k), where K is the complete

elliptis integral of the g&rst king and & =

= Yh/p 1s its modulus
Tthe reader should not

the latter with the propagation constant

B In (2.1),(2.3),(2.5)]1. Accordingly the ncrmalized 1libration
frequency 1ls glven by

v i i
D= - . (3.5)
& 2K(A/p)

The second group cf partlcles performsa hindered rotation, the
normalized period of which satisfie$ the equation

O 1 o
T = s '"/?°K(kx), where k =p / vA. (3.6a)
Thus the normallzed rotatisnal frequency 1is equal to
& O N1 _ ~1
p=2m{2) - e n [ K(p/7R) ] ] . (3.6b)
A
Omitting calculations (see detzils In the review ), We
present here the —— expressicng for the steady state
distributicn functicn W(h) and for the averaged values of g°:
- - __1
Wn) = {am3/“10(p2/2)} exp[<p3/2>-n ] (3.72)
':‘n'?- N - ‘ _,
““il’l \p 72yt I, (p“/ )t ch'} l
- - i
- = — 5. (3.7D)
2 AR
> ) 2I(p?/2) 3 | |

Th2 mean petentizl energy can be found from (3.7} 2nd

eral
I LU, [1-1 /2]/Io[p2/e]] ) ase
s = 1,

{-,,e";':}};B:T } o p 21 (3.8)
T (1/2) UO

(3.1):

-
—
ha

"for p « 1
Thus, inthecase of a deep potential well the Juantity <U(9)> is
about %r BT and dc/ct depend cn Ho)whiléﬁg ghallcw well thi
average 13 about half depth.

In Table 1 rigorous and asymptotic values are presented for:
the proportion r of rotors, the mean libration amplitude ﬁ/, the

normalized frequencies of libration and hindered rotation, xp\ and
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b v Vv [« B ]

<p>, the distribution functlons [f(p) and [f{p; over these
frequencies and the parameter Yo» viz.

j_ . period of libraticnal/

"o = V¥ ® 7 * “rotational motion 2 = m/<pr. (3.98)
The t1 T means the average - half period of reorieniaticns and

™
ot

ime
may Serve 35 3 measure of oollision timeeaf particles, effected by
the ccnservative potentlial U. The p - dependence of the steady

state parameters and the distribution functions f(p) and ?(E) are
illustreted by Table 1 and Fig.!i. The non-zero distribution F(p)
appears only at gsufficlently large fileld parameter p, 1t falls
abruptly to zerc at the maximum libration frequency é, equal to

max {p} = p. (3.9b)
v
For a deeper well the distribution £ (5) becomes narrower, while the
0
peak of the distribution £ ( 3 ) shifts to greater

aguencies E. If p 15 sufficilently large (p 2), almest all

dipoles are librators: in this case the function (;} rress ltself
to the abscissa axis and the sguare beneath 1t becomres small. The
ok iloration arplitud 5</§5craases when r risges, while the
generalized parameter y_ (which 1s proportional %o the reciprocal value
cf the ﬁoTlis*on +im§) increases. Thus the mean rperiod of
rotational moticn decreases when the well i=0th Increases.

SPECTRAL FUNCTICNS. Now let us conglder J2ielectric relaxation dus
reorientation c©f melecuizs In the double well prtentlal., We
represent the speciral functicn as 3 sum

3
.

-
-

K=K + K. (3.10)

Integrating (2.7) over time ¢ and sieady s=7ate miile, we take
into account (Z2.7) and the representaticn of In terms of
¢lliptic functlons. Then the spectral functicon A{z) I1s represenied
by a 3eries, Iin which tems are quadratures over the moaulus kB of
ccmplete elliptic integrais. For the sub_ensemble of 1librators we
take as a variable of integration m = k%, sc tnat

K = (&) = K(m''2y; (3.11)
43 8 result we have

[¢


http:flL.'1.ct1.on

7 4nPgEn (3.12)
5/2 3 /2 1 2
fE o pe e? ™ 2 £1+Q2“32[["E§ ]ZPE“ 32]
t } fﬁm — ) K
K Iﬁ(pa/z) K n=1 - (271"1 )EQEﬂ.-—1
0 0
Dan_ 1 2 T 2N -2 5 >
(1-g=" ‘)“[{ X } p°- z‘*]
where
Q-exp (-t K/K), K =K@ =), (3.13)

and K 1s found from (3.11)
In the sub_ensemble of hindered rotors the varlable of
1tegration k 1s substithted by t =p/kR (t 18 not the time here!),
nd we can c¢btain

¢ X
o -t5,4 o (3.14)
15 = Jdt }: 2n-142°
&, 0° K> o [(xr/ﬁxny (2n-1)2p2-z }[1 Q ]
Ity °
c 2
whers K = K(p/ and Q Is determined from (3.13) at m = pet"z.

