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Abstract 

Using the formalism developed in (1) dimensional crossover in an Ising-type system below 
Tc(L) is considered, Tc(L) being the critical temperature of the finite size system. The 
crossover considered is that on a d dimensional layered system satisfying periodic boundary 
conditions and of size L. Effective critical exponents 6eo- and pelf are introduced and shown 
to crossover between their d and d- 1 dimensional values in the limits t -+ 00, eL -+ 00 and 

t -+ 0 respectively, eL being the correlation length in the layers. The effective exponents are 
shown to satisfy natural generalizations of the standard scaling laws. L dependent, global, 
non-linear scaljng fields which span the entire crossover are defined and a scaling form of 
the equation of state in terms of them derived from an L dependent renormalization group 
equation. A universal crossover equation of state and effective exponents are obtained to 
one-loop and shown in the above asymptotic limits to reduce to known results. 

• and lost. for Theor. Physics, University of California, Santa Barbara, CA 93106-4030, U.S.A. 

One of the most striking features of continuous phase transitions is the appearance of sin­
gularities, the singularities being associated with fixed points of the renormalization group. 
The conventional renormalization group - RG - formalism applied to critical phenomena is 
primarily concerned with the description of the non-analyticity at such singularities. The 
RG is well understood in its linearized form around a particular fixed point, and in a field 
theoretic context the well known Wilson-Fisher and Gaussian fixed points are also well 
understood. In all this one only requires knowledge of the RG in the neighbourhood of a 
fixed point. It is, however, very common that a system may exhibit different asymptotic 
behaviours, characterisitc of two or more fixed points. In such cases one requires more global 
information about the renormalization group. This is an altogether different proposition. 

Systems that posses more than one fixed point can exhibit crossover behaviour between 
the various fixed points. This crossover behaviour is important both theoretically and ex­
perimentally but it is difficult to treat. One can obtain this intuitively in the following way: 
physical system characteristically look very different at different "scales" exhibiting different 
effective degrees of freedom. For instance, for systems exhibiting a bicriticaJ point one can 
see a crossover between degrees of freedom possessing an O(N) symmetry to those p0ssess­

ing an O(M) symmetry as one changes the scale of interest relative to the anisotropy scale. 

Systems with O(N) and O(M) symmetry are in different universal classes and hence p0s­

sess different fixed points. Some other types of crossover are: crossover in uniaxial dipolar 
ferromagnets; croasover between critical, mean field and Gaussian behaviourj dimensional 
crossover (the subject of this paper) etc. They aU exhibit the property of having different 
degrees of freedom at widely disparate scales. A general discussion of crossover behaviour in 
a RG context can be found in (2). 

An extremely important feature of critical systems is the dominance of fluctuations. The 
RG was set up to describe such strongly fluctuating systems and does 80 in two ways, firstly 

by relating via a symmetry property, RG invariance, a system with strong fluctuations which 
is difficult to treat to one where fluctuations are not so important which is more tractable. 

In its IDOIt iDWitive Kadanoff-Wilson formulation one thinks of course graining the degrees 
of freedom d the system. In light of the above comments about crossovers this immediately 

begs the qDeItion of what degrees of freedom one should be course graining. Obviously, 
these are tlw efJeetiYe degrees of freedom which provide a good description of the physics 
at a particular scale. In other words one would wish to use a RG which action as much as 
possible was a faithful representation of true scale changes in the system as generated by 
dilatations and more generally conformal transformations. 

A crossover is typically induced by some "relevant" parameter e.g. dipole-dipole inter­
actions, finite size effects etc. The effective degrees of freedom of the system wiD depend on 
these parameters, hence so will the action of the dilatation operator. A "good" RG should 
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also depend on these parameters in order that it gives a realistic representation of scale 
transformations in this environment. Depending on which set of parameters one chooses to 
include in the RG one can access different fixed point behaviour characteristic of the same 
physical system. A RG which is independent of some particular crossover parameter 9 will 
be, as we shall see, incapable of spanning the crossover, where 9 plays an essential role, being 
a good description only in the vicinity of the 9 = 0 fixed point. In principle there are a large 
number of inequivalent RG's, inequivalent in the sense that they give rise to different fixed 
points. If the RG's exhibit different asymptotic behaviour how can they represent the same 

physical system? The answer is that only a certain set, perhaps only one of the RG's wiD 
provide full global information on the scaling behaviour of the theory without extra input. 
For the other RG's extra non·perturbative information is required. Clearly if one can solve 
a problem exactly none of this matters. 

Developing RG's that potentially offer full, global scaling information is not simple, one 

traditional method [3] has been to match RG's associated with different fixed points. It 
is most simply undertaken using field theoretic methods. Here though one encounters the 
commonly held prejudice that renormaJization is entirely due to short distance singularities. 

Ifone holds to this view then it is not sensible to develop RG's that depend on relevant ~infra­

red" scales. Implementing the point of view that renormaJization can depend on important 

infra-red scales a small number of crossovers have been treated in a more appropriate manner 

e.g. crossover at a bicritical point [4], crossover in uniaxial dipolar ferromagnets [5} and 
dimensional crossover (I). It is with the latter that we will be exclusively concerned and in 
particular with the extension of the techniques of [1) to systems below Te. 

Dimensional crossover has been chiefly addressed in the context of finite size scaling [6}. 
In most work on the RG applied in the context of finite size scaling, it has been a ~bulk" RG, 

which is independent of the finite size scale L, that has been used. Such a RG has proved 

incapable of furnishing finite size scaling functions and dimensional crossover information 

except when supplemented by further non-perturbative information (7). In (7) syst;ems were 

considered that do not exhibit a true crossover in the sense that the finite system possesses 
only one fixed point - the ~ulk" fixed point. In (I) a formalism was developed that can 

treat finite size systems that either do or do not possess more than one fixed point, though the 
emphasis was oompletely on the former. The essence of the methodology is an L dependent 

RG implemented in the spirit that the "true" effective degrees of freedom of the system 

are L dependent. Effective susceptibility and correlation length exponents were calculated 
perturbatively for an Ising-type system on 81 x Jri-l as were some scaling functions. All these 

quantities interpolated in a smooth, finite fashion between the forms and values expected of 
d and d - 1 dimensional systems, as ~L ...... 00, in the limits -Ii: ...... 00 and t ...... 0 respectively, 
~L being the finite size oorrelation length. 

