
DIAS - STP - 92 -10 
----~~~---~----.. 

\) 
\ 

Exact Height Probabilities 
in the Abelian Sandpile Model 

_JJ V.B.Priezzhev 1,2 

Abstract. We study Bak, Tang and Wiesenfeld's Abelian sandpile model of self-organized 

criticality on 2D square lattice. A combinatorical method for evaluation of height probabilities is 

proposed. Exact analytical expression for the fractional number of sites having height 2 is obtained. 
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Sandpile models originally proposed by Bak, Tang, and Wiesenfeld [1] attract 
now a lot of attention as the simplest models that capture essential properties of the 
self-organized critical state (SOC). Recently, Dhar [2] has shown that the sandpile 
automaton model has an Abelian group structure which permitted him to find the 
total number of allowed configurations in the SOC state. Also, he found the corre
lation function measuring the expected number of topplings at a given site due to a 
particle added at another one. 

Seeking a more direct characterization of the SOC state, Majumdar and Dhar 
[3] determined P(I), the fractional number of sites having height 1 and Pll(r), the 
probability that two sites separated by a distance r both have height 1. However, 
the problem of finding the other height probabilities and correlations between them 
turned out more difficult. So far, these quantities have been calculated analytically 
only for the Bethe lattice [4]. The first numerical estimations of P(2), P(3), P( 4) 
for the square lattice were made by Zhang [5] for a model with continuous heights: 
P(2) = 0.16; P(3) = 0.32; P(4) = 0.42. The related data for the Abelian sandpile 
model on the lattice of linear sizes 30,40 were obtained by Erzan and Sinha [6]: 
P(2) = 0.17 ± 7%; P(3) = 0.31 ± 9%; P(4) = 0.45 ± 3%. The most accurate 
calculations for a lattice size 672 were undertaken by Manna[7] who found P(2) = 
0.174; P(3) = 0.307; P(4) = 0.446 with typical errors of an order of 0.003. Attempts 
of analytical determination P(2) showed a very slow convergence of cluster series [3] 
and gave only the lower bound P(2) 2: 0.131438. 

In this letter, I present a method leading to exact solution of the problem in two 
dimensions. In particular, I give an analytical formula for P(2) that reads in the 
limit of an infinitely large lattice: 
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The numerical evaluation of the integral (2) leads to P(2) = 0.1739.... The 
solution is based on an analogy between configurations of sandpiles and spanning 
trees, Le., tree-like graphs covering all sites of a given lattice. 

We start with recalling the definition of the model. Consider a large square 
lattice L consisting of n sites. The sandpile is characterized by integer heights %i 
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at all sites i and is specified by two rules. (i) Adding a particle at a random site: 
Zi -+ Zi + 1; (ii) The toppling rule: if any Zi > 4, then Zi -+ Zi - 4 and zi -+ Zi + 1, 
Ii -;1 = 1. In a stable configuration, the height Zi at any site i takes values 1,2,3,4. 

Following Dhar [2], we define a forbidden subconfiguration (FSC) as any subset 
F C L of sites if the corresponding heights {zi},; E F, satisfy the inequalities: Zi ~ 
coordination number of ; in F. A configuration that contains no FSCs is called an 
allowed configuration. 

Dhar proposed a recursive procedure called the burning algorithm to determine if 
a given configuration is allowed. One deletes step by step from a given configuration 
any site; whose height Zi is greater than the coordination number of ; in a lattice 
resulting after the preceding step. If in the end the lattice becomes empty, the 
configuration is allowed. The number of stable allowed configurations is given by 
the remarkable simple formula [2]: 

N = detfl. (5) 

where fl. is an n x n discrete Laplacian matrix with fl.ii = 4 if i = ;; fl.ii = -1 if 
Ii - ; I = 1, fl.ii = 0 otherwise. 