/T)

For the first time this model was cona3idered in work " # , where
the solution of the problem was glven for a planar dipole, rotating
In & periodlc potential U _coskg ”f = 1,2,3...). A more general
conslderation was given laterff)‘éf‘t% for planar and space systems,
Here we have followed another derivation for a planar system which was given
in the raview11

Evolution of the dlelectric spectra of an iszotroplc medium with
the change of an intermeclecular fileld 13 shown in Fig. 2.
¥hen the potential well depth Increases, the leccal anisotropy rises and
qus leads to an aeppearance of the regicn of the low frequency
{Debye) relaxation. The Debye frequency Ty of the maximum loss ‘Xf)
1s much lower than the frequency z, of the absorption maximum. With
the increase of the fleld paramete} p the frequency z, also rises,
and the absorption curve Ix"(r) 18 locallzed near the peak
frequency =

¥ig.2a, 24 are calculated for eé some "houndary"” life:time T,
which 18 equal to the ceollisicn time T, - 5 1In




other terms > Yy = Y- It should be noted that at y < y,_.
one can regard molecular reorientation In a state or a local
order tc be gufficiently prolonged, while at y > y, the
reorientations are so short 1llived that 1lbrations actually
degenerate, become damped. The 1last situation (y > y.) 1is
11lustrated in Fig.4 for p = 3. Dielectric spectra qualitatively
resemble typical spectra of strong absorbing 1iguids. It 1s
especlally true (see Fig. b) for a quasi-space calculation scheme
(1.16c) with the doubled spectral function. Note that TFig.4a, as
well as Fig.2-3, are drawn according to eq.(1.16d), that is. for the
quasi-space 1sotroplc ensemble but without doubling of X(z).

4. Hybrid Quasi Elastic Bond / Extended Diffusion Model

In this section we use the approximate representation 121 the
gpectral function K;(z) and K, (z) by the Inllowing integrals

h

T=100= {1+ 4;—2} ;

2
_ 3 exp(pafe} I exp({-h}
g x!/2 p3 Ioipe/e} .

..

Ky

2
o
. 3 explp®/2 exp(-h) h dh
K = xpﬁp } P . (4.1b)

1 > pl/2 p IO[pe/a} o [ pe_yzza]

o o 3 explfre) > exp -5%)?aa
2I \p/2, o
which are obtained after a number of simplifications of the
— > geries (3.12) and (3.14). Iet uws con3ider this

approximation In more detail.
Eq.(4.1) correspond to the quasi- elastic bond (QEB)
approximation. In the latter we retaln In the hamiltonian n only

twe first terms of the Tayler serieg for the potential Uosin?@:
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ho= e + e - prraet L)
{ N 1T I A ]
the normail- the mairn term, tne term, res-
zel Kinetic ragponsitle for ponsible for an
energy harmonic anharmoniclt
librations

The last term takes into sccount the dependence of the 1libration
frequency of a molecule on the energy h . The greater is h, the less
is the frequency of the perlodic motion. If e.g. the libration
frequency Q of a dipcle 138 equal to the fileld E(t) frequency uw,
then for a dipole of greater energy its libration frequency O < w,
the detuning |0 - w | being greater for greater anharmonicity. This

property leads to the widening of the absorption l1ine and to the
decrease of 1ts peak value.

: ) °
In the hybrid QEB/ED model we take into account also the contribution K of hin-
dered rotors to the spectrag function. This contribution is found at h 3 pz on as-
suming that in the interval T between strong collisions the dipoles of the second

subensemble rotate freely just as in the extended diffusion model , 1.e. in the

absence of the static potential U. For this reason the longitudinal and orthogonal
spectral functions in (4.2) are equal, the anisotropy of the dielectric response bein
due only to the libration subensemble. Thus the QEB/ED model behaves as if comprising

two important particular cases.

At p>>1 one can put « in the upper limit of (4.1) and take £ =
0. Then we get the QEB a proximatiorf1 .