The plan of this paper is as follows. In section 2, we present a summary of the problems 
linked to the normal approach to finite size crossover above Te and their resolution. We 
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discuss the question of choosing an expansion parameter and the concept of a Boating fixed 
point is introduced in [8]. The RG equation below Te is deduced and the scaling form 
of vertex functions throughout the crossover are discussed in section 3. In section 4, the 
effective exponent laws involving 6eIr and Petr are derived and in section 5 scaling forms are 
expressed in terms of the effective exponents. This takes us to section 6, where the one-loop 
universal scaling form of the equation of state is calculated throughout the crossover. A 
discussioo of universality in crossovers is given, elucidating how corrections to scaling are 
absorbed in the definition of the physical parameters at the one-loop level for the equation 
of state. In section 7, the asymptotic limits of the universal one-loop equation of state for 
the dimensional crossover are analysed, and shown to reduce to previous known results in 
appropriate limiting situations. Section 8 is reserved for conjectures and conclusions. 

2 Crossover Above Tc 

In this section we briefiy review crossover above Te. The theory that we use as a prototypical 
example, throughout this paper, is an Ising-type system described by the Landau.Ginzburg­
Wilson Hamiltonian 

1 2 1 2 2 1 2 ~B ..
C. = '2(VIPB} + '2mBIPB + '2tBIPB +4f'PB (I) 

on 81 x R"-l, i.e. a layered geometry with periodic boundary conditions with d - 1 di­

mensionallayers and of total thickness L . .The system is renormalized so that m2 =0 and 
subject to the foUowing conditions 

r(2)(k = 0, t = O,~,L, ,,} = 0 (2) 

ar(2) (L t = ,,2, ~, L, "}I.-o = 1 (a)Ok2 "', 

r(4)(k = 0, t = ,,2,~, L, ,,) = ~ (4) 

r<2,1)(k = O,t = "2,~,L,,,} = 1 (5) 

where our notation is that k is the momentum in the layers and k includes the discrete 
momentum perpendicular to the layers. Obviously as these normalization conditions are L 
dependent the consequent renormalized parameters are implicitly L dependent. In particular 

t =T - Te(L}, Te(L} being the critical temperature of the finite system (d ~ 2). 

4 



Intuitively we expect the critical behaviour of the system to be d - 1 dimensional as the 
correlation length egoes to infinity for fixed L. However, if the limit t - 00, e _ 00 is 
taken we expect it to be "bulk" i. e. d dimensional. The length L is the relevant quantity 
responsible for a crossover from the bulk theory to a dimensionally reduced one. As shown 
in (1J a smooth theoretical description of the crossover can be obtained if an appropriate 
L dependent renormalization is carried out. This can be understood by thinking of the 
RG intuitively as a coarse graining procedure, tben such an L dependent renormalization 
is akin to integrating out the physical degrees of freedom at tbe actual renormalization 
scale in question, and as one changes renormalization scale one is following the correct 
degrees of freedom. In contrast an L independent renonnalization prescription is tantamount 
to "integrating out" only L independent degrees of freedom, bowever, one knows tbat for 
t < < 1 the relevant degrees of freedom are d - 1 dimensional. One is thus trying to describe 
a d-1 dimensional system via a perturbative expansion about a d dimensional system, i. e. to 
describe what are essentially d - 1 dimensional degrees of freedom in terms of d dimensional 
degrees of freedom. The message is clear: the perturbative description of a finite size system 
in terms of bulk parameters is totally inadequate. What is more a standard non-perturbative 
approach such as using a bulk RG is also inadequate, the fixed point of this group being 
the bulk one. Let us illustrate bow the L dependent prescription works by proceeding to 
implement the L dependent renormalization conditions (2)-(5). 

With these normalization conditions tbe RG equation for an N-point vertex function 
takes the form 

a - 8 ... 8 N ... )r<N) ...("a" + (J(A, L,,)ax + 'Y.,,(A, L,,)tat - 2''Y",(A, L,,) (~, t, A, L, ,,) = 0 (6) 

where ). = A"d-4 is the dimensionless coupling constant. Note tbat it is only in the L" 
dependence of tbe cbaracteristic functions (J, 'Y." and 'Y", tbat this equation differs from tbe 

conventional L independent RG equation. As L does not renormalize tbere is no It; term 
and it scales witb its canonical dimension. We have not included a dependenre on t in 
the characteristic functions wbich tberefore precludes observing the crossover to mean field 

theory. The crossover of interest bere is between d and d - 1 dimensional critical points. As 
an example let us consider tbe ,8-function. Witb tbe normalization condition (4) one finds 

dX ... 3X2 _ 7 _ d 00 ( 4'1'2n2).tyz ...
"d" = -(4 - d)A + L" (411')lT'r(-2-) n=~oo 1 + L2,,2 +O(A3) (7) 

As L" - 00 

d). - 3X2 6-d 
,,- - -(4-d)A+--r(-) (8)

dK. (411')f 2 
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as expected for a d dimensional system. For L" - 0 

dX ... 3).2 k:JI 7 - d 
,,- - -(4 - d)A + -(411')--rr(-) (9)

dK. LK. 2 

The solution of {J = 0 in (8) is Xt = (!-ri~)!' tbe Wilson-Fisher fixed point in d dimensions. 

For d = 4 (9) apparently displays only a Gaussian fixed point, however, one must be careful. 

Tbe natural coupling constant in the d - 1 dimensional limit is f, tbe dimensionless version 

being /;. = 1.1. Cbaaging tbe dependent variable in (7) to 1.1 gives 

": = -(5-d)u+3u2(411')~r(7-d) ~ ( 411'2n2)¥ (10)
2 n!:'oo 1 + L2,,2 

As L" - 0 

du 2 1-4 7 - d 
,,- = -(5 - d)u +31.1 (411')-TT(--) (11)

d" 2 

!j!
{J = 0 gives u t = (5;1c~) ,the Wilson-Fisber fixed point in d - 1 dimensions. The 

differential equation (7) bas the solution 

X(,,)-I = X-l,,4-4 + 3,,4-4 (411')~r(7 - d) ~ lie dx (1 + 411'2n2)¥ (12)L 2 L..,,}l z6-tl L2,,2 
n=-oo 

wbere X= X(I). One can take the solution (12) as tbe "small" parameter witb respect to 

which perturbation tbeory is implemented. Equivalently one could also have solved (10) 
and used U(K) as a small parameter. What we mean by "small" bere is a parameter wbich 

orders perturbation theory. It is \'ery important to note tbat if one is computing a universal 
quantity, such as an effective critical exponent, it is irrelevant which expansion parameter is 
used, one still obtains the same answer. Going between Xand 1.1 is merely a change of variable 

in a differential equation wbich exhibits tbe d - 1 dimensional fixed point in a more familiar 

way. The fact that XC,,) - 0 as L" - 0 in no way means that interactions disappear, 
in fact quite tbe reverse. In the calculation of a universal quantity tbe contribution of a 
particular Feynman diagram in L dependent RG improved perturbation tbeory is composed 

of contributions from vertices and from loops. In the limit that X(,,) - 0 one finds that tbe 
contribution from a loop - 00 in just sucb a way that tbe product yields the expected d - 1 
dimensional results. 
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In conventional critical phenomena one usually captures the dominant physics by ex­
panding around a fixed point. In a crossover there is more than one. For example consider 
the solution of the characteristic equation foe t(,,) from (6) 

t(,,) = tef." 'l.,,(I(s,Ls).Ls), = tefl.l(IO) ¥f- (13) 

where t = t(" = 1). One could expand around the d or d -1 dimensional fixed points giving 

