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(iemonstrated when the potential depth U.... 1s varied; an isotropic 
'-' 

and anisotropic medium being taken a.s examples. The spectra 
comprise the .Debye relaxation and the quas1 -resonant Poley 
• - ThQo~T with"'.I......&. Jahs!.I UJ.'""'I~"1:''' 1("'"0.&.... .I............T"tQg"' on Irhe ~lirnro"__.....,-;...u;;J(3 is compa.-r-ed a 
simplified one which was called the hybrid quasi-€last1c bond / 
extended diffusion model. This approx1..'!lat:!.on 1s 7311,1 for a 
qualitative description and also for the ql.lant1tat1ve one at the 

large f1eld parameter p = rU~!(~T)J ,1/2 
. 

""- '-' ..., 
For p» ~ the spectrum comprises one narrow absorption band and on~ Debye 

that 
relaxation region considerably shifted to low frequencies. It is shown~in the 

" ( :long lifetime limit 'C. there exists a minimum absorption band .t1'V (p). Theo 

quantity .ll '0 becomes small if the parameter p » ~. The dielectric relaxation in
0 

ice 1 is discussed with regards to this phenomenon. 

---.~-~---~-- ------------------ ­



.. 

-' 
- 2 -

aR/
1 • The Problem of Harrow Lines in a, Class1c>/--Ensemble of Polar 

Molecules 

During the last few years considerable attention has been paid to 

elaboration ot molecular models ot dielectric relaxation in strong 
absorb1r..g polar liquids. A. possibility was demonstrated1

-
6 I • 

t ... to describe ~using such models the evolution of the 
spectrum of the orientationsl relaxation due to temperature change. 
A low frequency I .. wing of this spectrum taIls usually 1ntoihe 
microwave region while t~ f~ 

(quasi-resonance Poley absorption falls tntolFIR spectral region. 
Let us list the typical dielectric properties of polar liquids:

(tJb
a) a considerable ( several times or 1n r order of IIJ88D.ltude) 


rise of the frequency WL of a maxtmum absorption comparing 

frequency w • The latter refers to the maximum rotational 


gas ~ 

spectrum absorption due to the same (as in A liquid ) polar 
molecules; 

b) The frequengj wnot maximum dielectric loss, ED = 
::: max[s" (w)], is onS'itwo orders of magnitude less than the frequency 

-1 Q..wL ' the Debye relaxation t:L'Ile 'tn = wn be1.11g A cha...TI8.cteriatic 
parameter of a liquid; 

c) the wide band fL~ of the absorption spectrum is 
commensurable with the frequency WL of the absorption peak. Thus, 
in "simple" polar liquids 

~ ) Wgas ; « ~ ; !~ rv (1.1.)wD WL ­
1-6 

The analytic theory ~ I .,. ignores quantlli"TI effects and so it is 

based on classical descriptions. This ass~tion is also made in our calculations 

1[hese are valid not~ 

Cbecause of limitations imposed on a maximum radiation frequency w 
(as 
the 
leas 

one sometimes considers) 
local liqUid structure 
than WL ,the frequency 

but because the 
exists, 1s small: 
of maximum absorption: 

time 
'1:- 1 

~, 

is 
during which 
usually not 

't « 't"" (1.2 )
.1..1 

Simplifying the Situation, one may "justify" the applicability 
of classic description by the following argument. Because of 
frequent collision in liquids the superposition of individual 
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rotational lines occurs and consequently the ~1screte rotational 
spectrum does not appear as a rule. In stror~~~absorbL~ liquids. 
unlike polar gas, the time ~ between collisions 1s less 6 than the 
collision t~e ~ .. c 

(gas}· IT' .•~ ..., iT{liquid} : 1" < 't.... ,• '- • \t /,/ ''''''II- • (1.3 )
',., '­

It is because of this reason, the term "collision time", having a 
definite meaning in case of a gas, becomes vague in case of a 
liquid. Apart ire", this, quantum rotational lines Cl1a.LT"t8.cterizing a. 
gas of weak interacting polar molecules shift considerably due to !:he 
stror~ intermolecular field. 

t 
LWe shall prove in the present investigation that in classical theory 

a new property of narrow absorption band is attributed to the effect of a strong 

conservative field on librating dipole~)

/'- ... a.e ­
-A dipole is 8. class1c/rOtor (for s1m~licity we assume that it 

has a. form of a lL.11ear molecule) which is ::.ha.ra.cterized by a moment 
of inertia I and by a dipole moment ~. Note that !n, a 8trong 
~ n t Q'J"Im.""7ecu7 ,..,.,.. l' f e 7 ri i"'\ne n......."......ow "ho~+ I {""In ru"'H"t rJ or f 0e a as ~ l' an 

\..,Ir .... wililrU .. v\..il rI'" lor .... '-' lioi...ioI' ~c::J'-Irt"'IJ\"..I" l..i\..WiA..;i, veJ eJ "J 

envelope oJ a qw:m.tum spectT'UTTl wt;recom:preS8etj into a na:rraw claastcai 
Mr'l4"I rf nrrui 1••.-88h t 1'+cd t 1"\ h f ""no," ""-eq' Ion,., 4 c~ ~_
:""\.iJ~ ....,~ WlS,fC '" J "... u; ,,\,to' K;ll J (- ~''''"' I.tw~ 

(The Debye relaxation time increases substantially in this case as 
compar~d with 8. typical liquid: 

_1 
.,.. r'r''''' ; 1"» G.lr';-state of substance, }" ".... ",n ..., 

{CI1.a.racter1zed by a : TT / (b '1" ',." ~.• Af.. //
oJ'",. .L, .u.u.t ...~" -narrow absorption line 0' ''''''B-I. I LU 

The following question arises. Does there exist a molecular system in which a 

considerable narrowing of an absorpt1onaLband may be 
interpreted as an influence on a class1cTdipole of a11 effective 
intermolecular field? One example is more or less evident. It is 
ice 1 where the resonant absorption bands are several times 
narrower than in water, while tIle shift of tile centres of absorption

7-«1 
peaY~ to higher f~equenclea is about ten per cent . On the 
other hand. in the case of ice the relaxation time 1s many orders of 

than in water .. 



It should be noted rLght aW8:/ that both in ic.1t aid in flq.Uid 
water two quasi-resonant absorpt1o~~and are characteristic. ThlE 
situation is more intricate than~ simple liquids. This fact 
~ complicates the interpretation but has no great significance since when water 

freezes both the absorption bands in the spectrum of of orientational relaxation 

becomes narrower and both shift. 

For the study of the dielectric relaxation characterized by 

the properties (1.4), we use an approximation of plane trajectories 

(a planar ensemble). We Chc{§e the f '!" potential profile 


U(1}) = U (1 - coa2 .t}), (1.5)
o 


where ~ is an ar~ar shift of a dipole relative to the symmetry 

axis of a potent1al U. This protile is called the double well 

potential (DIP). 


In an introductory section 2 the basic relations needed for further consideration 

are ~r~sented. In Sec. 3 takin~ __ _ 

~ample of an isotropic polar medium we shall discuss the results 
of rigorous calculations for the DWP model with the profile (1.5). 
In section 4 .. we shall show that a hybrid quasi-ela.stic 
bond / extended diffusion (QEB/ED) model Is also applicable and that 

approximate analyt1cal expressions are much simpler than 1.'1 the 
strict DWP model. In Sec.5 on an example of an anisotropic medium 
we shall t1.L..T"!l to the main effect of this work - to the narrowL.?Jg of 
absorption linea due to action ot a strong potential (1.5). In the 
final section 6 the relation of the field models of molecular rotation / dielectric 

relaxation to ice ~ is investigated. 

2. The Approximat1on ot Instantaneous Col11s10n: General E:l:press1ons 

The dielectric response ot an isotroptc medium to 

reorientations of dipoles 1s cha..T't8.cterized by the complex 

susceptibility X<w) = X' - t X".The complex propagation constant 

... b" *- b' .,,,11 

I.A. 
n-fe' Qct~-f.J......... "nQT'Im-t +t-fv-f.1.., ..... +'tTuti c"'--.... c' ..&. 

I 
:, cit 

'.J..a.!..It 
f"\f' n' o"'e
01'nn-.£,'" .J.. ",it- Q..i. ~.........."'" 

("t !-,'-.J. 1.1.1.1.. U .... "'..... 
Q !-' ..... c;;;w. ...
I 

electromagnetic wave are related one to another by the equation 
• w '* wR = ~ y € = ~ (n + i~)~ (2.1 ) 

\J \J I 

Wher~star * denotes complex conjugation. Let noo be an 
the 



_ t; _ 
..I 

optical refractive index. If one ignores the difference between an 
internal and macroscopic electromagnetic field in a medium, then 

E:. is related to \.. by. 

s·(w) = n; + 4~*(W). (2.2) 
Thus the constant R 1s related to the complex susceptibility by 

the equation 
.2 (.~ ( * '::)"\R = 'WJ':) 4'ltX....+ n::'J. (2.3)

cr- vv 

Equation (2.2) may be replaced by 

2 2e* - n 2S* + n
__----.00 00 = X*(V) (2.4 ) 

4'Jt 38* 

when the difference between internal and macroscopic fields is 
approximately taken into consideration 

2 
) eq. (2.3) being retained. 