On the contrary, at a weak i{ntermoigcular jlell (p<<!) we pué
K = (, and take the the range of integration in (4.2) to be E 0, °°J

Then we get the sSpectral function of the planar extended
dirrusion modeli:

/hz)y =1+ 7R zwz)y; wz) =

;o exp(-92)ds
T f z -8 .
-0
~—( Thus we may suppnse that this hybrid model is applicable (at leas
for a qualitative description)for any fleld parameter p.
in order to be convinced of the validity of this statement,

we compared the approximate and rigorous descriptions (cf. Fig.2b and 3], sse also

Fig.4. At p 7 2 the difference
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between both apprcaches vecomes small (curves 4 In Fig. 2 and 3;
gee also Fig. 4). At smell p the above mentlconed difference 1s
greater. It is seen from the comparison of curves 1, 2 in Fig. 2¢

and 3, ag well as from Fiz. 5. Thus, the simple (EB/ED
model 1is applicable for a qualltative description of dielectric
spectra at any p values and 1s sufficiently true at p 2 2 (of
course, in the frames of applicabllity oi the DWP model under
consideration). This conclusion permits us °substantially simplify
the consideration of the central idea of this investigation (see Sec.5).

An unusual property of a microscopic model was found when calculations were
made for a small values of y (y = 0.005) and a moderate values of the field para-
meter p (p about 1), for which the contributions of both subensembles are commen-
surable. We mean the existence of two absorption maxima (curve 3], one due to the
contribution of librators (curve 1) and other (curve 2] due to that of rotors. At
a greater - but still small value of v (y = 0.005) these maxima appé} less
distinctly. The principal significance of this result consists in that only one ab-
sorption maximum is usually characteristic for simple microscopic models, that is
for models with simple lull{ﬁ) functionsq’ " . The existence of a two-humped
absorption curve, shown above, fascilitates the development of new models capable
of describing similar frequency dependences, cbserved experimentally. We shall

return to this point at the end of the article.



5. Phenomenon of the Narrow Band Absorption
in an Anisotropic Polar Medium

RESONANCE REGION. We have found above 1thAt when the

potential well is deep (p > 2) the FIR absorption band is narrower.
+————>F1g.6 shows a more detalled picture regarding an evolution

of a dlelectric loss spectrum due to the fisld parameter p or the
1ifte time t. The two values of p and y are taken (p = 3.5 and 4.5;
¥ = 0.1 and 0.3). The second parameter y 18 chosen sufficiently
small since at greater values of y a strong wldening of an
abscorption band occurs . In Fig.6 only the part of a lcss spectrum
18 presented related to the FIR reglon, In +this reglon one may
deduc@ the SF frequency dependence K* (r) since y"(z) ~ GK" (I).

Let AT be the width of the resonance curve K" (z) at the level
1/2 and Az  Dbe the same quantity at y = 0. The latier (Az_) may
be called the minimum baondwidth (in unlts mAw) since at the
infinite Increase of 1ife time T (&8s y - 0) the parameter AT_
remains non-zero, yet sufficlently low at large p. Correspondingly
the term "limiting line"™ (for y = 0) 1s a characteristic of a

classical ensemble of dipoles. In the present investigation we disregard quantum

effects. When the field parameter p rises, the minimum line width
Az decreases and the normalized frequency z_ of & 1loss peak

approaches the values
T P " orthogenaly orientation of a ‘
for the radiation (5.1
I %2p parallel field .
Thus the loss line for a parallel orientation may be regarded as a second harmonic
while the first harmonic corresponds to the orthogonal orientation.
At vy = 0.4 the lines, shown in Fig.6, are close to the limiting lines, while

14 . . . .
curves K (9() are considerably wider at y = 0.3. It is also seen from Fig.6
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that in the case of narrow lines the approximate and rigorous theories agree well

with one another.

The vziues of parameters Az, K7 _ and 7, oI rescnance lineg
are presented In Table 3 for the tnrne y values 0.05, 0.1 and G.3
in z wide rangs of the fisld parameter p. If p >> 1 then at the

orthogonal (L) orlentation the lcoss line is much more Intense than that

at the parallel (;) crientation. This property may be explained by
the fzct that at L+ orientation molecular charges move almost along
electromagrnetlc f£1:z1d lines and go radlation spends more power than
at ; orientaticn. thﬁ e last case charges move almost normal to
the B(%) 7ileld lines  consegquently a small torgue f{ » E(v) results.