For a given lattice site io, the set of allowed configurations can be divided into 
four subsets 81,82,83,84. These are defined as follows. A configuration C belongs: 
to a subset 81 if it remains allowed after all substitutions Zo = 1,2,3,4 at io; to a 
subset 82 if it remains allowed for Zo = 2,3,4 and becomes forbidden for Zo = 1; to 
subset 83 if it remains allowed for Zo = 3,4 and becomes forbidden for Zo = 1,2. 
The subset 84 contains configurations which are allowed only for Zo = 4. The height 
probabilities P(l), P(2), P(3), P( 4) now can be written in the form: 

P(l) = ~; P(2) = P(l) + :;;P(3) = P(2) +:; P(4) = P(3) + ~ (6) 

where Ni is the number of allowed configurations in the subset 8i, i = 1, ... ,4. 
The description of the subset 81 is given by Majumdar and Dhar [3] who obtained 
P(l) = 2/7r2 

- 4/7r3
• 

Let us consider the subset 82. Denote the four neighbor sites of io bY;1,;2,j3,;4 
numbered in clockwise order. By definition, the substitution Zo = 1 converts an 
arbitrary configuration C E 82 into a forbidden one C'. It means that FSC appears 
which contains the site io with Zo = 1, one of the sites ;1, ... ,;4, say ;IJ with Zi1 ~ 1 
and some Ie connected sites(1e ~ 0) inclu.ding none of the site8 ;2,;3,;4. (If one of 
;2,;3,;4 also belongs to FSC, then the configuration C' remains forbidden after the 
substitution Zo .:.. 2). 

Let S(C) be the FSC resulting from the substitution Zo = 1 in C. We construct 
a lattice L' in the following way. We delete the boundary bonds connecting the sites 
in S( C) to the rest of the lattice L with the exception of the only bond connecting 
the site io with one of the sites ;2,;3,;4 ( ;2 for definiteness). For each bond deleted, 
we also decrease the maximum height allowed at the two end sites of the bond 
by 1. In this way, we obtain a new toppling rule matrix fl.'(S) which depends on 
the form of a given FSC. Due to coincidence burning procedures, the set of all 
allowed configurations on the lattice L' is in one-to-one correspondence to the set of 
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configura.tions C which genera.te S by the substitution Zo = 1. As the sites j1, ... ,j4 
are equivalent and three possibilities Zo = 2,3,4 contribute to 82, the number of 
allowed configurations in 82 is 

N2 = 122: detfj.'( S) (7) 
s 

where the sum runs over all possible FSCs containing the sites io, jl and none of the 
sites j 2 , j 3, j 4· 

Let us now look at (5) and (7) from a different point of view. To further simplify 
the problem, we specify the boundary conditions as follows: fj... = 3 if i belongs to 
the edge of L, fj.'i = 2 if i belongs to one of three corners and fj.ii = 3 if i coincides 
with the fourth corner denoted by *. 

Definition A subgraph G of L is a subset of vertices and bonds of L such that it 
forms a graph. Denote by II(G), JJ.(G) and ,,(G) the numbers of vertices, connected 
parts and internal loops of G. A subgraph T is a spanning tree of L if II(T) = II( L), 
JJ.(T) = 1 and ,,(T) = O. 

According to the Kirchhoff theorem [8], detfj. is the number of spanning trees 
of the lattice L. By construction of fj.'(S), the sum E detfj.'(S) is the number of 
spanning trees T' satisfying the following conditions: . 

(a) Each T' contains the bonds iOjl and ioj2; 
(b) Deletion of the bond iOj2 divides T' into two connected subtrees Tl and T2 

such that the sites io and jl belong to Tl and the sites *,j2,j3,j4 belong to T2. 
(c) The bonds iOj3 and ioj4 are always absent among the bonds of T'. 
It is convenient to introduce a different description of tree configurations. Let 

each lattice site i except * contain an arrow which can be directed from i to one of 
its nearest neighbors i'. We say that an arrow generates a path ii' from i to i'. A 
collection of path of the form i1i2, i2i3, ... ,ik-lik is a path i1ik from il to ike If the 
site ik coincides with iI, the path ilik is closed. 