" t Jhr ;"!2) Ill't(,,) = Xtexp 1. 'l~" where X = exp AT is & correction to scaling or metric 
factor. In conventional critical phenomena such corrections are treated as slowly varying 
and non-singular, as when the denominator of the integrand vanishes so does the numerator. 
However, for a crossover there is another fixed point where fJ can vanish, and where, more 
importantly, the numerator doesn't, having been expanded about a different fixed point. 
In this situation corrections to scaling are very large and in fact are what interpolate the 
crossover. It is important to note that these corrections to scaling can be explicitly calculated 
in the formalism herein. 

It would be advantageous to mimic the standard formalism as much as possible by 
keeping corrections to scaling small. Consider then the change of variables h = al Xwhere 
al the coefficient of the O(X2) term in (7) is 

al = 2.(411')~r(7 -d) ~ ( 411'2n2)¥ (14)L" 2 L- I+L22 
n=-oo " 

One finds 

dh 
"elK. = fJ(h) = -£(L,,)h +h2+O(h3) (15) 

where 

00 2 

e(lJ<) = 4_d _ dlnal L 4" n' (1 + 411'2n2) 4jl
dln" = 5 - d - (7 _ d) n=-oo L2,,2 L2,,2 

(16)
00 

"'( 422~L..t 1+ lI'n ,­
n--oo L2,,2 ) 

Setting fJ(h) = 0 yields to lowest order 

h· = eeL,,) +O(~(L"» (17) 

We term h· a floating fixed point. Its importance is two fold. Firstly, corrections to scaling 
around the floating fixed point are small as, for example, "Y-p'l = "Y~ ",hen fJ(h) = O. Secondly, 
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it is, like a conventional fixed point found from an algebraic property of the p-function 
equation - its zeros. This is obviously computationally much simpler than having to solve 
a differential equation iteratively. The difference between using the solutions of (7) and (10) 
or the floating fixed point corresponds to slowly varying factors which are mere redefinitions 
of the L dependent crossover variables such as t. For the case at hand h· varies between 
4 - d and 5 - d. It is clear that the floating fixed point is not necessarily numerically small. 
In order to achieve accurate estimates of physical quantities one would in principle wish to 
work to higher order and attempt some resu.m.mation procedure analogously to what is done 
with the fixed dimension expansion (9). Apart from lengthy calculation there is absolutely 
nothing to prevent this being done using the present techniques. Although we will restrict 
attention to on&-loop results herein, two-loop results for T > Tc(L) have been calculated in 
(8). One also knows by experience that on&-loop results are better than mean field theory 
and that two-loop results are in fact quite often close to numerical and experimental results. 

One can think of £(u.) as being a measure of the deviation from four of the effective 
dimensionality of the system. Moee generally one can define an effective dimensionality de«l 
via the relation 

4 
dlnr( ) = (4 - de« - 21Je1f)lIeff (18)

dint 

where lIeff = (2 - "Y.r)-1 and 1JeIf = "YIP; "Y.r and "YIP being the anomalous dimensions of vr 
and tp across the crossover. These anomalous dimensions have been computed to two-loops 
in (8). From (18) and the solution of (6) for N =4 we see that for k =0 

deer = d - "Y>. (19) 

"Y>. is the anomalous dimension of the dimensionfuJ coupling constant and satisfies ,,~ = "YA'\. 

As "Y>. = £(L") +~ one finds deer =d - ¥. deer clearly interpolates between d and d - 1 
as h varies from the bulk to the reduced fixed points. In line with the simpler notion of a 
floating fixed point one can define & fioating deer, i.e. tfeff, as 

(If = 4-"Y1 (20) 

d:U also interpolates between d and d - 1 and therefore captures the essence of the crossover, 
the difference between dur and d:U being a slowly varying correction to scaling throughout 
the crossover. One can also define effective critical exponents "cdr and ,,:.r with respect to 

the floating fixed point, i.e. 1I;1f = lIeff(h = h·) and ,,:.r = 1Je1f(h = h·). These concepts will 
be of great use in later sections. Having very briefly mentioned some pertinent facts for the 
T > Tc case we go on now to consider below Te. 

I An analogous quantity was found by A. Bray in the context of the spherical model, private communication 
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3 Scaling Below Tc 

We know that in the broken phase of an Ising-type system the correlation functions are a 
function of the magnetisation density M (cp) of the system. We consider the magnetisation 
to be homogeneous. From multiplicative renormalizability the relation between the bare and 
renormalized vertex functions is 

r(N)(t,M,h,L,If.) = Z!(h,LIf.,~) r<;>(tB,MB,hB,L,A) (21)If. 

where we assume the renormalization scheme to be L dependent but t and M independent. 
This is a relevant scheme for the description of the dimensional crossover as shown in the 
previous section. The multiplicative renormalization of t, M and h is defined by 

t = Z~l tB (22) 

M = z;lMB (23) 

h= Z;;lZ; hB (24) 

From the K.-independence of r~'1') we find the RG equation for r(N) 

8 8 8 
( If.8K +{J(h, LK)8h +"Yy1J(h, LK)tat ­

~"Y",(h,LIf.)[N +M 8~ ])r<N)(t, M,h,L,If.) = ° (25) 

Its solution can be found by the method of characteristics, and using dimensional analysis 
it gives 

r(N)(t,M,h,L,K) = 

(K.p)N+"-iN"e-fJ:'7.,(Ia(S),La)r(N) (t(p) M(p) h(p) LK.p 1) (26)
(Kp)2' (Kp)f-1' , , 

where the running variables t(p), M(P) and h(p) satisfy the characteristic equations 

pdt:) = "Yy1J(h(p), Llf.p)t(p) (27) 

dM(p) 1 
P--;[p = -2""Y",(h(p), LKp)M(p) (28) 

pd~~) = {J(h(p), Llf.p) (29) 
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We can also rewrite (29) after a change of variable back to the dimensionful coupling ,\ as 

pd~~) = "Y,\('\(p), L"fJ)'\(p) (30) 