These considerations are confirmed formally by the Gordon's
sum rule

2
x TN 2
TI = 0 o feay A = L {4 — Z=sh R0
b= \bk (RS EER VTR RS - A\ i g ;] N\ wbs
—m b

. ) 2
where 1 denotes the integrated absorption. Indeed, if p > T , then <%L“>

>
and “.L. ﬂu’
We see also from Table 3 that

a) the relative width v = AZ/Z_ of a resnonance ling de

+ -
¥ » 1,87 while at o =

when p rises: at p = C we nave v, ¥ L.5
— wginm0.09 and Y, 0¥ 0.13;

the relevant statement in the previous paragraph is established.

gcreases

n

£,
N

>> éf

b) the maximum absorption, which 1s propcrtional to the preduct
r K", increases for + orlentation with the ;;ﬁed.parameter ps for
orientation this product goes through a maximum and then, at large
p, qulckly apprcaches zero because thls type of Interaction

vanishesi

¢c; when p rlses, the resonance loss or absorption line width Az
= Tew goes through 1ts minlmum value while the relative fine width,

we repeat, decreases wlth p;

( LI
(¥}
o
jas]
]

4+ o, el
Soeg  through LTs mEFImE viaLue

d; the 1oss ¢
rises.
In Fig. & d,e the freguency dependence 2f th

T .

[=]
spectral function 1s shown. If p 1s large, the regicn whers K’ (1)
substantially changes 1s concentrated near the centle T of a


http:1.,1.1,.00
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line. For the main 10ss mechanism (at the orthogonal orientaticn)
the amplitude of a change K| In a resonance region 1s much greater
than the value &%, corresponding to z = Q.

DEBYE RELAXAT TON. For the same example as In Flg. 6 (p = 3.5;
4.5; y = 0.1; 0.3) the low frequency loss spectrum 1s shown in Fig.
T. Solid lines refer to the complex susaceptibility obtalned Ifrom
eq.(1.8) for the hybrid QEB/ED model; dashed 1lines refer to the
same gquantity obtalned for the flxed (zr = 0O) spectral function,
that 18, for Kj(ly), K;i ({y) or L”(iy)’ the last being required for an isotropic
ensemble). If y decreases, the relaxation time Tn Increases, 8ince
the Debye loss maximum shifts to lower frequencles. For a parallel
orientation the time T, 1s much greater than for an orthogonal one:

Ty . 1L p2R. (5.3

This property may be explained by the following way. At a
parallel orientation 1n one or ‘the other well there will appear some excess
concentration 6N of dipoles orlenting alongs electrocmagnetic <field
E(t), 1if the field frequency 18 not too gre<at . This excess ON 1s
due to stochastic forces which disturb the thermal equilibrium. It may be noted that
«—— Tvegular torques due to a potential U(8) cannot throw
particles over their potential wells . When the fleld E(t) 1is
switched off, the concentration of dipoles will apprcach the
equilibrium in all wells. In order tc oreach the steady state
distribution tns “axcess” particles must turn Hqum’ha considerable
angle 9 ~ T,0'So the relazation tim e ti may be great. From the
mathematical point of view this fact is due to the great value of
the dispersion ol=3<q?>, gince the mean direction. = ccsine qy> vanishes

For a deep well with U  large and K, small the transfer cof
dipoles from one well to another 1s not eagy,What results 1¢ an
increase of the time T“ NOte this “? rises abruptly with p, 1f
pe>1.

At the orthogonal crientation the relaxation time T+, 18 less
than ) since dipcles are to turn on less angle In order to resoly
the excess concentration of dipoles appeared in the directlioen of
the fleld E(t). The value of this excess 1s smsll since E |, Z.

It should be noted that the propertles (5.2} and (5.3) were

taken into consideration pz‘evic:usl;,/q3'14 for an . example of wider lines of

(D

resonance absorption.

In t{sotropic media a dipole interact simultaneously with both
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field components, E, (t) and E,(f), since the symmetry axis 1is
inclined at different angles to the direction of electromagnetic
fleld. As a result at p >> 1 the relaxatlon time T, 13 lesSs than at
j — orientation but greater than at + - orl ientation.