The configurations of arrows generating no closed paths are in one-to-one corre
spondence to the spanning trees of the given lattice. Indeed, let us ascribe to each 
vertex i of the tree an arrow directed from i to the nearest neighbor i' for which 
a distance (the number of connected bonds) between i' and * is minimal. We get 
a configuration of arrows which generates no closed paths. Conversely, consider an 
arrow configuration. The absence of closed paths implies that each generated path 
ends at the site *. Then a collection of bonds belonging to all paths forms a spanning 
tree having the root *. ' 

Now, we can reformulate the rules (a),(b),(c) in the arrow language. It follows 
from (a) and (b) that the arrow at io is directed to j2 and the arrow at jl to io. The 
condition (c) implies that arrows at i3 and i4 are directed anywhere but not to i o. 
The cond~tion (b) implies also that all paths starting at the sites of Tl pass to * via 
jl' On the contrary, there are no paths from the sites of T2 to il ( and consequently 
from i4 to il ). To fulfill the latter condition, we put one more arrow at io directed 
to j4 and demand that the new configuration of arrows is also acyclic, i.e., it does not 
generate any closed path. The resulting combination of arrows at io, iI, i2, i3, i4 
denoted by Co is shown in Fig.l. Our problem, therefore, is reduced to finding 
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N(Co), the number of acyclic configurations of arrows containing Co. Taking into 
account (6) and (7) we get the following intermediate result 

P(2) - P(l) = 4N(Co) (8)
N 

Enumeration of trees or arrows configurations obeying the formulated rules comes 
out of validity of the Kirchhoff theorem. To introduce the necessary improvements, 
we shall consider a combinatorial content of this theorem. 

Let ~(z, y) be a n x n matrix with elements ~i;(3:, y) = y if i =j, ~i;(z, y) = -z 
, if Ii - j I = 1, ~i;(3:, y) = 0 otherwise. It is easy to show [9] that the function 

g(z,y) = det~(3:,y) (9) 

is the generating function of all possible configurations of closed paths each bond of 
which has the weight 3: and each path brings a minus sign. The paths have no self
intersections and no two paths have a common lattice site. Sites not belonging to 
any path have the weight y. At Y =4 and 3: = 1 (9) coincides with (5) and works as 
the well known inclusion-exclusion principle [10]: in the expansion of determinant, 
diagonal elements of ~(3:, y) generate all possible placement,s of arrows and non
diagonal ones exclude those generating closed paths. 

If a given site contains two fixed arrows, action of the inclusion-exclusion prin
ciple becomes more complicated. In contrast with the standard acyclic situation, 
configurations of arrows may appear which generate two closed paths having com
mon sites: a path PI of type i Oj2 ... j l io and a path P2 of type iOj4 ...jliO (Fig.1). So, 
our task consists of two parts. First, we should provide cancellation both of PI and 
P2 • Second, as configurations containing PI and P2 simultaneously will be excluded 
twice (due to PI and P2 ), we must return these into the expansion. 

The first problem is relatively simple. We introduce two matrices ~(1) = ~+ 6'(1) 

- ~d ~(2) = ~+ 6'(2)' The defect matrix 6'(1) should be such that the following matrix 
elements [i,j] of ~U) equal zero: [io,j'] where j' is any nearest neighbor site of io 
except j2; [il,j"] where j" is any n.n. site of jl except io, and also elements [il, io] 
and [i4, ioJ. The matrix 6'(2) converts to zero the following elements of ~~;): [io,j'] 
where j' is any n.n. site of io except j4; [il,j"] where j" is any n.n. site of jl except 
io, and elements [i2, io] and [il, io]. In addition, the matrix element [it, io] becomes 
-E'. 

Then, according to the Kirchhoff theorem, det~(l) enumerates all possible con
figurations of arrows containing the subconfiguration Co except the arrow directed 
from io to j4 and generating no closed paths including Pl' The other expression, 
lim[det~(2) / E'] as E' -+ 00 gives all configurations containing Co except the arrow 
directed from io to j2 and generating precisely one closed path of type P2 weighted 
with minus sign. The sum of these determinants gives configurations which contain 
Co, generate neither PI nor P2 separately and, possibly, generate a combination of 
PI and P2 having a form of a a-graph (Fig.1). Each a-graph being excluded twice 
brings a minus sign. 