The left-hand side of (26) cannot be evaluated perturbatively at t = 0 due to infra-red 
divergences. This problem is surmounted by proceeding analogously to a system without 
crossover. The arbitrariness of p is utilized by choosing it so that the system is kept away 
from the infra-red dangerous region for any wlue of L. Some possible conditions one might 
envision to determine p are 

t(p) = 1f.2p2 (31) 

'\(p) M2(p) = 1f.2i (32)
2 

t(p) + ,\(p) M2(p) = 1f.2p2 (33)
2 

The usual condition M(p) = (If.p)f-1 is inappropriate for the crossover problem and will 
be discussed further in the next section. We will soon discuss the relative merits of these 
conditions. Suffice it to say that if the problem could be solved exactly, any condition would 
be as good as any other. 

Consider the following sets of normalization conditions 

r(2)(p =0, t(p), M(p) =0, h(p), L, If.p) = t(p) 

a!2r(2)(P,t(p), M(p) = O,h(p),L,lf.p)l,...o= 1 (34) 

r(2)(p = O,t(p) = 0, M(p),h(p),L,Kp) = ,\~) M2(p) 

~r(2)(P,t(p) = 0, M(P),h(p),L,KP)I,...o= 1 (35) 

r(2)(p = O,t(p), M(p), h(p),L, Kp) = t(p) + ,\~)M2(p) 

8 (2) ) (36))1­8p2r (p,t(p),M(p ,h(p),L,lf.p p=O-1 

From the definition of the physical correlation length in the layers 

2 1 Jtt'D:2r~\I:,0) 
{L = 2d JtJdxr~)(x,O) (37) 
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where x:2 is the distance squared in the layers, one sees that with the condition (31) and 
(34) that t(p) = K.2p2 = ei,2 where eLC is the correlation length in the finite size system when 

M = O. With (32) and (35) ¥M2(p) = K.2p2 =ei~ where eLM is the correlation length in 

the finite size system when T = Te(L). With (33) and (36), t(p) + iM2(p) = K.2p2 = ei~c 
where ~MC is the correlation length in the finite size system when T < Te(L). eu, eLM 
and eLAlC are non-linear scaling fields which are capable of interpolating between the d and 
d - 1 dimensional fixed points of the system for e-t 00 in the limit t -t 00 and t -t 0 
respectively. 

Consider (26) with conditions (31) and (34) 

r(N)(t,M,h,L,K.) = 

eiN"-N-" -ft.L: 7,,(h(s),Ls)~ r(N)(1 l(PLC)M2(Pu) h(p ) -.£ 1)
'lo.U e" , e-2 ' Lc , P , (38) 

'lo.Lc L, 

where Pu = (K.(LC)-l. Solving the characteristic equations (28) and (29) gives 

l(PLC)M2(PLC) = lM2 exp fL: bA - 'YIP - 2)~ 
2 (39)

e- K.2 J~'lo.Lc 

Expanding around the floating fixed point h =h- then yields 

l(p)M2(P) lM2 reL:(hl.-7n-h -7..»& 1eL:h·-7.°-2)& (40)-..;;.-=-=--:-=...;;. =-- eJ... ..." " II: e" A" .,
K.2p2 K.2 

'YA being the anomalous dimension of l at the floating fixed point. The correction to scaling 
term above is slowly varying throughout the crossover and can be absorbed into a rt"'Ciefinition 

of M, as can l. From section, we have 'Y" = 4 - d:.a where ~eft' is the "universal" part of den-. 
Hence 

2 E-1 

l(PL')~ (pu) = M2exp(-1 u (d;" _ 2 +,,;.,) dx) (41) 
~ ~ x 

Substituting back into (38) gives 

r(N) = eLIN"-N-"e-f tL: 'lddx.r!N)(M2e- J:L: (d"-2+r1:/f>Sf .!:...) (42)... ex' , eL' 

where J1N) is a universal function. So, if r(N) is measured in units ofeu we see that the scal­
,.e-I 

ing functions are functions of two non-linear scaling variables &L and M2e- J... L, (d,.-2+'1,.>,.
,.Le 


With the condition (32) and (35) instead of (31) and (34) one finds 


II 

r(N)(t, M,h,L,K.) = d;"-N-"e-f tLl, 7'1,1fr(N)(t(pLM)e~M' 1,h(PLM)' e~M' 1) (43) 

where PLAI = (K.(LAI)-l. The solution of the characteristic equation (27) is 

2 t l eLl, dxt(PLM)eLM =, exp b.;a - 2)- (44)
K. ~ X 

and expanding around the Ooating fixed point gives 

,.e-I 1 

t(p)e~M = :2 eJ"LMh.,2-7~)~ eflLMh;2-2>' (45) 

The correction to scaling factor can be absorbed into a redefinition of t and noting that 

;!; = 2 - 'Y~ we have 

-I e- I 

r (N) _ eiN"-N-" _Jl1eLM ,.._* --iN> ( -1 LM -:+-s L) (46)- 'lo.LM e T" -- 1I::f''i t e " ".. II: ­
M , eLM 

where .r<;) is a universal function. For r(N) measured in units ofeLM these scaling functions 
-I 

L - ,.eLM-L& 
are functions of the two non-linear scaling fields lUi and t e J... ".. 11:. eLC interpolates 

between t-"Io and t-IIr in the limits ;.. -t 00, eu -t 00 and ;.. -t 0 respectively, where 
~L' 'iu 

"" and Vr are the bulk and reduced correlation length exponents respectively. Note that all 
the above non-linear scaling fields are globally valid in the sense that they capture both the 
d and d - 1 dimensional fixed points. We could also have written down scaling functions 

.r<t.> which would be functions of eLMC which is also a good non-linear scaling field for the 
crossover. 

4 Scaling Laws 

In the previous section we investigated the scaling form of vertex functions below Tc in terms 
of two non-linear scaling fields eu and eLM. In this section we would like to proceed further 
with a general scaling formulation examining in particular what happens to scaling laws for 

the crossover. In particular let us consider the crossover equation of state. From (26), as 
II = r(1) one finds the relation 

H(t, M,h, L,K.) = (K.p)f+1e-lJ:P7,,'H(~~, l(1K.~;(p) ,h(p), LK.p, 1) (47) 
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From the non-crossover equation of state 

H = M'/(tM-i) (48) 

it is natural to define effective critical exponents for the crossover 

dlnHl (49)Deft' = dlnM ,=0 

and 

dlnMI (SO)pelf = dlnt H=O 

the latter being defined on the crossover coexistence curve. 