It 1s also seen from Fig. 7 that for sufficlently frequent
collisions , or equivalently for sufficiently large values of y ¢he Debye loss
maximum at 1 orientation may almost reach the reSonance absorption
region. Because of this the approximation of fixed spectral
function (X = K(ly), or K = L({y) In an 1sciroplc medium) may not

be valid. However in our examples the substitution of K(z) by K(iy) and L(z)

by L(iy) is admissible, as we may see from the solid and dashed lines in Fig. 7.

Thus, 1f the 11ife time T 1s great, or equivalently 1f y <«
the agreement between the theory and experiment may be obtained,
if: chosen

a) theVvalue of the fleld parameter p permits us to obtain
the correct position z ~of the resonance loss peak and
simultaneously the line wildth. We may note that for small v the linewidth is

close to the minimum w}gth AIO);
b) the lifetime chosen or the corresponding value of y allows agreement

between the theoretical low frequency spectrum and the experimental one.

The a) criterion demands the agreement of the <{heory and

experiment for two parameters K max d AT Dy L1tz the only free
model parameter p. Indeed, 1f we want to iESu”ibe also the low
frequency spectrum we need to fit 1ife time T or y for a

prescribed value TD. As a result, the appl cability of this DWP
model to concrete molecular sgystems is restricted. We shall turn to
his question Iin the next section.

In Fig. 8 we have a graph of the [ - dependence @n the relaxation time T{D
or more precisely the dependence of Z:'D/ 7 on ‘2“/7. The graph has a minimum

at some critical value vy which divides two regions of low frequency

crit

relaxation. Note that is of the order of unity and depends on the value

Yerit
of p. Thus we have:

I. The reglon where collisions are not extremely frequent and
Y *© Yypits the relaxation time T, decreases aleng with the decrease
0f 1ife”"time <;

IL. the region cf very frequent collisions (g > yorit)’ in

which the relaxation time Ty increasss 1f the 1life "time =
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decreases. In the 1imit v - O the Hubbard relation is satisfied
Tt =1/ (= Rgm) at oy >> 1. (6.4)

An analysis BhDWS that in lilqulds only the <first region may
agree with experimental data and the most frequent collisions (near
the point y..;.) 8pproximately correspond to the temperature near
bolling point / the most shallow potential well. In the QEB/ED
model we have the similar dependence of T, on T In the region I
(see Fig.8b). But in thls model the curve T,.(t) has no point of
minimum, so, the QEB/ED model 1s not applicgble at very large y.
More detalled data, related to low frequency spectra (see Table
4) where all calculation are given for the rigorous theory (but in
the approximation K = K({y) for anisotropic medlum and L = ZL({y)
for 1sotropic cne). Using the formulae of Sec. 2 and Table 4 one
can estimate, 1n partlcular, the static susceptibillity y 3 and the

quantity x.

6. On the Applicability of the Model
to Calculation of Dielectric Spectra of Ice 1

In Table 5 the formulae are given in the quasli.elastic bond
approximation, which permitsto estimate specific parameters of low
frequency (8t r < Z, ) and of high frequ%ncy (at * » p) dlelectric
spectra. These feﬂmulae were cobtalned > for the QERB
approximation where 1t was assumed that: a) the fleld parameter
p>>1; b) the minimum rescnance line width Ar and the pesk position
z are found for the limit T - w, that 1s, for the lhnitMg line; c)
the parameters of low fregquency (Debye) speciras are found for
finite but large life_time T (at y <<< 7)

Tet us chose the temperature aq“m\{“" the
take molecular constants of 1sclated molecule u
A

the ™ *narﬁﬁﬁ\ 'm:'!’vw:nf“lve irwi n o= 1 22

n
FLW AW - S | Em"" t stdhd g LY P S L S W

L&\-.: e & C} et e e BN .’ ,.J - 0 1]
molecular mass ¥ = 18. Then the normalizing parameter 7 =
rT/{‘Db fﬂ\ﬂ/a 4.43 1A td g the d‘lnn‘la moment 4 In nolar fiadd