The second problem consists in enumeration of arrows configurations generating 
a a-graph. This is a crucial point of the solution. Let us first describe the a-graph 
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more explicitly. For a given site i of a subgraph GeL, denote by deg(i) the number 
of its neighboring sites j E G for which the bond ij also belongs to G. A a-graph 
is a subgraph of L containing the sites of two types: sites j with deg(j) = 2 and 
two sites, io and it, with deg(io) = deg(i t ) = 3. For a a-graph in Fig.1 the site io 
is surrounded by three sites j1, j2, j4 and the site it by the sites a., b, c. The second 
group of sites may be oriented arbitrary with respect to the first one. 

We can try to construct a a-graph as follows. For fixed positions of the point 
i1 and its neighbors a., b, c we should define a generating function of arrow config
urations which generate three paths 11'"1,11'"2,11'"3 starting at sites a, b, c and ending at 
sites j2,jO,j4' The combination of paths 11'"1,11'"2,11"3 is equivalent to a a-graph (with 
inverted arrows on the bonds belonging to two of them). But a generating func
tion of type (9) generates only closed paths having no endpoints. To overcome this 
difficulty, we add to the original squue lattice L three " bridges" , additional bonds 
connecting the sites a. and j2, c and j4, band i o• Accordingly, we introduce the 
matrix ~(3) = fl. + 5(3) with a defect matrix 5(3) such that the three new nonzero 
elements of ~(3) appear: li2, a.] = (j4, c] = rio, b] = -e. As above, the element li3, io] 
becomes zero. Also, 5(3) converts to zero the elements [it, j'] where j' is any n.n. 
site of i l except b. Then, applying the formula (9) to the new lattice I, we conclude 
that the expression lim[detfl.(3)/e3] as e --+ 00 gives all possible configurations of 
arrows on I generating either three closed paths of type j2a ... j2; iob...j1io; j4C...j4 or 
a single closed path of type j20,...j1iOb...j4C...j2 or of type j20,...j4C...j1iOb... j2' In both 
cases the arrows of closed paths belonging to the lattice L form the paths 11'"1,11"2,11'"3 

and therefore the desirable a-graph (with minus sign). Summation over all possible 
positions of the site i1 and its three n.n. gives the necessary improvement of the 
inclusion-exclusion expansion. 

Remark It is easy to check that the appearance of two closed paths passing via 
three bridges is forbidden in the 2D case for topologic;:al reasons. It is not the case 
for the 3D lattice. As the control of sign is impossible in the presence of both even 
and odd numbers of closed paths, our solution is restricted to the 2D case. 

Practically, however, it is more convenient to use three different matrices fl.il (L), 
LliL (r) and LliL (T) instead of Ll(3) to describe situations where the site i1 is a n.n. 
of io or coincides with it. The definition of these matrices is clear from Fig.2 where 
broken lines denote new matrix elements weighted by -e and double lines denote 
the element (j3, i o] = O. The rest of elements coincide with those of fl.. Taking into 
account the left-right symmetry, we obtain the total contribution of configurations 
generating a a-graph : 

N(a) = - c1i.~{:E'detfl.iL(L) + E"detfl.iL(r)+
'1 '1 

(10) 

where the first sum runs over all lattice sites except j2, j4, io and the second one 
except j2, j4, io, j3' 

Combining (10) with previous definitions, we obtain 

N(Co) = detfl.(1) + lim detfl.(2)/e + N(a) (11) 
c-oo 
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The calculation of N(Oo)/N is straightforward due to the formula (detll')/(detll) = 
det(I- G6), where the matrix G = Il -1 and the matrix 6 = Il' - Il. The non-zero 
elements of defect matrices in (10) and (11) occur only in four rows and columns. 
So, one needs to calculate merely 4 x 4 determinants, whose elements are given in 
terms of matrix elements of G. Summing over all positions of the site i 1 we get the 
quoted formula (1). 

The developed technique may be applied to the evaluation of P(3), P( 4) and 
various correlation functions but the latter need a more elaborate consideration. 

I gratefully acknowledge hospitality at the Dublin Institute for Advanced Studies. 
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Figure captions 

Fig.!. The configuration of arrows responsible for N( Co). 


Fig.2. Sites and bonds contributing to the definitions of defect matrices: (a) Lli1.(L); 

(b) Ll;.(T); (c) Lli1 (r). 
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