Consider (47) when T = Tc(L), i.e. t = t(p) =O. We impose the normalization condition 

H(t = 0 "\(p)M2(p) = 1 h(p) Lrr.p 1)= ..\(p)M3(p) (51) 
, 2,,2';,1 ' , , 6 ("p)f+1 

on the dimensionless H on the right-hand side of (47). This condition is consistent with the 
normalization condition on r(2) and motivated by the mean field theory case. Needless to say 

this renormalization is not necessary to remove ultra-violet divergences. We are, however, 

free to perform finite renormalizations of our variables. This particular one is designed for 

computational convenience and corresponds to just taking the tree level term of the equation 

of state when t = o. It is analogous to the type of finite renormuization one would do in 
going between a minimally subtracted version of r(2)(t) and a normalization condition. With 

this normalization condition (47) expressed in terms of the dimensionless coupling Xgives 

(52)H = ("P)f+l expHf'l,,(,., 14)~HJ~;p) 
Using the characteristic equation for pep) one finds 

H =(rr.p)f+1exp(-!fh (z,Lz) + P(X(Z»»dz)! f! (53)
2,," ..\(z) z 3 VX 

where X= A(I). Thus 

dlnH = !(d 2 _ _ P~X(p») dlnp (54)
dlnM 2 + 'Y" ..\(p) dlnM 
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From section 2, recall that ¥ = d - detr, hence, with the condition ¥M2(p) = ,,2';, one 

finds 

dlnp 2 (55)
dlnM = deft - 2 + 'Y" 

Substituting back into (54) gives 

deft +2 - 'Jeff (56)
Oelf = deft - 2 +'lUf 

Now let us turn our attention to the relationship between M and t on the coexistence 

curve. Consider the solution of the RG equation for G(1) =M 

MOtl, h, L, ,,) = ("p) i-leI I,,"" .,,,(s,Ls), M(I:~~ ,h(p),Lrr.p, I) (57) 

Imposing the normalization condition 

6It(p)1
M(lt(p)1 = ,,2p2,h(p),Lrr.p) = (58)

).(p),,2'; 

which is equivalent of (51) and again corresponds to imposing the mean field condition at 
the renormuization point, and require only a finite renormalization of G(l). The right-hand 

side of (58) just being the tree level term in the equation of state. Substituting (58) into 

(57) one finds 

(59)M(t,h,L,K) =("P)'-'expGf'Ip("'14)~)J~~) 
Once again using the characteristic equation for X(p) one finds 

I exp('211'Y {3(X(z) dz) ~ (60)M(t,h,L,,,) = ("p)f- " h,,(z,Lz)- X(z»)-; VI(P5 

Hence 

dlnM = !(d _2 + _{3!X(p») dlnp (61)
dlnltl 2 'Y" .\(p) dlnltl 

With the condition It(p)1 = ,,2'; one has 
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dlnp 
(62)dlnltl = Ve« 

and substituting into (61) gives 

Ve«fJ& = -(den' - 2 +fIeH) (63)
2 

Thus we get the very interesting result that natural analogs of the conventional scaling 
laws are obeyed throughout the entire crossover. What this implies is that there is a gener­
alization of universality which applies across the crossover, in that knowledge of 1'1' and 1"., 
are sufficient to determine the entire crossover along with one more function deB. Knowledge 
of deft' is equivalent to knowledge of 1>.. In other words in contradistinction to the standard 
non-crossover problem where 1>. merely represents slowly varying corrections to scaling here 
one requires 1>. to obtain full knowledge of the crossover. It is also interesting that effective 
exponents defined with' respect to the floating fixed point also obey scaling laws, explicitly 

trell'+2-~ (64)
6:" = d*sr - 2 +'1:" 

and 

fJ:.r = v;'" (tfsr - 2 +~) (65)
2 

The difference between a floating fixed point and a running coupling result amounts 
to no more than a redefinition of ones crossover variables by slowly varying non singular 
corrections to scaling across the crossover. In other words the floating fixed point captures 
the "universal" part of the crossover. We will return to this point later. 

5 More on the Scaling Forms 

Having introduced the effective exponents 6e« and Peff we can return to the considerations 
of the beginning of this section and write the scaling forms in a slightly different way. 
Consider (42) and (46), first (42). The integrals in (42) are from an initial to a final inverse 
correlation length, having used the relation ,,2; = fL,I, hence we can change variables using 

the definition of Ve«, i.e. ~ = -1::: = VefI~, to find 

, I r' de' r' JIt..
r(N) = eIt (N+d-f(d+'MIf»Vdif.rfN) ( Me- Jt 11""7, LeJt "elf eT) (66) 

IS 

The two non-tinear scaling fields entering the scaling function, in terms of T - Tc(L), are 

Me- I: fJ.R,. and LeIt' v...,.. For the equation of state 

r* I r' I r' III
H =eiJt(4+2-'Wf)V ... 1fJ1I)(Me-Jt .a..1f,LeJt v"'7 ) (67) 

Now consider (46). Using the condition fixing p in terms of M we can change variables 

via (55) i.e. ~ = -1;: =2(dar - 2 + 'Ielr)-I4I to find 

r(N) =eft'(N+4-f(4+'ld»~~FCC) (te-It" 7I!;;~ ,Left" ~~) (68) 

For the equation of state 

H = eiI:(4+2-"')iIJ~r~)(te-It" G~,LeIt" ~~) (69) 

Now, from the perturbative results, as we shall see in the next section, with the condition 

¥M2(p) = ,,2p2 one can extract a factor Ili> from rJ, the remainder of r~) being a 

polynomial expansion in X(p) (or h(p». With 

- - (II d - deB dM' (70)~(p) =~exp2 JI dar - 2 + 'Ietr M' 

and using (56) and (63) one obtains 

H =eIt" 6.~9 (te-It" i;;;~ ,Lefl" i:!~) (71) 

where 9 = r~). Thus we have the scaling form of the equation of state in terms of the two 

r" ~ r"" ~ 
non-tinear scaling fields x = te- Jt G" and 'II = LeJi ~" . For t = 0, 9 = 1 and 
H = expItt 6el1'~ therefore yielding (56). For H = 0 the equation of state is given by 

g(x,y) = 0, which yields a coexistence curve x = 9('11), hence 

(M VelI' dM' (M 1 dM' 
t = 9(L exp JI Pe« M' ) exp Jl Pe« M' (72) 