In an antaotroptc po!ar medtum the dielectric susceptibility 
'). is a tensor. In th!s worR ,we aha! I ca!cu!ate r!ght c::ux:ry the 

scalar ~~ttty R, the real part~o! which determines the phase 
velocity of an electromagnetic wave L~ a medium, while the 
tmaginary part k" determines the absorption coefficient a: 

WE" (w) 
a :: ?~N - 0 ~ .:i" - ____.......,..~
-'0" - .... c '""" - c n(w) 

ANISOTROPIC IlEDIUJl. We introduce ~"1 effective complex 
8U8cepttbtltty X ot an anisotropic medium

11 
, which 1s related to 

the propagation constant R. (2 .3) , . ' 

the relation E to X again gt~taken 1n the form (2.2.) or (2.4). The 
cause of an an1sotropy 1s an existence ot an uniaxial 
l..."1termolecular potential U('6), tt being the angle betwe€n the the 
symmetr"J axis Z of the potential U and the dipole moment vector 
il(t) of a reor1entating linear molecule. Note that it the 
directions of the local symmetry axes are random then in various points of the 

a dielectric sample the medium becomes isotropic. 
We ass~~e that the lL~early polarized electric field E(t) 

.....-------~') varies harmonically in any point of a medium: 

:'", ~ E(t) = Em sin (wt + 1). (2.6) 

We denote parallel and orthogor...a.l directions of the amplitude 
vector E to the symmetry axis, by symbols ii and J... The problem is m 
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solved,if the frequency dependenc/es X (w) and X (w) are tound tor 
DL 

two crossed orientations since for an arbitrary angle Wbetween Z 
and E 

m 
the susceptib1lity X Is a known rational function ot X

U
(w) 

and X (w) • 
.1. 

lfuen investigating the dependence of on W we distinguish two 

mechanisms of the wave - medium interaction \ '> for molecular 

rotation at equilibrium due to: a) the pertodto rotation of a 

dipole in a potential well of a prescribed protile; and b) the 


stochastic (Brownian} reorientation of molecules. With regard to a) we caiculate 

the spectral function (SF) and denote it K(z). It should be noted that K(z) differs 

from the SF L(z) introduced in work11 by ttle mul tiplier 3 <: q2 ::> which is not dependen"I 

on the radiation frequency oJ and which will be difined later. The frequency 

dependence of KCz) describes the dielectric response in the FIR spectral range. Here 

z defined by z = x + i Y is the normalized complex frequency, x = 'l wand y =vz Ie 
being respectively the normalized radiation frequency and the frequency of "strong" 

= [I.J 1S l'coll1'sl'ons.. nL (2k T) 1 1/2 ' a norma 1zlng. parameter, k8 is a BoltzmannB

constant, T is absolute temperature and I is the moment of inertia. The K(z) 

function is proportional 11 to the spectrum of the autocorrelation function of the 

electric mo~ent vector ~ (t), which is performing undamped (periodic) rotation in a 

potential U[tr) : ~ 
()() 

K(z) = 3 !z(qof(q-qo)etz~d~). (2.7) 
o

Here the following dimensionless varia.bles are used: the time 

~ = t / ~, q = q(~) = ~ / ~, where ~ 1s the projection of the 


electriC moment vector ~ on the direction of the 3.'Ilp11tude f1eld 

vector Em' ~ = I~I, q~ 1s the value of q(~) at the moment ~ = 0 of 

a. "stron8 collision".The qo coordinate is regarded as 8 point in a 
phase space r, anJ averaging over r is denoted by brackets < ••• >. 

The second factor b) is determined by a. collision model and 
plays an ~portant role only in th~ low-!~equency (Debye) ~p;~tral 

d "f' d Gross collision model · k thregion. For definiteness we ta e e mo 1 1e 
in Which:( is related to K by the equat ion 
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ty ] -1 ,x* = g G z K(z) [ gx + -;K(Z) (2.8 ) 

where G = ~2N / (3 ~T), N is a concentration or polar ~olecules, 
g is a Kirkwood correlation factor and 

(2.9) 


..
where (1/3)6 is a dispersion of a q • In all equations below exceptSec.6 WE 

take g = 1 , while in Sec.6 a more realistic version of the Gross collision model 

in which g differs from 1 will be introduced. 

For two cross orientations we write X , <au)' Kllor Xl' <a1>, 
K , while at the "inclined" propagation of 

fI 
a wave

1 

K(z) = K.(Z) cos20 + K1(z) s1n2m. (2.10) 

We repeat tllat 0 is the angle between Em and Z. 
ISOTROPIC MEnWll. Now we dwell upon an important case ot a 

macroscopic isotropic polar medium. We suppose that only a local 

anisotropy exists~ and that in q macroscopic volume of a dielectric sample the 

complex susceptibility is found by averaging e4VCz.10l over all angles ~ We 


shall consider 4 cases: 

a) planar ensemble: 


<q> = 0, <q2) = 1/2; a = 3/2, K(z) = (1/2)(Ku + K~); f?\'- • 11.'I 

b) quast-space ensemble. In order to draw near real situation 
t~without substantial math~matical complication due toy~alculation of 

trajectories in space we may obtain Kg(Z) and K1(z) !un~t1ons for 
planar trajectories while all averages are found for the "space" 
statistics: 

<q> = 0, <q2) = 1/3, a = 1, K(z) = (1/3)(K" + K.L ). (2.12) 
Nc1:w1tllstanding these "tricks", the integratEd absorption is only 
the hal! of a strict value because the number of degrees of freed.om 
1s actually reduced L~ this approximation: 

1} ":) fU8.Si-Space } 00f w X" (w) dw = 
{ 

':I 7qJ.Co.rl/ (3I) [or Q,",Q,~Q ensemble. (2.13)
ro Co. U~~Vw 

the
c) For better agreement with experiment inv~IR spectral region 

we may eliminate the last drawback, doubling the value K(z) found 
abcve for a quaSi-space ensemble 

http:7qJ.Co.rl
http:freed.om
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corrected 
cr = i; X(z) = (2/3)(X n + XL ); quas1-apace}. (2.14){. ensemble 

d) space ensemble in wh1ch the following relat10ns hold 
/1'(1) - n /q2" - ." /~ rt - /I 1 ( i7 , = (1 /~ '(I +?I).... ""1 - 'U, .... .". - .,..." 'U - ., 4J I - , ..., I \ H 1I>W J.. • 

and the true 1ntegrated absorpt1on corresponds. Ku and KJ.. must 
be found by studying rotations in space. 

In the three last cases b, c, d eq. (2.8) reduces to the 
following formula 

x* = g G z L(z) [8X + ty L(z) ]_1, (2.168) 

&,2)6)1.i
which was widely use . Here the spectral function 

Lplar~} {quasi-spaoe } (2.i6b)
L(z) = tor quaBi-Bpa~e with doub- ensemble, (2.i6o) 2 Lp1anar{ lJ.Dg of 5]1 ,: 

_Lspaoe -spaoe (2.16, 

Lplan.= (1/3)( Kg + K~); Lspace = (1/3)( K. + 2K~ ). (2.i6e) 

DEBYE RELAXATION. "Stat1c" (at x = 0) value ot X a Xo = K(ty) 
determines the parameters of the Debye relaxat1on, 1.e. the statio 
suscept1b1l1ty X s ' the relaxation time ~D and suscept1b1lity at the 
end ot the Debye relaxation reg10n (X is real). The Debyao 
frequenoy dependence has the form 

= - = (? Imax {X" fX'} XU = 1["1 X1 at I I = n/~ , \,.". 1Qa'U _ \ "D 2 '<\'8 QO D .I D ... 
and 

(2. 18b)
Xs=x* (x) 1::=0' '4,=X* (x) 1::-+00' 

For the Gross coll1s10n model, generalized to the case when g ~ 1, 
the above mentioned parameters are related to the spectral function 
Ko as follows 

Xa = goG; '4, = GX ; Xn = ~ (go-Xo); 'tn = {!;to / K • (2.i9)o o ta
Thus the Debye relaxation time 1s proport10nal to 0 a..1J.dvk-1 • In 

~ 0 
our impact theory approximation the lite J time 't is a tree model 

\.!./ 
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The 

parameter. v~er1mentally determined relaxation time 't stronglyn 
depends on temperature and still more st!,ongly on a PhaSi state of a 
dielectric sample. The value of ~ may be found *takiqg the 

~ eoprescribed value of 'tD if one f1n~s the solution (relativev~) of 
the equa.t1on 

an1sotrop1c } 
a tt' / K(tll/~) = tt'D / g medium I (2.20) 

or { 

L { 1sotrop1c }
[<q2) - <q ':>'J 1: / L( t'Y}/rcD ) = ~ J) / g medium. (2.21 ) 

Here the r.h.s. is given ,~ the experimental data. To the prescribed change of 

'LD may correspond some cha.nge of the potent1al well depth Uo 
accompan1ed by the cha.nge of the potent1al prof1le U(1}) and the 
, i f' --"tim 
.i. ........ ~_ e 'to 


The increase at the well depth Uo greatly 1n!luences the 
"static" response KI""\ and the dispers10n 0, these values being 

>,J 

d1fferent for the parallel and orthogonal suscept1b1l1ties. 
Examples of 'tn dependence on Uo and 't are given in Sec.4. 