Lan A e 1 Nt o , R Y i A7 2] P.& e & z.ﬂ_la. el L

taken in the form p = p_(n3 + 2)/3 . Then & = WEN, p/ (3R, TH)=
-56 (¥, - 1s the Avogadrc number). In Table & the approximate
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euq:eriment::stf'1’O - values of parameter for Ilce 1 are presented;
the band near 830 cm™' 1s denoted as £ and the band near 226 cm™'
as R (the splitting of the second band i1s ignored; index "m"refers
to centres of both bands and suéscripis™min", "max" refer to the
quantities, related to on the level 1/2 regarding the peak 1088
value g 1n these bands Using experimental data (8] and the
equation g* = n® - & + 2ine, we may find the band width Av from
the frequency dependence £° (v) = 2 n(v)z(v).
Using these data, we find:

At £: x, =0.05, £ =6.68 , Mexp = 2.13; (6.1)
At K: x:n=0058 :z: =1.89 , Azex'* =1. (6.2)

For the descripticn 01’ the dielec1.ric behavioL‘f' of 1ce 1 we
introdee two subensembles of molecules, 1lke 1In case of 1liquid

water : {L], with less, and ([R], with greater rotational
mobility, to which R -1and L - bands correspond 1in the FIR
spectrum. As in the work we suppose, that [L]l-molecules are

responsible for the Debye relaxation of polar medium. The above
theory 1s applled separately to £~ and R- regions of the FIR
spectirum of 1ce 1.
Using the formulae of Table 5 we get the fcllowing estimations
of the fleld parameter p and minimum line band Az :
At £: p=6.7 , Az = 0.074; (6.3)

A

At R:p=2, Ar = 0.236. (6.4)

fo)

Thus the/gstimated minimum width of the C-band 1s approximately 30
times lessvthe experimental value Ax oxp The gquestion arises,
whether the loss curve can be widened due to the finlteness of the
lifei}ime T 80 that it may cancel this drawback. The 1ife time T we
may estimate using Tables 5 and 6. Calculating the Kirkwood

g - nZ 2s_+ nZ

correlation factor g = 4%8 qc = 2.21, we find that the
g

normalized collision frequency y 1s extremely low (y =~ 4.1.1077).
Hence the theoretical width Ar practically coincides with the
minimal one (Ar_). So, if the DWP model with the profile cos®®

were employed it would seem impossible to remove the difference between the thecre-

tical and experimental line widths A X and Axexp' A possible way to

improve the theory is to change the profile of the intermolecular potential.

The situation is different for R-band. The estimated value of



the p-parameter 13 sbout 2, and the minimum line” width Az, 1s

Several times lezs tha 2l
1 the experimental value Arav“. Using dat ta of
Table 3 we Iind

that the fheoretibal R-band may be widened by
ol 57 =
“aking v = 0.3 Then according to "uvleld the reiazation time wiil

be in tf i
ne order of picoseconds. Indeed, we have '1 X~ 0.038 ps; so, putting

from Table 4 the value LD/Q' » which corresponds to p =2 and y = 0.3
and multiplying the = i ’
plying result by g 2.21, we obtaln ,D~21g,\ : 1.8 ps.

=(2ReTp)" " = 0.34em.

for R-molecules is thus soverai times 1855 than its value for

liquid water but it is many orders of magnitude less than the value of for
the main relaxation region in ice 1. 1;b

Consequently the corresponding wave length

The relaxation tims

At last, let us estimate the proporilon r of molecules
responsible for the R-band. Neting that at p =3 and y = 0.3  the
& {1

Table 3 gives L7 /B)K’ = 0.816/3. Doubliing thls value 1In

! max
order to account approximateléﬁﬁ:he gpace =tatistics we obtaln
v r
xriaxpgément in R} Q.0ER )
’N Yl ——— = 6.8%- (bis)
2 Xp (P=R, 4 = 0.3) GL (P =2, y =0C.3)
u (s to

An Important reslt of these estimaticns Set onesel$d thinking
that the proportion of H,0 molecules with greater rotational
mobility has in ice the same order of magnitude a3 In ligquid water
in gplte of more regular structure of ice and consequently the less
cropertion of "defecus™ of strucfure than Iin water., Indeed,

8 — the proportion o¢f [R] - melscules 1n
water /a“but 10%. Indirectly %nis conelusion agn e confirned by
the I lowing experimental

0 Tac. : Intensitizg of R - bands are
nearly equal in 1ce 1 and liquid water. The obraine
reformiated as follows. The rotational 7 transl f*wra’ motion
tributing tc the R - band in FIR sgpectrsal rorinﬂ actnslly  is
not frozen at water - ice iransition in splte of 7% petantial (Qy
many order3 cf megnitude; Increase of viscesity and the Debye
relaxation time. Zence, most probacly, {Ri - molecules present the

property <f H-bond 1tself and have no d

cta™ of 4 - tond nat.