In order that we reproduce (63) we must have 9('11) = 1. In section 7 we show that in 
terms of appropriate variables 9('11) = 1. This is a self consistency condition for the effec· 
tive exponenets laws variables x and 'II as written. We will now verify much of the above 

perturbatively. 
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6 The Universal One-loop Equation of State 


To start with, we write the running equation of state in its non-universal form 


H = t(p)M(p) + 1 X(p)M(p)3 + 
(Kp)f+J 6 (Kp)Y-3 

X(p)M(p) r(¥) (t(p) + X(p) M(p)2) ~ (1 41r2n2 ) Y 
2L(Kp)f (411')Jiyl K2p2 2 (Kp)d-2 n~ao + L2K2p2 + 

X(p)M(p) r(~) ~ [(t(p) X(p) M(p)2 411'2n2)~ (411'2n2 )~] 
2L(Kp)f (41r).t;! n~oo K2p2 + 2 (Kp)d-2 + L2K2p2 - L2K2p2 (73) 

Using the extra normalization condition on H, remember this corresponds to a finite renor­
maiization, 

H(t(p), A~) M(p)2 = K2;, L, A(p), Kp) = A~) M(p)3 (74) 

one finds that the dimensionless magnetic field is 

H( tIp) =0) =!J 2 (75)K2p2 3 A(p) 

and hence 

_ t(P)M(p) 1.\(P)M(p)3
H - +- +

(Kp)f+J 6 ("P)¥-3 

X(p)M(p) (41r)~r(~) (t(p) + X(p) M(p)2) ~ (1 41r2n2 ) ~ 
2L(Kp)f K2p2 2 (Kp)d-2 n~oo + L2K2p2 + 

X(p)M(p) (41r)~r(¥) ~ [( t(p) + .\(p) M(p)2 + 411'2n2) ~ _ 
2L(Kp)f n~oo K2p2 2 (Kp)d-2 L2K2p2 

2 4-3 ~ + 4-341r2n ,- _ .\(p) _2_ ~ _ 411'2n2 ,-_00 

(L2,,2p2 ) J 2L"p A(P) (41<) r(...) J;., [(1+ L2"2p2) 

411'2n2)¥ 3-d ( 411'2n2 )~]
( (76)L2K2p2 + 2 1 + L2K2p2 

Fixing p by condition (32) gives 
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H(p) (KP)f+J(! + t(p) + X(p) (411')~r(~) ~ [(1 + t(p) + 41r2n2)~ _ 
3 K2p2 2LKP 4.J K2p2 L2K2p2

n=-oo 

41r2n2)~ t(p) r(¥) ( 41r2n2 )~]) rI (77)( 1 + L2K2p2 - K2p2 r(¥) 1 + L2K2p2 VI(P) 

When t(p) 0 

'+lJ 2H(p) = a(Kp)1 X(p) (78) 

To obtain a universal equation or state we need to make two demands. Firstly that 
H = exp(j.M 6etr!Jf) and secondly that for H = 0 the equation of state has a zero at 
:x = -1 where :x is the non-linear scaling field introduced in section 5. These demands 
are obviously implementations of the effective exponent laws (56) and (63). Using X(p) = 
exp(ji(d - fierr»~), in one-loop approximation and setting K = 1 for convenience, one finds 
for t = 0 

J2 [P t4rr d:xH=-exp (-+1)- (79)
3 • 2 :x 

As !Ie. = 2 dM one gets
P ~V 

H _..f2 J.M t4rr + 2dM'p (80)
- 3 ex • fierr - 2 M' 

We can absorb the if into a redefinition of K, of course eqUivalently one can define a new 
magnetic field 

H= ..f2H' (81)
3 

then 

H' = expJ.M derr +2 dM' (82)
• dew - 2 M' 

Now consider the case when t :f: 0, our task is to get our expression into the universal 
form (71). Now observing the form of (77) we see the prefactor is the same as we have 
identified in (SO). We therefore can rewrite (77) as 
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• 

H' = exp 1M deft' +2 dM' (83)J1 ""'-2 M'v 
where 

- +00 2 2 d-3 

g = 1+3 t(p) + 3A(P) (411")J¥r(¥) " [(1 + t(p) + 411" n ).,-_
,,2jl 2L"p "- ,,2jl L2,,2p2

n""-oo 

4'R'2n2)~ t(P)r(-¥)( 4'R'2n2)Y]
( 1+-- -- 1+-- (84)L2,,2jl ,,2jl r(¥) L2,,2jl 

With the condition (32), we can express (84) in terms of the non-linear scaling fields x and 
y, which of course must be evaluated up to the order we're working in. First of aU we define 
a variable x' = ~ to obtain 

~) ~ ~ 
g = 1+3x' + 2: (411")~r(1jA) L [(1 +x' + 411":n2)"- ­

"'-00 y 

411"2n2)~ _ ~( 4'R'2n2)~]
( 1+ y2 x'i1¥) 1+ y2 (85) 

Now, we wish to redefine x' = (a +b(y)X(y» x such that for h' 0, x = -1 is a zero of the 
equation of state thereby ensuring the validity of (71). Comparing powers of Xgives a = ! 
and 

b(y) = (4~!:j5 r(¥) f [(~ +411"2n2)¥ _ 
y n=-oo 3 y2 

411"2n2)~ _ !r(Y) ( 411"2n2)~]
( (86)1+ y2 6r(¥) 1+ y2 

Substituting back into (85) gives 

3X( ) +00 (4 22) ~ v=I+X-r(411")J¥r(Jyl)[ L (l+x) 1+ 1I"2n ­
y n--oo y 

~ (~ 4'R'2n2)¥ ( x 411"2n2)¥]
x "- 3+ 2 - 1+-+-- (87)n=-oo y 3 y2 
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We will now write things in terms of the coupling h(y) which to one-loop is given by h = Xa l 

see (14). Thus 

l 00 ( 4 2 2)¥]-1 
2h(y) E 1 +-T (411"2n2)¥+00 

H = (1 +x - ~~o:.d\(3-d\ L [(1 +x) 1 + yr ­
n=-oo 

(
2 42r2n2)~ ( x 42r2n2)~]) 1M deft' + 2dM' x -+-- - 1+-+-- exp --- (88)
3 y2 3 y2 1 deft' - 2 M' 

where we have dropped the' on H for convenience. An essentially equivalent expression is 
obtained in expanding about the floating fixed point, the quantities in (88) being replaced 
by their floating fixed point values to this order. Equation (88) is the universal one-loop 
equation of state in terms of the two non-linear scaling fields x and y. 