In order to interpret expertmental dielectr1c spectra one must 
descr1be the frequency dependence s (w) ?f trJ3 complex: dielectric 
permittivity. He employ eq. (2.8) with g given by .' 

c: n2 t)c + .,,2 

~s - ""~ ,Ir
g= 00.;1 00 (Go) -1 • (2.22 ) 

4'1t 3E a 

For 9 so defined eq. (2.4) EY.ld (2.8) give for w = o the 
permittivity E(W) which is equal to'flxpertmental value 8 • 

3 

3. The Rigorous Theory of Or1entat1onal Relaxat10n 
for the Double Well Potential 
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THE STEADY STATE PARAllETERS. 
For stmpl1c1ty we cons1der rotatior.al motion in a plane, taking 

the dependenoe of the static field E~(~) on the angular sh1ft ~ as ..., 
~'p8tt. Tllen we come to the double well potential (DWP) in the form 
U(~) = conat(~) - ~ IE (~):o 
Double well 

p(~~~ial } U(~) =Uo (1 - coS2~), Eo(~) = (Uo/~) cos~. (3.1a) 


In this formula we chose the arb1trary constan~ 
~ so that at the bottom of the well U = o. Thus, is the ~ellUo 
depth. The U(~) function has two minima, the dipoles in na~ing 
wells have oppos1te orientat1ons and so the average dipole moment 
<~> of the dielectric s3&'llple ia zero. In such a fleld model_.0. 

<q > = <ql>= 0, a = 3<q2> and 01= 3<q2 > · (3.1b)1II II U ", 

We introduce the static field parameter r ~t 
I 

p =y Uo/(~T) (3.10) 

and the normalized ~ilton1an of a dipole h = (the total energy of 
a d1pole) / (RaT). Denoting by a dot the differentiating over of 
the time <p = t/T1 we have 

The integral 
ott 

(cp + <Pn )P' = J (3.3 ) 
>.., II'l I nl.,.;2 _ ain2,A

'''''t' w ...... v"'0 
t 

is obtained for the law of motion trom (3.2). Putting in (3.2) ~ = 
0, we may relate the maximum angular shift ~ == I'61 max with the 
anergy of a dipole h and the statio field parameter p: 

_ { arCS1.l1~/~' } { h / ~ ~ '} 
~ = rrr for Jot / n 2 "':J. 1 • (3.4) 

II, if, I /;' '!/It' t 

Thus two sub~nsemble8 of 11brators and hLlaered rotators exist, 
the value h = p2 bell~ the threshold energy. We d1st1r~ish these 
a"b......enaemhlcs hy i",r1cvQa V ann 0 reapP'-"T-fvQl ~T),J\.A, w~J.W' \.I w ..., .........'-Io.wAw),J I...Wo "'" ,.Io),J _v" .... , w ....t1 • 


The quadrature (3.3) can be expressed in~ms 't elliptiC 

http:arCS1.l1
http:rotatior.al
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functions. It may be sho~ that the period ~ of the tunction ql(~) 
is determined by the equation p ~ = 2K(k), where K is the complete 

ell~pt1n L1'J.tegral of the :first kind and R = = Yfilp 1s 1 ts modulus
CoRfU&e

[the reader should not the latter with the propagation constant 
70s in (? -1,

" 
(2 

• 
'"';t' (? ~'] A.ceordingl ...ioUhe norma .....zed l1hwrat i onrt. \, ..... I • 1...'.1, 	 Y 1 i1-.i00i I. 

f'TtOf"t, le""c~T -f c:l ;;iven by.... ..1.. ;;;;;'i ..... ..."'iI .l,J v • 

'T" 7C 1tp
P : 	 - = (3.5) 

~ 2K(Yhlp) 
The second ~)UP ot particles per!ormsa hindered rotation, the 

normalized 	period of which satisfieS the equation 
o 
;Xi = 4h-' 12K(1() , wr..ere k = P .I ifi. (3.6a) 

Tr4liS the nO.rnL9.11zeti rotational trequency is equal to 

r1p= 2'11: ( ~ = (7tl2).fh [ K(p/"P'h) ) ] -1 	 (3.6b) 

Omitting calculations (see deta.:f..ls in the review
t~ 

), we 
present here the I .... expressic·ns for the steady state 
ri-fQ+."ih11t-1"'" 1'n",,,t-lr\l"'\ Wtn, Q1'1'; -t'''r +'hc QV0T'tQO"Qif ~Ql'1oS "i' n 2 •
~""'OJ"'."'''''I.4U '1.1"-.1. .t..6.I....vu '..1.4.4 ;;\(", u.a. ...~ .......... u ......."";..10 '.... ~""~ '1..10... 1.4'-' I.J ..... 'i • 


(3. 7a) 

."::) ':J 

1o (P"-/2)± 11 (P~/2: I J!-(C'jf> 1. 
(3.7b) 

? T (.,..;2 l'? " ~ J 
1-..... 0 1:" ' '- I 'l..J <0 : > . 

. ..... 

t,'3 ")..! •The mean potential energy can be found f~)m 
ger..eral

lu [1- I1 (p2/2)/Io(p2/2)] case 

f 
2 0 	 1 

{ }<U(11» = r 1 "'::, "...: rr 	 f'Jr p .~ 1 (3.8) 
\If;''';·13J.t 	 J 
(1/2) Un 	 tor p « 1 

v 

Thus, in {he case (:f a cteep potential '~ell theri..!B.r.:.t1ty <U ('1.'1) > 1s 
about ~ ',P"BT) and d.o'r.lct deper..d en U0'Whll~ sr..allcw well this 
ave~ is about half depth. 

In Table 1 rigorous and asymptotic values are presented for: 
the proportion r ot rotors, the mean librat10n &~plltude <~>, the 

..,. 

normalized frequencies of l1brat1on and hindered rotation, <p> and 

http:OJ"'."'''''I.4U
http:7tl2).fh
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<p>, the distribution functions rep) and rep) over these 
frequencies and the parameter Y , vit. e 

1 peri'od 0 9 lib~+1~nQ1 I'n ,'11 fI;o:I _ ••' J. ...... .I. U. wi 'J ..... J.., ). - TYJr / "'p..... (3.9a)
III ~c' 2 '- rotational motion - ',"0/" ,". 

The time 't~ means the average . halt period of reorlent~tlons a."1d 
~~- serve is a. measure of :~oI11sion t1me6or particles, effected by 

the cor...servatlve potential U. The p - dependence of the steady 
v v 0 0 

state parameters and the distribution functions !(p) and !(p) are 
v v

1llustrated by Table 1 and F1g.1. The non-zero distribution f(p) 
appears only at sufficiently large field parameter p. 1t falls 
abruptly to zero at the maximum I1bratlon frequency p, equal to 

max {p} = p. (3.9b) 
v 

For a deeper well the distribution f (p) becomes narrower, while the 

peak of the distribution t (8 ) shifts to greater 

frequencies p. If P 1s sufficiently l~ge (p ~ 2), aL'llost all 
o 0 

dipoles are 11brators: in this ca.se the functl;Jn !(p) press itsel1' 
to the abscissa axis and ~;he square beneath it becomes small. The 

t:..P? 
mo~"" -; -{h-"o+';,,1"'1 o""~p1"+'''~':' I 1~c.c."nCMOS Who"!"\ T. "''''''.:3oc.:: ~vh'""1e +houl.... ~.i. 4 ............ ~ ... J...'-........ ~4. ",-,J,. \.1\.&............. 1...1..'_ '. r:;;;:s,.:I..... ..."' .... .l.... /:"" ... ..:..t../,_>:l , "U... \.I ........ 


generalized parameter 11- (which 1s proportional 1:0 the reciprocal value ...., 
of tIle collision tL'Il8) increases. Thus the mea.n period or 
rotational motion decreases when the well ,1e;:t'h 1:ncree.s{~s. 