]
O
h‘j

fonclusion

* -~ v Yy v by Ay . — Y LI K . i . ~ L AR '
t. A simple hytrid gquasl-elastic bond /7 =xtended A4Airfusicn
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model may be applied for a qualitative analysis of a dilelectric
relaxation described by a rigorous planar double well potential
model with a profile Uooosaﬁ.e

2. Wnen a conservative fild parameter p = (U /k,T)'"® exceeds
4, the FIR absorption spectrum results in a narrow line and <
great Debye relaxation time t,. In this work the notion of 1 itc‘ng,
abgorption line 1s Introduced, which has the minimum wildth “and
corresponds to the 1imit T » ». If T is very large, 1t 1s the
limitming line that practically describes the FIR absorption
spectrum.

3. The field DWP model can be applied for the description of
the dielectric loss spectrum in the translational (near 200 cm ')
band of hydrogen-bondedpystems. The comparlison of ice 1 and water
gpectra set oneself™ thinking that the very exlistence of
[Rl-molecules with greater mobllity is due . to the hydrogen bond
1tself, and not to the "defects" of H-bond net.

4. The field DWP model with a profile Uocosz'ﬁ 1s not applicable
to the description of a librational (near v ~ 800 em~') band of ice
1 ,since the theoretical absorption line 1s 4te:Jo narrow In this case.
Comparison with the confined rotator model implies the 1dea
that both librational and translational bandsmay be described in
frames of a new fleld model in which the potential profile U(®) has
the form of a "hat": flat bottom, abruptly elevating walls and flat

edges where U depends weakly on the angle t,’. The explanation of this idea was
given recentlqu'qs. The existence of a two-humped absorption curve, which was show!
(Fig. 5¢) for a coaine squared profile TIféﬁ , supports the idea that both absor-
ption peaks , d‘L and cLR' can agree with experimental data for a suitable15’18

potential form U( é?]_
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CAPTIONS FOR FIGURES

Fig.t. Distribution Zuncticons of dipoles over frequenciles ot
orientational motion of librators (a) and hindered rotators (b).

a: the field parameter p = 5.5 (1), 1(2), 2(3); detted 1Iine -
the asympiotilc depsndence.

b: p=0.08 (1), 2.1 (2}, 0.5¢3) and 1:i4); ocurve 5§ - tha
Maxwellian distribution.

Fig.2. The freguency dependences of the imaginary part of the susceptibility
(a Jand the normalized absorption (b). The field parameter p = 0.5 (1), 1(2),
1.75 (3) and 3(4). Isotropic medium.

Fig.3. The frequency dependence of the normalized absorption coefficient.

The GEB/ED model. All denctations as in Fig.2.

Fig.4. The loss susceptibllity (1) ard normalized absorption
(2) as functicns of freguency: the rlgorcus theory (solid 1lines)
and QEB/ED model (dached lines). a - for gquasi-space ensemble; b -
the same but with doubled spectral Ifunction. p = 3, y = 2,
isotropiclge UMl

Fig.s.ffé§*4 olution of 3 dielectric loss spectrum due to the
field parameter p for a relatively shallew potentlal well: p = 0.01
(1)s p=0.1 (2); p=0.2 3); p=0.3 {4); p = C.4 (5). a -
rigerous thecry, D - QEB/ED model, 4y = i ..

(€Y: the plot 1:(?(1), calculated for y = 0.005, p = 0.75 (curve 3) and y = 0.05, p =0.85

(curve 4). Curves 1 and 2 show the contributions of librators and hindered rotors to
curve 3. Rigorous theory.

Pig.6. The evolution of a nerrow losgs line ZX"(r; due 1tz th
fleld parameter p and to the strong ccllision freguency y: 8, b - for
the paralliel orienta’ion; c, 4 - for the orihcgonal orientation.

QEB/ED model: =20l1ld lines for y = 0.1, Zeots for p = Q.35

rigorous thecry: dots for y = 0.1 and triangles for y = 0.3.

The field parameter p = 3. (a, ¢) and 4.5 (b, 4).

d, e: the real part of the gpectral function K'{z) at p = 4.5
for y = 0.1 (sclld ilne; and y = 0.5 {(dashed line) et parallel (e)
and crthogonal (f orlentations in frames of the JQEB/ED model.