For d = 4 in terms of the floating fixed point we have 

nfoo (1- k;t) (1 +411";t)-1 
v(x,y) = 1 +x+ t ­

l~oo (1 +~)- ) 

~ [ (411"2n2)1 (2 411"2n2)t ( x 411"2n2)t]L- (l+x) 1+- -x -+- - 1+-+-- (89)
n=-oo y2 3 y2 3 y2 

For d = 3 care should be taken in taking the limit, one finds again in terms of the floating 
fixed point 

00E (1 _411"2n2) ( 4 2 2)-3 
v(x,y) 1 +x+ n=-oo -;r 1 +-T 

(,..~oo (1 +~))2 

00 [ ( 1~) (1 411"2n2)]L In : 411"2 2 +X In 2 +~ (90) 
n=-oo 1 + J + ~ ! + " 

Now let us make contact with known results. There is one basic observation that assists in 
this. Note that at each stage of the computation taking the limit L"p -+ 00 is equivalent to 
performing the integral over one additional momentum and therefore expressions involving 
d get mapped into the same expression but with d replaced by d + 1 and n replaced by 
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n = O. The opposite limit LK.p - 0 is achieved by merely retaining the n = 0 expressions. 
Therefore the asymptotic limit 1/ - 00 can be read. off from (89) by implementing the above 
prescription. The expression in the 1/ - 0 limit is 

%3 %)~] (91)g(%,O) = 1 + % + d _2 [ 3 1 + % - (2)~ - (1 + 3 

and in the limit 11 - 00 we have 

2 [ (2)~ ( %)~]g(%,oo) =1+%+ d-2 1+%-% 3 - 1+3 (92) 

where in the respective limits we used £(0) = 5 - d and £(00) == 4 - d. Thus if we work in 
dimension d = 4 - £ where £ is a fixed small constant we can write these expressions as 

2 [ (2)1yI ( %)1yI] (93)g(%,O) = 1 + % + 1 _ £ 1 + % - %3 - 1 + 3 

and in the limit 1/- 00 we have 

1 [ (2)1-1 ( %)1-1]{f(% 00)=1+%--- 1+%-% - - 1+- (94) 
, (1- t) 3 3 

In an expansion in £ to first order we find 

g(%,O) == 1+% +2[1 +% -%(i)l - (1 + i)l]­

2£[(1 +%) +%(i) 1(1 + ~Ini) + (1 + i)l (1 + ~ln(l + i>] (95) 

and in the limit 1/ - 00 we have 

g(%,oo) == 1 + % + ij [(3 + %)In(3 + %) - 3(1 + %)ln3 + 2zln2] (96) 

It is important to note that these expressions are obtained from an expansion in the same 
E. It is also important to note that £ is being considered as a small deviation &om the 
floating fixed point. One cannot of course make use of a direct £ expmsion around mean 
field theory. It is the global nature of our RG that allows us to do this. Without both 
fixed points having been retained in the one scheme a direct comparison of the 4 - £ theory 
with the. dimensionally reduced 3 - E theory would be impossible. These results apply to a 
4 - £ dimensional layer geometry with periodic boundary oonditions on the layers, and £ is 
assumed small. Thus the one-loop universal equation of state above has assymptotic limits 
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which agree in an £ type expansion with known results [10). It is important to emphasize 

though that the expression (89) is valid throughout the entire crossover. 

1 Effective Exponents to One-loop 

In this section we will derive expressions for 6e1f and {Jelf to one-loop. From (54) noting that 

'Ytp = 0 to one-loop we have 

dlnH ==! (d 2 _ pel») dlnp (97)
din M . 2 + A din M 

With (55) one finds 

dlnp 2 (98)--== 1dlnM d-2-l{& 
~ 

and we have to one-loop 

dlnH detr(p) +2 (99)
.seft' = dlnM = deJr(p) - 2 

Working in terms of the floating fixed point and absorbing correction to scaling factors into 

redefinitions of H and M, 6etr becomes 

• <.r(P) +2 _ 6 - £(L"p) = 3 +£(LICp) (100)
.seft' = ~eft'(P) - 2 - 2 - £(LK.p) 

where p is the solution of (32) and we have expanded the denominator in £(LICp). This is 
necessary as we are implementing perturbation theory in terms of the floating fixed point. 

At the floating fixed point (32) gives 

cI-2 == £(LICp) M2 (101)( ICp) II (LK.p) 

Using (15) and (16) for 41(L"p) and £(LICp) 

E 1S$( , 2 )ij1
5 _ d _ (7 _ d)ft=-oo L .. 1+~ 

("1')1-3 = LAI' f: (1+ tl:,~) ::1_+ 
3 ""'-00 (102) 

r(¥)(411')J:;i E (1 + 4'11',,,2)¥
"--00 ~ 
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This transcendental equation must be solved for p and the solution substituted into 

6. E
00 (1 4 2 ~4rn2 2 ) 

eft =8-d-(7-d) n::a-oo~ +~ 
E00 ( 1 + 4t'~)~- (103) 

n=-oo L" 

Ford=4 

00E 4'K2n2 (1 2 -I4'K2 

6!.r = 4 _ 3 --~Lr.9 +Ph) (104)E (1 + 4'K2n2 )-4 
n=-oo ~ 

On the other hand for d = 3 

6;'" =4 + 'nhLL"p (105) 
51 "P 

Going back to (101), e(L"p) is just a function which varies between 5 - d and 4 - d and 
therefore can be treated as a correction to scaling and absorbed into a redefinition of M as 
indeed can the other purely numerical factors. Thus 

00 ( 22)¥
("pyl-3 n~oo 1 +;~¥ = LM2 (106) 

Numerical solutions of (106) will be presented in a later paper. For the moment denoting 

the solution as L"p = g(LM~) gives for d = 4 

E 4'K;n2 (1 +4~t)-1
6:.r =4 - 3 ;.;.n::a_-oo______-=-_ 

(107)E (1 + 4'K2 2)-1 
n=-oo -rn 

As LM~ - 0, 6. - 4 and as LMi:,. - 00, 6;'" - 3. 