SPECTRAL FJNCTIONS. Now let us consider ':.1electric relaxation due 
t.o reol't1entatlon of molectLl;~s 1Il the dOllb:.e ;"ye:1. prtentlal. We 

represent the spectral flL.'1.ct1.on as a sum 
..., <:' 

K = K + K. (3.10) 

\1I(e take 
into aceount 1rl terms of 
elliptic functions. Then the spectral !~~ction K(z) ~s represented 

modulus It of 
complete elliptic L.*1.te~ls. For the sub~ensemble of 11brators we 
+uake QQ 0 U'c.,...iabIQ ,,1' 11"\+Q~t-·1on m = -,.,2 Qr, +tiot 

...... ..., \..II ,U..i.... ..... \.I.L. ..L...I. .... U '-0-- ...... U"'- I ~,,,,",\.I "'.~ 

K =K{R) =K(m'/2); (3.11 ) 
as a. resul t we have 

http:flL.'1.ct1.on
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o 

(3.12 ) 

where 
Q = exp (- ~ K'/ K ), K' =K(71 - m }, (3.13 ) 

and K is found from (3.11) 
In the sub --ensemble of hindered rotors the variable of ........... 


integration R is substituted by t =p/B. (t 1s not the time heret), 
and we GaIl obtain 

51&!! p2/2 00 2 
o E -t ~4 00 (3.14 )

.{~ii 1- jlt e rMe. L r;fr.-l (2n-1 )2 . 

K1 - T ( pc) 2 !~. K3 n=l [('!ct/2Kp)2 (2n-l )2~_Z2] [1 ± 

-0 2 P
I 

where K =K(plt) an~ Q is determined from (3.13) at m = p2 t-2 . 

For the first t~~e this model was considered in work 
12 

,where 
the solution of the problem was given for a planar dipole, rotating 
L"'1 a periodic potential U ,coa!ffl \1 = 1,2,3.•. ). A. more general 

o 13fi:+lconsideration was given later/bot for planar and space systems~ 
Here we have followed another derivation for a planar system which was given 
. th . 11In e reVlew" 

Evolution of the dielectric spectra of an isotropic medium with 
the tjhange of an intermolecular field is shown in Fig. 2... 
When the potential well depth increases, the local anisotropy rises anJ 
this leads to an appearance of the reg10n of the low frequency 
(Debye) relaxa.tion. The Debye frequency .I of the maximum loss X;n 
is muoh lower than the frequency x-; ot the absorption maximum. With 

~ 

the increase ot the field parameter p the frequency IT also rises,...., 
and the absorption curve xx' (x) is localized near the peak 
frequency XL­

Fig.2a.2& are ca.lculated tor a some "boundary" l1fgt1me re, 
(, ""'" which is equal to the collision time ~c 1 ~ ~ in 
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other terms I .,. Y = Yo. It should be noted that at y < Yo. 
one can regard moleoular reorientation in a state ot a local 

order to be sufficiently proloIl88d, while at y > Yo the 
reorientat10ns are so short lived that l1brat1ons actually 
degenerate, become damped. The last s1tuation (y > Y,...) is 

""' illustrated in Ftg.4 for p = 3. Dielectr1c spectra qualitatively 
resemble typical spectra of strong absorbL"lg liquids. It is 
especially true (see Fig. b) tor a quasi-space calculation scheme 
(1.160) with the doubled spectral function. Note that Ftg.4a, as 
well as Fig.2-3, a.:re drawn according to eq. (1 .16<1), that is -tor the 
quas1-space isotropic ensemble but without doubling of K(z). 

4. Hybr1d Quas1 Elastic Bond / Extended D1.ftus1on lIodel 

In this section we use the approximate representation 1~! the 
spectral function Ktt (2) and KJ. (z) by the following integrals 

....2 
3 exp (~/~l ~ expf h) ~2 nn = . IF' ~- J'" \-, "I I • ~.; 


8 ')t1/2 p3 Iofp(12) 0 -r[4p2- -r2z2] 

(4.1a) 

(4.1b) 

(4.2 ) 

whioh are obtained after a number of simplifications of the 
I - ..... series (3.12) a....?J.d (3.14). Let us consider this 
approximation in more detail. 

Eq. (4.1) correspond to the quasi -" ela.stic bond (QEB) 

approximation. In the latter we retain in the hamiltonian h only 
~W~ ~1~a~ ~Q:rm~ ~~ tho ~Q~l~~ ae~iQ3 ~n~ ~ne ~n+Q~~1~1 TT ~1~2A. 
1.1111.1 ~ ....... U '" 1.1 .... ..1.. l U VJ.. 'J.!..'-- ~'--J";"'..J,J,. '-'''"' ..... .1..'- .............. u ... ~""' 1:''-' u'--•• u ......... v Ou ....... U. 
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t 

~ 
vh= + 

I I I . 
I the normall­ the main term, tne term, res-
z,ec. 1{inet1c responsible tor oonslble for an 

energy harmonic ~ .... l 1c ~ ~ +\:IJ.Jjl8...T9!IlOn l.Jy
1ibrations 


The last term takes into account the dependence of the llbrat10n 

frequency of a molecule on tr...e energy h . The greater is h, the leas 

is the frequency of the per10dic motion. It e.g. the librat10n 

frequency 0 ot a dipole 1s equal to the field B(t) frequency w, 

then for a dipole of greater energy its 11bration frequency 0 < w. 

the detuning 10 - w t being greater tor greater anharmon1city. This 

property leads to the widening of the absorptIon line and to the 

decrease of its peak value. 


o
In th.e hybrid (JEBJED model we taKe into account also the contribution K of hin­

dered rotors to the spectra~ function. This contribution is found at h ~ p2 on as­

suming that in the interval 1: between strong collisions the dipoles of the second 

subensemble rotate freely just as in the extended diffusion model i J i.e. in the 

absence of the static potential U. For this reason the longitudinal and orthogonal 

spectral functions in (4.2) are equal, the anisotropy of the dielectric response bei~ 

due only to the libration subensemble. Thus the (JE8/ED model behaves as if comprising 

two important particular cases. 

At p»1 one can put co in the UPP~T- limit or (4.1) and take K = 

O. Then we get the QEB approximation11 
, 

On the contrary, at a T.tJeCZR. tnterma ~ £,~cu7,or ,/ ie1,-:] ( p<<1) we p(,t t 
K = 0, and take the the range of integration in (4.2) to be C 0, oQJ. 

Then we get the spectral function of th,e planar extended 
diffusion model: 

00 [,:,."
i 

I 
exp .-a'-JdE 

lL(z) = I + 1'''R: z w(z); w(z) (4.4) 
Z - 8 

-co 

~{Thus we ffi.f3..Y suppose that this hybrid model 1s applicable (at lea~ 
for a qualitative descript1on) to-,. any !!e!d ]XJ,rameter p. 

In order to be convinced of the validity of this statement. 

I,ve compared th.e aDprox irnate and rigorous descript ions lcf, Fig. 2b and 3), S88 a Iso 

F .4. ,~t P ;p 2 the difference 
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between both apprcacl1es becomes small (curves 4 in Fig. 26- and 3: 
see also Fig. 4). At small p the abOV8 mentioned difference is 
greater. It is seen from the comparison of curves 1, 2 in Fig. 2~ 

and 3,) .as well as from Fig. 5. Th113, the simple QEB/ED 
model is applicable for a qua11tative descript10n ot dielectr1c 
spectra at any p values and is sufficiently true at p ~ 2 (of 
course, in the frames of appl1cab1l1ty 0i the DWP model under 
consideration). This conclusion permits us °subatantially simplify 
the consideration of the central idea of this investigation (see Sec.5). 

An unusual property of a microscopic model was found when calculations were 

made for a small values of y (y = 0.005) and a moderate values of the field para­

meter p (p about 1), for which the contributions of both subensembles are commen­

surable. We mean the existence of two absorption maxima (curve 3), one due to the 

contribution of librators (curve 1 ) and other (curve 2) due to that of rotors. At 
"­

a greater but still small value of y (y = 0.005) these maxima appel less 

distinctly. The principal significance of this result consists in that only one ab­

sorption maximum is usually characteristic for simple microscopic models, that is 

for models with simple V t{1) functions 1 , 11 . The existence of a two-humped 

absorption curve, shown above, fascilitates the development of new models capable 

of describing similar frequency dependences, observed experimentally. We shall 

return to this point at the end of the article. 



5. Phenomenon 01 'the Narrow Band Absorption 
in an .An1sotrop1c Polar Medium 

RESONANOE REGION. We have found above that when the 


potential well is deep (p > 2) the FIR absorption band is narrower. 