Fig.7. The 7Zrsguency dependence of the loss susceptibliilty for
parallel orlentation (1), isotropic ensembie (2 and orthogonal
orientation (3). Solid lines - fcr the spectral functions K(z),
L(z); da.ned lines - for the spectral functiions Z{ly), L(ly). The
field parameter p = 4.5; st y = 0.t (a) and Q.2 (b). The QEB/ED

model

Fig.8. The dependence of the relaxation time <=, on the 1life
time T for lsotrople dipelar ensemble. The fi=ld parametwr p = 5
(solid 1ine) =nd » = 2 {dashed line). a: rigorous theory; b: QEB/ED

model.
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Table 1. The parameters r, <f>, <

and distributions f(p) and

L d

o

P>, <P>s Y,

Qo O

Fp)
Para- o 4 F 1 ;
metar General case For p » 1 For p —0
o D o 2 o IR 1 A
- 2D exp(p~/2) 4
r [ LKan ot G,
753/210({32/2} . w3/2
2 p exp(p®/2) ’ x'/2
<pr |- P 73 5 J € K arosin{¥m) dm -
ME s SN (-3 I 2p
¥ -1
hd ~ 2
P> 2sn (p? /2] { r 7% 1,(0?/2] } p —
o . . : -1
1/2 ~1/2
<> exp(—pz/ej[?' x'/ Io(pa/e}] o0 x 1/
. ":/2 4 3 =1
y, | exp(p®/2) { 0 1,(P2) }
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1 the asymptotic estimations are given.

Table 2. The estimation of the steady state parameters.
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Table 4. The dependence of the Debye relaxation parameters on
the field parameter p (the rigorous theory).

apper ) 0.05 )
middle ¢ line - at Yy = 0.1
_ lower 0.3 |
gpara—- Field parameter p
imeter . -
G.0%1 0.I 0.2 0.5 I 2 5
9,1 1.5 1.504] 1.515]  1.59 1.86 2.55 | 2.94
9 1. 1.496] 1.485| 1.41 1.14 0.453] ©.061
A: anisotropio medium
T.373 T.323 |1.295 10.887 |0.444 [0.436  ]0.0003
Kd o 11.259 1.233 {1.162 |0.869 |0.440 |0.159 |0.0003
0.914 '0.906 lo.s82  |0.731 0.402 |0.042z |2.1074
T.374 T.404 |1.422 |1.373  [1.113 |0.450 |0.0613
EL [1.26 1.289 [1.320 {1.322 [1.098 [0.448 |0.0613
0.914 0.922 [0.944 [|1.023 [|0.964 |0.434 |0.0611
0.0637 {0.0901 |0.150 {0.354 |0.710  |1.251 1.47
Xp, /G|0.129 0.135 10.177 10.362 lo.712 1.252 1.47
il
" lo.293 0.299 |0.317 |0.431 0.731  |1.252  |1.47
0.0629 |0.0463 |0.0316 |0.01689 |0.0115 |0.0019 |6.1077
x5 /G|0.120 0.104 |0.0823 [0.0422 [0.0190 |0.CO26 (1075
L 10.293 0.287 10.270 }0.191 0.0863 10.0098 |10
21.86  |22.72 [24.95 35.95 84.0 (1188 179448
™ /7]11.9 12.2 13.04 |18.3 42.4 585.9 {89731
5 .47 5.54  15.73  17.23 15.5 201.3 {29936
— |21.83 21.32 120.89 |20.5 20.4 |20.2 20
11.9 11.60 [11.25 [10.64 10.35 |10.12 10.00
L /n|5.47 5.41 5.24  |4.58 3,93 3.48 3.35
B: 1sciropic medium (C = 1)
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0.195 0.1395 (0.196 |0.208 ;0.272  |0.421 0.49
31.84 72,00 |22.76 126.6  138.5 121,79 373.5
Ty /M| 11.9 1.9 12.09 |13.7 119.5 61.0 487
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Tabiz 5. Eztimaticn of the parameters of dieleotrio specira:

QEB model
A. The resonance specirum B. The Debye relazation region
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Table 6. Dielectrio constant cf ice 1, used for e=stimation of free
parameters of ths DWF model.
8 8 [ 10
L - band [8] R - band [8] : Debye spscirum (10}
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