Turning now to fletr, given by (65) which to one-loop is 


dlnM =! (d _ 2 _ fl~X») dlnp (lOB)dlnltl 2 A dinItI 

where the normalization condition (32) has been used. With the condition (31), ~l:&f "etr, 
hence to one-loop 
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dlnM "elf
flelf = - = -(detr - 2) (109)

dlnttl 2 

Once again working in terms of the floating fixed point and absorbing corrections to scaling 
into redefinitions of t and M (109) becomes 

1 (e(L"p») )Pelf = 4: 1 +-6- (2 - e(L"p) (110) 

where the result for II:' to O(e(L"P» has been taken from [1]. AB e(L"p) is our "small" 
parameter for generating perturbation theory we neglect the O(e2(L"p» term to find 

tref{ =! _ e(L"p) (111)
2 6 

To find p we need to solve (31). To lowest order "p = d thus 

00 
f.l'I d _ 2 E 4'K2n ( 2 2 4~ 
Pelf = -6- +(7 _ d) ....-~ r:r.-

2 

1 + "",~ ),.. (112)
E (1+~)"-"

n=-oo -0'­

Ford=4 

2 
lIE 

00 4f,~2 (1 + 4'K 
2 )-1[.I. _ n 

Pelf __ + _ n=-oo v;: ­ (113)3 2 -=00:-:--- ­

E (1 + 4'K2n2)-" 
n=-oo v;: ­

AB L21tl_ 0, fl:.r - 3'1 
and as L21tl_ 00, fl:' - 2'1 

For d=3 

00 22( 22)-3
• 1 2 n=~oo ~ 1 + 4i.:1: 1 1 Lltl!

fletr = - + - - - - -- (114) 
6 3 nfoo (1 + 4l~~2) -2 3 6 sinhLltli 

Obviously working with fl:.r is much simpler than 6;" because condition (31) is a much more 
amenable one than (32). 

One might enquire as to why the usual condition M(P) = ("p)f-1 was not used, it is 
after all the condition used in the non-erossover problem. The reason why it cannot be used 

is that it leads to an ill...<Jefined perturbation theory in the limit LMi:,. - O. Terms which 
diverge in this Dmit appear in the equation of state, The reason for this is simple but subtle, 
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In order to make perturbation theory work we wish to work away from a regime where the 
correlation length is large i. e. the effective mass is small. For t = 0 the effective mass is 

I"V ~M2. Setting a condition on M does not keep the system away from the critical region 
if A can become very small. This cannot happen in the non-crossover case but does happen 

here. In the limit LMi:rJ - 0 the running coupling A(LMil) - 0 and so the critical 
region where perturbation theory breaks down is entered. 

8 Conclusion 

Previously II} we had set out a formulation of how to perturbatively treat the crossover above 

Tc for a finite size system wherein the finite system itself could exhibit critical behaviour. 
The present paper is a natural extension of this formulation to below Te. The canonical 

problem, to a large extent from the crossover point of view, is the same either above or 
below Tc in the sense that one would like a RG that "coarse grains" the effective degrees of 
freedom in an L dependent way as one knows that the physics, i. e. how the system looks 
at different scales, is very L dependent. The natural consequence of an L dependent RG 
is seen to be L dependent anomalous dimensions and the appearance of eL as the most 
natural scaling field in the problem as opposed to the bulk correlation length. We identified 
three such scaling fields that were capable of spanning the crossover between d and d - I 

dimensional fixed. points representing second order phase transitions: eLt' eLM and eLMt. The 
first two represent physically the correlation length in finite size systems above Te( L) in zero 

magnetic field and at T = Te(L) respectively. eLMt is the true correlation length in the real 
physical system. For the crossover in question however, all three are equally good non-linear 
scaling fields. The L dependent RG shows how correlation functions and particularly the 
equation of state can be written in a natural scaling form in terms of these scaling fields. 

We defined natural analogs of the critical exponents 6 and fJ for the crossover and showed 

that these exponents satisfy scaling laws which are the analogs of the standard relations for 

the non-crossover case. These were the natural extension of the scaling law 7eft' = "eIf(2-'leff) 
derived in [8}. One subtlety was the appearance of an effective dimensionality deft in .these 

relations. This object was seen to naturally appear as a representation of the fact that the 
scaling dimension of the operator cp4 and hence the roupling constant ~ changed across the 

crossover. In the non-crossover case 7" plays a rather minor role, for instance representing 
the slowly varying and non-singular corrections to scaling about the Wilson-Fisher fixed 
point. In the crossover case the change in degree of relevance of the cp4 operator is very 

important and must be accounted for. deft does this in a very natural fashion. It also 
appears very naturally if one thinks of it in the context of universality. The universality 

class of systems is specified by space dimensionality and symmetry. Here we interpolate 
betwcen two universality classes with different space dimensions, hence it is quite natural 
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to have a generalized universality in the sense that only 7.jl' 71{) and deft are required for 
a complete description. The effective exponents themselves are also universal quantities. 
Obviously only two of the effective exponents need be known, the rest follow automatically. 

The derivation of the scaling law 0eIf = 2 - "elfdelr will be left for another publication where 
the crossover in the specific heat will be considered. The non-linear scaling fields for the 
crossover were shown to have a very natural representation in terms of the effective exponents 
and interpolated between just the ones one would expect in the asymptotic regimes. 

Having determined a universal form for the equation of state we proceeded to determine 
it explicitly perturbatively. By implementing the eft'ective exponent scaling laws one could 
determine the variable redefinitions necessary in order to make the equation universal. The 
equation of the crossover coexistence curve was determined. The equation of state was 
shown to reduce in its asymptotic limits to known e expansion results. One interesting 

technical point was the inadequacy of the rondition M(p) = ("")f -1 for determining a regime 
where perturbation theory could safely be used. The reason for this was that the crossover 
behaviour of the coupling constant was sufficient to drive the system into a perturbatively 
iII-defined region in spite of the condition on M(P). 

There are several problems which are worth ronsidering which stem directly from the 
considerations herein. First and foremost is the question of the discontinuity fixed point 
at T = 0 i.e. at the end of the coexistence curve. This fixed point cannot be seen in any 
of the expressions we derived here for basically the same reason that we mentioned earlier 
that precluded us from examining the crossover to mean field theory i.e. the parameter that 
induces the crossover bas not been included in the renormalization prescription, therefore 
one's RG wiD be independent of it and hence the crossover will not be seen. The crossover 
to mean field theory rould have been found by making the renormalization prescription 
explicitly t and momentum dependent. In the case of the strong roupling fixed point the 
natural thing to do is to implement a M dependent renormaiization, hence one's anomalous 
dimensions, etc, would all be explicitly M dependent. We will return to this issue in a future 
publication. Related to this is the question of the behaviour below Te(L) of an O(N) model 
i. e. the non-linear t1 model. Once again we will return to this issue in the future. 
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