\ _ .F~.6 shows a more deta1led p1cture regarding an evolution 
of a dielectric loss spectrum due to the field parameter p or the 
life~t1me ~. The two values of p and y are taken (p = 3.5 and 4.5; 
y = 0.1 and 0.3). The second pBL~eter y is chosen au!flciently 
small since at ~ater values of y a stror..g widening of an 
absorption band occurs . In F1g.6 only tll.e part of a loss spectrum 
is presented rela.ted to the FIR region., In this region one may 

dedu~e the SF frequency dependence '-Cx) since X*(x) GX-(x).N 

Let Ax be the width of the resonance curve X*(x) at the level 
1/2 and Ax be the same quantity at y= o. The latter (f:,xo) may

o 
be called the mtntmum. ban.dzJJtdth. (in units 'r1~w) since at the 
infinite increase of llfe.:t1me 't (as y .+ 0) the parameter U 

o 
remains non-zero, yet sufficiently low at large p. Correspondingly 
the term "! tmttlllJ I tne" (for II = 0) is a characteristic of a 

classical ensemble 01 dipoles. In the present investigation we disregard quantum 

effects. When the field parameter p rises, the minimum line width 
Ax~ decreases and the normalized frequency x_ of a loss peak 

~ ~ 

approaches the values 

x ~ p} {orthogonal} orientation of a 
m for t:h.e radiation (5.1 ) { xm /IIi 2 P parallel fIeld " 

Thus the loss line for a parallel orientation may be regarded as a second harmonic 

while the first harmonic corresponds to the orthogonal orientation. 

At Y = o.i the lines, shown in Fig.6, are close to the limiting lines, while 

II . 0 3 I . 1 f F . 6curves Z ('c) are considerably w1der at y = •• t 1S a so seen rom 19. 
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that in the case of narrow lines the approximate and rigorous theories agree well 

with one another. 

T:::e val~es of' para.-rneters Ax, K~ &.'1.d xm ,)f reSCI1Bllce lines 
are presented in Table 3 for the three y values 0.05, 0.1 and 0.3 
in a wide ~~ 8f the f!eld parameter p. If P »1 then at the 
orthogonal (.L) orientation the loss line is much more intense than thAt 
at the parallel (il) orientation. This property may be explaLl1ed by 
the fact that at .J.. orientation molecular charges move almost along 
electro~E:tlc fi:21d 1L118S Qnd SQ radiation spends more power than 
at u orientation. In the last case charges move almost normal to 

G"~ ~ the E(t) :1eld lL'18s /\consequently a small torque ~ x I(t) results. 
These considerations are confirmed formally by the Gordon's 

sum !'1Jle 

00 
(., _ /("'P2 '" \IT - r [,,!,!Ii I c., , ni.', = 
\ .''':t~. J J" - J -'" \\..Wl ~ I 


-00 


2 .(
where' n denotes the integrated absorption. Indeed, if p» 1 , then (0 > »('V

V" 
and n~» nit' the relevant statement in the previous paragraph is established. 

We see also from Table 3 that 

l:ne (leereasesa) the relative width "1' = l!,;I/X of a resonance m 
5! .67 W11~18 a1:when p rises: at p = 0 we "nave fmin ~ 

1#-&-----.( 1'1i ~.09 ar.d j~in ~ 0.13,· 
~ 'min m 

b) the maximum absorption, which 1s proportional to the product 
xmK", increases for J.. orientation with the !1etd parameter p; tor It 

orientation this product goes through a maxlJnum and then, at large 
p, quickly approaches zero because this type of interaction 
vanishes; 

c) when p rises, the resonance loss or absorption line w1dth Ax 

= ~~w goes through its m1nL~ value while the relative tL~e width, 
we repeat, decreases with P; 

p 

rises. 
T -rn-f \J' ;:.. d e +~o "'T"0l"111j:"!!1C",T ne~enrlo"'ce ,,,,,1' +l,o ..,...c.n 1 ""laT'f~ ,,-f.:..n t ""0. ,~ , ,- ' ...... "'" .....-''1. ..................1 '-'I.!'" ...\o.L."""",.j. ,.J.... ;.,.1.,1.1,.00 ........ '... ..t.. !-, ........ ',J,,-- the 

spectral function is shown. If P is large, the region wllere K' ex) 
substantially c~s is concentrated near the centre Im of a 

http:1.,1.1,.00
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line. Por the main 108S mechanism (at the orthogonal orientation) 
the amp11tude of a ct~ K~ in a resonance region is much greater 
than the value K;, corresponding to x = o. 

DEBYE RELAXATION. For the same example as in Fig. 6 (p = 3.5; 
4.5; 11 = 0.1; 0.3) the low frequency loss spectrum is shown in FLg. 
7. Solid lines refer to the complex suscept1b1l1ty obtained from 
eq.(1.8) for the hybrid QEB/ED model; do~hed lines re!8r to the 
same quantity obtained for the fixed (x = 0) spectral function, 
that 1s f for Ki (ty), K: (iy) or L" (iy), the last- being required for an isotropic

i
ensemble). If 1:1 decrea.ses, the relaxation t1.rne 't

D 
increases, si.."1ce 

the Debye loss maxtmum shifts to lower frequencies. For a parallel 
orientation the time 't

D 
1s much greater than for an orthogonal one: 

't~ » ~t ' it p ~ 2. (5.3) 

This property may be explained by the following way. At a 
p:rra7.le7. orientatton in one or ,the other well there will appear some excess 

concentration ON of dipoles or1ent1r~ along -- electromagnetic field 
!(t)~ if the field frequency 1s not too great. This excess ON 1s 
due to s"tochastic forces which disturb the thermal equilibrium. It may be noted that 

< ~egular torques due to a potential U(~) cannot throw 
particles over their potential wells. When the !leld Bet) is 
switched otf, the concentration of dipoles will approach the 
equilibrium i..."1. all wells. In order to reaC!l the stea.dy sta.te 
distribution thi "excess" particles must turn th1ou,ha considerable 

angle,Av ~Qn90
" 

+ne ~e1avatlon time ~D 
U"''-''V
~Q'T ~Q

'-"- 'J~. ~~~m
... • 'CJ1lLeN .... ~f\r, 1\ "'...... • ..QA .&••U. \."n ~QQt 

'-' 

mathematical point of view this tact is due to the great value of 
the dispersion al=3<q~), since the mean directiorr - cosL~e (qn> vanishes, 

For a deep well with U large and K small the transfer of o 0 

dipoles trom one well to another is not eaSy.,~..at resul +;8 1 ~ a.n 
increase of the time ~8. Note, th~S ~~t rises abruptly with p~ if 
p»1 • 

At the ortr~gonal orientation the relaxation time ~L~ 1s less 
+hon "..U c!'i"'''e rilnti1 QQ 0""'0 to 1-'1""" f"I'" 1 QQS Q'nO"l Q in nrd.Ql'" 

*-I 

til "r'IOQf"Il VQu ...~'" "'D u.i...l..I.v \J- ,t''-' .......... 'oJ ~"" ... I..i..i.i.~ ....,........... 10.1 1...U.""o~ ......... .r. \J" ....... ,",v ....... ..,'...1" ......... 


the excess eoncentrat1on of dipoles appearedL"'1 the direction of 
the field !(t). The value of this excess is small since E ~ z. 

It should be noted tr~t the properties (5.2) and (5.3) were 
. t t' preVlOUS 13.14 an 1 'dt a ken ln 0 conSl'd era lon . 1y f or ,. . examp e 0 f Wl er I'lnes 0 f 

resonance absorption. 
In tsotropic media a dipole L"'1teract stmultaneously with both 
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field components, EJ.. (t) and Eft (t ) , since the symmetry axis is 
inclined at different angles to the direction of electromagnetic 
field. As a result at p » 1 the relaxation time ~n is less than at 

41 

Ii - orienta.tion but greater than at J.. - orientation. 
It 1s also seen from Ftg. 7 that for sufficiently frequent 

collisions , or equivalently for 8ufficiently- large values of y the Debye loss 

maximum at .L orientation may almost reach the resonance absorption 
region. Because of this the approximation of fixed spectral 
function (K == K(ty), or K == L(!y) in an isotropic medium) may not 

be valid. However in our examples the substitution of K(z) by K(iy) and L(z) 

by L(iy) is admissible, as we may see from the solid and dashed lines in Fig. 7. 

"..-.

Thus, if the lite_time rr: is gr-est, or equivalently if 1.1 « 1, 
the agreement between the theory and expertment may be obtained, 
....if-. chosen 

a) theVvalue of the field parameter p permits us to obtain 
the correct position x of the resonance loss peak. and m 
s1mul taneously the line width. 'W'~. may note that for small y the linewidth is 

close to the minimum width b:c );
tt" 0 

b) the lifetime chosen or the corresponding value of y allows agreement 

between the theoretical low frequency spectrum and the experimental one. 

The a) criterion demands the agreement of the theory and 
experiment for two parameters K 

!I' 

a."1d AX by fitting tl1e only free max 
model parameter p. Indeed, if we want to describe also the low 
frequency spectrum we need to fit I1fe~tL~e ~ or y for a 
prescribed value ~D. As a result, the applicability ot this DWP 
model to concrete molecular systems 1s restricted. We sr~ll t~~ to 
this quest10n L~ the next sect1on. 

In Fig. ~ we have a graph of the t' - dependence On the relaxation time 1:"..D' 
or more prec1sely the dependence of l.J> / 7 on T' / /. The graph has a minimum 

at some critical value Ycrit which divides two regions of low frequency 

relaxation. Note that Ycrit is of the order of unity and depends on the value 
of p. Thus we have: 

I. The region where collis1ons are not extremely frequent and 
Y -:: Yorit; the relaxation time 'tD decreases along with the decrease 
of 11fe:=time 't; 

II. the region of ve~J frequent collisions (y ) Ycrit), ~ 
which the relaxation time ~D increases if the 11fe::t1me ~ 
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decreases. In the lL~lt ~ ~ a the Hubbard relation is satisfied 

~D~ = I ! (2~T) at y» 1. (5.4) 

An analysis shows
t{ 

that in liquids only the first region may 
agree with experimental data and the most frequent collisions (near 
the point Ycrit) approximately correspond to the temperature near 
boiling point / the most shallow potential well. In the QEB/ED 

model we have the similar dependence of ~D on 't in the reg10n I 
(see Fig.8b). But in this model the curve 'tTl ('t) has no point of 

.J.J 

minimum, so, the QEB/ED model is not applicable at very large y. 
More detailed data, related to low frequency spectra (see Table 

4) where all calculation are given tor the rigorous theory (but in 

the approximation K =K(!y) for anisotropic medium and L = L(!y) 
tor isotropic one). Us~ the formulae of Sec. 2 and Table 4 one 
can estimate, L~ particular, the static susceptibility Xs and the 
quantity Xoo. 

6. On the Applicability or the Model 

to Calculat10n 01 D1electr1c Spectra of Ice 1 


In Table 5 the formulae are given in the quasi- elastic bond 
approximation, wr~ch permit~to estL~te specific parameters of low 
frequency (at x , In) and of high frequ1ncy (at x ~ p) dielectric 
spectra. These formulae were obtatned

t ~ for the QEB 
approximation where it was assumed that: a) the field parameter 
p»1; b) the m1nllrr~ resonance line width ax and the peak position 
Irn are found for the limit 't ... 00, that 1s, for the I1m1ti11..B line; c) 
the parameters of low frequency (Debye) spectra ~~ found for 
fin1 te but large I1fe:'='time roc (at y < < <-i:J ) . 

Let us ch~se the temperature equalYOoC, tr~t is T = 273.15K. We 
take molecular constants of isolated molecule ~'""= 1.84 D, optic (in 

v ~ 


t-hQ T"Q ""OC1"iil'n' ""o"'~"t-"'\Je i1"1nQ'V n - 1 r:«) t-h';::) ~,Q"'H~"'t-'T r. - 1 C1" •.~m-""" 

", ... J.'- ..1...'- ~ '-O"&"V.r.J.1 .&. ..... 4 \..aV u ..... V .......4_1M_ '''00- 1. '-IIW , \,/ ....IM """........u..I ..... uti to" - • o· VU4 , 


molecular mass 11 = 18. Then the normalizing para.'Ilster Tf :: 
r T I (?b IT'\ 11/2_ A 43 . 1(1-1 4. q tho n-f nt""ll Q mr'lm,on+ i I .. ,., rtt""llo,... i'l"i ri 
L ... I \ foJ"'''''c'' I J - "':1:. • I '-..I \oJ , U .r.J.'- ...........,tJ""" ..... '-' a~"j,"""•• u 1"*.....",4 J:"'-' ..... .......,. ..... ..\.. ............U. 

~ ~ ? 

13 ~aken in the form tJ. = IJ."Cn;;v + 2)/3. Tr.i.en G = tJ.'-N"p/(3&.aTI)=
~ ~_ 

1.56 (N A - is the Avogadro number). L~ Table 6 the approximate
..... 
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experimental - values of parameter tor ice 1 are presented; 
the band near 830 cm-1 is denoted as C, 8w.lld the bar...d near 226 cm-1 

as R (the splitting at the second band is ignored; index "m"refera 
to centres of both bandB and ~ugscri.pts "min", "max" refer to the 

quantities, related to on the level 1/2 regarding the peak loss 
value ell' in these bands. Using experimental data [8] and the 

2equatio~ s* = n - at=- + 21nz, we may tind the band width 41) from 

the frequency dependence 8'(V) = 2 n(v)~(v). 


Using these data, we f1nd: 


At £: ~ = 0.05, x = 6.68 , Ax = 2.13; (6.1 )

"'In m exp

At R: ~ = 0.058, x = 1.89 , Ax __ = 1. (6.2)
"1n m e....j:o' u 

For the descr1pt1on of the dielectr1c behav10r of ice 1 we 
introduce two subensembles of molecules, like in case of liquid 
water'1'" : [Ll, with less, and [Rl, with greater rotational 
mobility, to which R - and C - bands cOITespond in the FIR 
spectrum. As in thd work

1 
we suppose, that (Ll-molecules are 

responsible tor the Debye relaxation of polar medium. The above 
theory 1s applied aep::rrately to C- and R- regions of the FIR 
spectrum ot ice 1. 

Using the fo~Jlae of Table 5 we get the following est~t1ona 

of the field parameter p and minimum line band Axo: 

At c': p = 6.7 ,Ax~ = 0.074; (6.3)
\J 

At R: p = 2, Ax~= 0.235. (6.4) 
\J 

Thus the esttmated minimum width of the £-b&~d is approx~~tely 30 
thel/1

times lessvthe experimental value Axexp ' The quest10n arises, 
whether the loss curve can be widened due to the finiteness of the 

~ -life_time 't so that it may cancel this drawback. The 11fe__time 't we 
may estimate using Tables 5 and 6. Calculating the Kirkwood 

2 2s - n 28 + n

correlation factor 8 = 4ID GO 38 QO = 2.21 ~ we find that the 


s ~ 
rnormalized collision frequency y is extremely low (y ~ 4.1 ·10- ). 

Hence the theoretical width Ax practically coincides ~,th the 
minimal one (Ax~). So, it the DWP model with the profile COS2~ 

\J 

were employed it would seem impossible to remove the difference between the theore­

tical and experimental line widths Ax' and A)t... A possible way toexp 

improve the theory is to change the profile of the intermolecular potential. 

The ~ituation is different for R-ban~. The estimated value of 



the p-paralleter is about 2, and the in" 1 - ~ m llffiUIn ine' _width t::x(j 1s 
seYeral times less tl1a'1 t.he 8 Ynerimonto 1 l"'O 111Q ,\..... U J/ '-' 

uo. .... 8.< - -~ ~ c; ... 0..... ~1..6.k ......... u:.t:.::to~. S".n~.r:J' . •• ..i.e ;-ic +- rd'
v. 
Table 3we find tr~t the theoretical R-band may~-be widened by 

taJei..l'1g :.I e/ O. 3. Then accord1r~ to~r-:..ble ..4 the
-- relaxation tL~e will 
be in the order of Pico~conds. Indeed. we have n _N .. . ~ 0.038 ps; so, putting 

from Table 4 the value f..,'.f>/'t = 21 , which corresponds to p =2 and y = 0 3 

and multiplying the result by g = 2.21, we obtain: 1;'1)~21g,,, ::: 1.8 p~" 

Consequently the corresponding wave length .). _ (2 '-- i II 


. . .:» - 7\C~.!I)) ~ 0 .. 3,cnI , 
The relaxatlon tlma for R-molecules is thus several times less than its value for 
liquid water but it is many orders of magnitude less than the value of ~ for 
the main relaxation region in ice 1. ~ 

At last, let us estimate the proportion r of molecules 
T'le>QT'\o1"ll::llb' Q fl"'rt th1Q '0 hC1"1d ~T,....t1nH" that at p 3 01"ld Y 
..I. ""..t:" J.~ -..., - v_ <>...... /\,.-ucw..... • .1.,'..1'" "0 u • ..I.LI. a = u.A.... = 0.3 the 
Table 3 gives L;ax ~ (1/3)K;ax = 0.816/3. Doubl1r~ this value in 
order to account approximately/\. the S03ce statistics we obta.in?'fCr- .. 


y"(expe~ent in R) 0.058 

. !-\1r '''In " = :: 6.8%. (6.5) 

? XN ( i""'-2 11::;: n. ~ ,\ .., I""'.. T. " ( 41'"\ -? f -- 0 3) 
.... < m '.1;'- 'i:1 - ~ ..... '-'..&..tma.:x:,::-' - 1>.1, ;,j ~ '. 


LL 

, 

is t-o 

An l.rnporta.'1t res\). t of these estimations \ set oneself th1nld.ng 

that the proport1.on of H20 moleeules lIith greater rotational 
mobillty !18ain lee the same order of magnl tUtie 3.:3 1.1'1 liquid water 
in spi te of more regular structure of ice ,3.lld, consequentlY the less 
proportion of tfdefeets" of structure -t:ha.l"l in water. Indeed, 
,tC " , the procortlon c: [RJ molecules in 

1,4 I ­

In'C1-e-"" 
I.. 

; c::l -~uout 1i nJl!
FfJ. 

Tr;r1......»""-"""""-1 1'Q..... ..... t' y t'h'f:~A. .. .J..wQ ....... ...... ~ ..;.. 
,""Ol'"l ~.e 

_ 
''''iTl-f'-i'?''l'rf"ied _.-,,,.::1. ' fIt,. 

hy..&. .w r dtUl \... \...<....,....... t"f'\nf'-:11q~J .. J. _J 
,-)'1"'\ "",~.L. ~_'-'''J''!-....L..- .L,£
........ 


8
tIle followL."1g ezper1mental fact : in ten:-d ties 0 f R - D,'3.rlcls are 
!1.early equal in 1::e 1 and. liquid water. lI:hE- ':;ctained ·~e8n.1 t :;3.!l be 
reformLJ.ate1i as t;:..llows. 11he rotational :' t:'RflSla.t1c)nal motion 
cor:tributlng to the R - ba.n(l in FIR spectra:' regiit' actu3J_l~t 

not frozen at water - lee trar.J31tlon in spite !-)r>"~1jbstar..t1.al 
+-ho.. 4.. ...._lneT"ease viscosity 

relaxati:)n time. Henee, most probably, 'fRl - molecules present ttl8 
i;."1Lerent property :Jf B.-bond itself and hEve TI'j direct 
the ":iefect3" of i1 - bond net .. 

Conclusion 

i
/~ond dxtend.ed !J.lffu3ion 

http:dxtend.ed
http:r>"~1jbstar..t1
http:proport1.on
http:th1nld.ng
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model may be applled for a qualltatlve analysls of a dielectrlc 
relaxatlon described by a rigorous planar double well potentlal 
model with a proflle UOOOB2~. 

2. When a conservative f1l1d parameter p = (U IRaT)1!2 exceedso
4, the FIR absorptlon spectrum results in a narrow line and u 
great Debye relaxation time 'tn. In thls work the notlon of l.(:iti"~ 

absorpt ton 'Z tne Is introduced, which has the minimum wldth and 
corresponds to the l1mi t 't -+ CI). If 't

D 
is very large, it Is the 

l1mlt'ln~ l1ne that practically descrlbes the FIR absorptlon 
spectrum. 

3. The fleld DWP model can be applled for the descrlptlon of 
the dielectrlc loss spectrum 1n the translational (near 200 cm-1

) 

band of hydrogen-bon~jystems. The comparison of ice 1 and. water 
spectra set oneself th1nk1ng that the very existence at 
[Rl-molecules with greater moblllty is due . to the hydrogen bond 
Itself, and not to the "defects" of H-bond net. 

4. The fleld DIP model wlth a proflle UOOOB2~ Is not appllcable 
to tl'...e descriptlon ot a I1brat1onal (near v Co! 800 cm-1 ) band. ot lce 
1, since the theoretical absorption line 1s 4too narrow 1n this case. 
Comparlson with the confined rotator model implies the idea 
that both librational and translational bandsmay be described in 
frames of a new field model in which the potential profile U(~) has 
the form of a "hat": flat. bottom, abruptly elevating w~ls and flat 

edges where U depends weakly on the angle tr. The explanation of this idea was 

given recently15,16. The existence of a two-humped absorption curve, which was show' 

(Fig. 5c) for a cosine squared profile 111 ~ , supports the idea that both absor­

ption peaks, eLL and cL.fl,.' can agree with experimental data for a suitable15 ,16 

potential form U ( t). 
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CAPTIONS FOR FIGURES 

. 
Fig.1. n:,9tribut!on functions of dipoles over frequencies ot 

orientatlonal motion of librators (a) and hindered rotators (b). 
a: the tield par3IDeter p :::: 0.5 (1), 1 (2), 2(3); dotted lL~e 

the asymptotic der8nden~e. 
b -. P :: r1 nr:; (-It) r\ -f (? '\·..l.U\J \i , ...... 1 , ....1,' 0.5(3) md curve 

Fig.2. The frequency dependences of the imaginary part of the susceptibility 

(a land the normalized absorption (b). The field parameter p = 0.5 (1),1(2). 

1.75 	 (3) and 3(4). Isotropic medium. 

Fig.3. The frequency dependen(e of the normalized absorption coefficient. 

The 	QEB/EO model. All denotations as in Fig.2. 

F1g.4. The loss susceptibility (1) and normalized absorption 
(2) as functions of frequency: the rigorous theory (solid lines) 
and QEB/ED model (dq~h ad 11n8s). a - for q1lBsi-space ensemble; b 
the same but with doubled spectra.l function. p :::: 3. y = 2. 

isotropic ~~~. 
Fig.5! evolution of 3 dielectric 1088 spectrum due to the.&; .. 

field parameter p tor a relatively shallow potential well: p = 0.01 
(1); p = 0.1 (2); p :: 0.2 (3); p = 0.3 (4); p = 0.4 (5). a 
,"'C1'f"'!~1H:J +hQO~Y h - QER/ED m....."e'· f/·- 'l'• .4()v. vu.a.;; Ii"""'" • , ..., , 'v",,"" ..10., f:j - d .... • 

(C) : the plot1C. \. lx.), calculated for y = 0.005, p :: 0.75 (curve 3) and y = 0.05, p =0.85 

(curve 4). Curves 1 and 2 show the contributions of librators and hindered rotors to 
curve 3. Rigorous theory. 

Fig .. 6. The evolution of a. narrow loss line Kit (x~ due to the 
f1eld "'l':)T"'omo+er '0 .:lnd t!"'..; tho lO+ro-r:r:r /"'Itf"'ll' i ~i 'J" !ren uenf"'l1 fl- a h for- -	 • X"...... ~~'- .'" ..~.L • • ... ,.\;#..., " ./,.~ \JV .......... ..1..\...... ...';. 4\,.;.1 i:I. ,..,­

the 	parallel orientation; c" d - for the orthogonal orientation. 
QEB/ED model: solid lL~es tor y = 0.1, dots for y = 0.3; 
rigorous theory: dots for y ::: 0.1 and tr1ar1g1es for y = 0.3. 
The 	 ..........10..,.'" e 1 d pD~meter p -- 1=\ (~ ")'""" '.:;;J,.i..l.,","- .A ...., 'b I •
\J.....,..:lr," 	 Q,.,,-i \, d'QJ. 001.11. 	 -r • ~ 

d, e: the real part ot the spectral function K' (x) at p = 4.5 
for y = 0.1 (solid Lh~e) and y = 0.3 (da~ed line) at parallel (e) 
and orthogor...al (f) ortentat1ons in fr;?",,"Yles of the QEBlED model. 

Fig.7 .. The ~~eque:1cy dependence of the 1039 susceptibility for 
parallel orientat1011 (1). isotrop1e ensembl~~ (2) and orthogonal 
orientation (3). Solid lines - fer the spectral functions K(z), 
L(z); d.Q~,ned lines - for tIle spectral f'unct:1:)ns K(ty), L( !y). The 
field parameter p = 4.5; at y = a.~ (3) and 0.3 (b). The QEB/ED 

model. 
Fig.8. The dependence of the relaxation tL~e ~D on the life 

t1me 't for isotropic dtpolar ensemble. The field parameter p = 5 
(so11d. line) 9....TJ.d '!J :::: 2 (df-kshed. l1n8). a: rigorous theory; b: OEB/ED 

model. 
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v v 0 

Table 1. The parameters r, <~>, <p>, <p>, Yo 
v .~ 0 0 

and distributions I(p) and f(p) 

'Or.)~._ 
~ 1:&.1. C4 For p »1 For p --+0Genenit caBemeter 


~n Q"I"'I"'\ (""r.."/I') '\ ..• 
 4phJl:-' ""-J:I I:" '-I 

~--/~2-1-(-p-2-/Ij-, f £, l ci.'1l ~/2 
n. 0 1'-1 0 "I 

r 

?t;1/2 

2p 

p '1tp/4 

-1/2'1t 

.., v 

!(p) 


where ~(~) is found [rom the equa­ x exp[-4p21] 

tion p = ~ / (2K) 

o 0 
f(p) 

where m(~) is found frem the equa- I 
tion p = ~ P /(2 iffi K(~) I 

Deno­ C = exp(- pF m) ; R = exp(- p2 m- 1
); m = R2; m' = 1 - m;

tati ­ v ~ 
o 0 

enB p = I UQ!("kBT}; i = P ,/ p, '1 = pip 
~--~----------~~--------------------------------------~ 
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Table 2. The estimation ot the steady state parameters. 

In the braokets [ ... ] the asymptotio estimations are given. 


The para­
meters of 
a medium 

<~> 

'V 
.". 
r 

0 

r 

II 

. 'V 
...... "'" .. ..,.;' 

0 

<p> 

The oonservative !ield pa.~eter p 

0 0.1 0.2 0.5 1 2 5 

0.868 	 0.867 0.864 0.841 0.759 0.493 0.179 
[0.886J [0.443J [0.177 ] 

a 0.0733 0.146 0.361 0.676 0.977 0.998 
[0.072] [0.144] [0.359] [0.718] 

1 0.927 0.860 0.653 0.341 0.0266 0.000 
0.180 0.180 0.183 0.203 0.278 0.582 1.575 

0.0769 0.154 0.391 0.817 1 .838 4.96 
[0] rit 079' [0.157 ] [0.393] [2 ] [5]LV. J 

ra ~641 0 hil6L • .1 J .....v ~A3 0.760 0.943 1.26" v."" .... 

y = 0.05 
Table 3. The parameters of a resonanoe 106S line at y = 0-1{ Y = 0.3 

The parallel orientation arttgonal orientation 
field~----------------------~-------------------------

P~. 0.1 0.5 1 2 5 0.1 0.5 1 2 5 

1.173 1.29 1 .11 0.171 0.0046 1.173 1.305 1.79 2.14 0.827
Kit 0.96 1 .05 0.89 0.131 0.0044 0.96 1.06 1 .31 1 .67 0.769 max 0.68 0.70 0.55 0.069 0.0032 0.68 0.728 0.774 0.816 0.415 

0.66 0.724 1.2 2.09 9.55 0.66 0.724 0.87 1 .82 5.01 
0.79 0.87 1.2 2.09 9.55 0.79 0.724 0.87 1.82 5.01xm 
0.79 0.871 1.26 2.18 9.55 0.79 0.832 1.05 1.82 5.01 
1 .10 0.88 0.63 0.493 0.88 1 .10 1.0 0.56 0.336 0.677 Ax .. rtf7•• .a:.. I l • '-' r1 .21 0.97 0.78 0.61 1.35 1 "'1 0.79 0.5 0.677 
1.33 1.24 1.CIT 1 .01 1.35 1.33 -1 .31 1 .11 0.85 1 .113 

~ 
X-m 

x X':n max 

1 .67 1.22 0.53 0.24 
1.53 1 .12 0.65 0.29 

I •1.68 "'42 0.85 0.46 
0.774 0.934 1.33 0.36 
0.758 0.914 1.07 0.27 
0.537 0.610 0.69 0.15 

0.092 
0.141 
0.141 
0.044 
0.042 
0.031 

.. h.r'7 .. 3R 
1 • ...., I .. '-' 0.64 0.19 0.135 
1.53 1 .49 0.91 0.28 0.135o . .,~~1 .68 1.58 1.06 0.47 .~.a:..~ 

0.774 0.945 1.56 3.90 4.14 
0.758 0.767 1.14 3,,04 3.85 
0.537 0.606 0.81 1 .49 2.08 
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Table 4. The dependenoe of the Debye relaxation parameters on 
the field parameter p (the rigorous theory). 

:~:~e J1 line ~ at y = { ~:~5 1 
lo~er 0.3 J{

. .. 

! I
!para- Field parameter p IImeter i 

, Ii O.Q{1 O.I 0.2 0.5 I 2 5 

I a 
I 1 .5 1.504 1 .515 i 1.59 1.86 2.55 2.94H a 1 .496 1. 485 1 0.061

t ..L I 1.5 1 .41 1 .14 0.453 

I A: anisotropio mediuml 
I 1 .373 !1.323 

1 
1 •215 0.887 10 . 444 0.436 10 •0003 

I Xu 1.259 11.233 i1 .. 162 0.869 10.440 0.159 \0.0003 c I 
10 .. 8820.914 1°. 906 0.731 0.402 0.0422 3 f 10-4 

1 .374 1 .404 1 .422 1 .373 1 .113 0.450 0.0613 
K..L 1.26 1.289 1.320 1 .322 1.098 0.448 0.0613 

0.914 0.922 0.944 1 .023 0.964 0.434 0.0611 

0.0637 0.0901 0.150 0.354 0.710 1 .251 1.47 

XN fG 0.120 n "3~ o 4'77 10.362 Ii 710 " sj I:. ''J .. 4'7 
Dil ''''''. I ..I • I , I....... I I '­ I .'-..1 ..... •• I 

0.293 0.299 0.317 0.431 10.731 1.252 1 .47 

0.0629 1°00463 0.0316 0.01689 0.0115 0.0019 6.10-7 

IX~/G 0.120 0.0823 0.0422 0.0190 0.0026 10-510.104 
0.293 0.287 0 .. 270 0.191 10 . 0863 0.0098 10-4 

i 

I 'J1 8 .... ')? 72 :.)4 05 35.95 IR to. 116.9 I 17944.8i'- I .1..10 '-'-a '­ • J I ,-,4. ,_: 
JITU 1~"1 a ! '1 ':) ':) 

113 •04 1R ":l4 I If ') ..f 585.9 lR97~1liD "I 1 I. J j I ...... "­ '_ • .J I ..-c... 'T !'-' ..II 

15.54 
I 

5.47 15.73 7.23 115.5 201.3 '29936 
21.83 121 .)2 120 •89 20.5 I 20.4 20.2 20 
11 .9 111 .60 111 •25 110 .64 I 10.35 110.12 10.00 

tt;~ /11 5.47 5.41 4.58 "'. O~ 3.48 13 •35f5.24 I 
..; • .I_i 

i 

B: ~Botropio medl.tml \0 = 1) 

0.916 1°·909 1°·879 1°·753 1°·519 i0.164 \000205 
L 0.840 10.841 ,0.827 ,00730 ,0.513 10 •164 0.0205 

0 0.609 0.609 0.609 0.585 '0.455 '0.159 '0.0205 

0.0422 0.0455 0.0606 0.123 0 .. 240 0.418 0.49 
I Xl: /G 0.080 0.0796 0.0863 0.135 iO.244 0.418 10 .49I D . 0.195 0.195 10.196 0.208 jO.272 0.421 0.49 

l't" ITJ 
21.84 22.00 122 .70 2b.b 

1
38 • 5 121.7 973.5 

11.9 11.9 112 •09 13.7 19.5 61 .0 487
I IJ 5.47 5.47 1 5.48 5.7 I 7.33 21 .0 163 
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Table 5. Eatim.a tion oi the parameters of dieleotrio spectra.: 
model 

T 
'Q 'ffho .,....Q1~_r..+-..;.-,~ ~Q ,..,., 

.
.-.""",A. The resonanc.e Bpe~trtlIn I Detye 	 .....e,L.·......I.J. ...... .a..... .... .........~..:...I.I.a..\J... .I. 


re il 	 "6",,4
D IJ;J -1 

1 rr.l. 1= (l'1!'1,' f 	 l
\0' ~ In- { "D 	 '" 

1+ ":>,,,,2 
~ ....1:" 

iT" J l 
, 	

J1"..." 
J..t 

BrT ., . 
• '1'" 8p2 

(X' ) 
r (K~W,;!} == {X~ } {31 ,,,,.l. 	 ? 

7"!:i!i'* A. ... == 3/(2P-) }
'''0 0t L~!.n·J.. 

1+ 1/(2p2)Xs 
CX~) 3(g - 3 ~) 

min 

.1.1 II 
(" 

I 	
2~}{·v '·· 

(X ) .. = ":) 	 2G- \A.D}L = 2p2 UCg-1 )1t } {t3/ - (m II 2p'- + 1 
X~ g- ~ 

lo.J 2rT= 
(~ ) 

'" {J/rp2)}
1	 ..,(X~/ 1=2p 	 G- { .") ,!,",~c.. 

.... t"'{~;; } .: 	

I 

~ -L- J 
_ 0 

Table 6. Dieleotrio oonstant of ioe 1, used for estima.tion of free 
parameters of the DWP model. 

8 8 i 10 
£, - band [81 Debye spectrl..UIl [10]R_-_b_aIl_d_[_8_]__ ,1 

s· - 0.73 I 

m 	 :8 = -- I :: 0.098 .. 1 iv = 800 CM- i 
'1,1 = 226 cu­m m 	 I r .., 


i~~ == 12~ 64.I-ro- ~ 

;"'n••- I 

,~ ''Ill 


1 	 '1 
1.1.1 LCM- ' ! 	 , ~ 

I ~ ~ exp(-22.18;J=2.18*10- W 
C 

CI4_" 
I CM-''" =248 _ - ~~ R ~o~~ - 01 ~AI ~~ - ~1.~ '~YW - JI ..... ~ .. 

t1l = 255 CU- " l Av == 1I8 CM-' ' 
::: 3.I5I eoo 
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