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Abstract

The problem of predicting the W mass in the standard model is considered. Renor-
maligation is performed by fitting the bare parameters of the Lugrangian in terms of three

data points, namely a,Gr and Mz. The p—parameter is a computable quantity and no
special definition of sin® §,, is introduced.
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Electroweak interactions are now entering in & new era of precision experiments. In
a systematic investigation of the validity of the standard model we must therefore con-
sider the radiative corrections as an indispensable part of the verification of the theory.
The model contains three free parameters, namely g,s9 and M. The relation of these
parameters to measurable quantities is the content of a renormalization scheme.

A first example of the extension from QED to the standard model of a renormalization
scheme is perhaps given by the calculation of Ross and Taylor [1]. 'However the first
complete calculation of ete™ — u*u~ in the standard electroweak theory was performed
in ref.[2], where renormalization was implemented in a way that has become known as on
shell scheme. At that time this procedure was understood as a sort of compromise because
admittedly some very interesting radiative corrections to vector boson masses were missing.
Renormalizgation from low energy data was thereafter explained in full details by Green and
Veltman (3], leading to the vector boson mass shift discovered independently by Veltman
(4] and Antonelli, Consoli and Corbd [4]. Since then the on shell scheme has become
very popular and therefore the definition of sin?4,, = 1 — M3, /M3, proposed by Sirlin
[5], is more or less commonly accepted. Another fundamental ingredient of the standard
model is the p—parameter, introduced by Ross and Veltman [6]. The previous definition
of sin? 8,, makes p equal to one by construction, while the importance of the p—parameter
for confrontation with experimental data has been pointed out and repeatedly reviewed
by Veltman [7].

Here we want to emphasize once more the importance of a renormalization scheme were,
given the data, we subtract radiative corrections and determine g, #y and M. Once three
measurements are obtained the rest must follow because of gauge invariance. As soon asa
fourth measurement will be available, for example the W mass, then we can compute the
p—parameter. Our scheme [8,9] is therefore nothing more than a set of fitting equations

as introduced by Veltman in a prophetic paper [10] on mass differences in the standard
model.

One quantity we can predict from the knowledge of «, Gy and Mg is the W mass. This
is of course done in the on shell scheme by introducing the factor Ar. Here we give our
solution for Mw in a scheme where p is a computable quantity.

An unwanted feature of the standard model is that the Z® —- transition at ¢* = 0 is not
sero. A solution has been given in different approaches by Kennedy and Lynn [11], Hollik
[12], and one of the authors [9]. Following ref.[9] we start with a triplet of vector bosons

B: and a singlet B). Before diagonalizing the lagrangian we introduce a new coupling
constant g

2
G=9(1+¢’'N =g [Hf’-r—,l?.(o.M,M)]

where By is the scalar two-point function [2]. Defining A, and Z fields in terms of g gives
for the quadratic part

2
Ly=-MW}w, - g%— 2,z +§°M°T (z;z: - if Z)A.+ 2W,,+W;) +0 (3"




Charged and neutral currents receive extra contributions
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C3&* = - LT [Whop (1415 e + W e (14°) 4]
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With this choice the vector boson self-energies are modified. Dropping the bar we get
L

16x3F

3
Szz = ——m,,, 5 [(S3z — 32727 MT) — 253 (53, + 167 M?T) + 5§ p* 11,

3
161!" [(5021 +167" M’T) - o} p* 1,

Sz, =
3
Sww = 19— [(Wyw + 3 Whyw) 2* + (v — 3277 MPT) + 3Shyy]
with
O,y =1 -12B5,(M,M) + 7 By(M, M)
+ 42 [B,(m.,m,) + § B!(m.,m,) + % By(my, '"J)]
14

5%, =9’ {} — 10 Bs;(M, M) + 12 By(M, M)
+ 3 [Bs(me,ma) + 2By(ma, my) + By(ma,ma)l} ~ 2 M Bo(M, M)
!

S2s=p"0%z+ X%z
nzz=l QB;"(M,M)'I"?Bo(M,M)*Bu(Mo,m')
— By(My,m,) — 1 Bo(My,m,)
+ 1Y [By(me,me) + By(m,,m,) + 3 By(my,m,) + 3 By(mg,my)]
F

2%z = —2M*Bo(M, M) + } M3B,(My,m,,) + $ M} Bo(Mo,m,,)
- % m: Bn(Mo.m,,) - }m:Bo(Mo,m, )
=13 [m2Bo(m,,m,) + m3Bo(m,,m.)
J;

+3 m:Bo(m., m.) +3 m:Ba(m‘,ﬂlg)]

Iww =3 (M — M?)By (Mo, M) + § (13M] — 21 M) Bo( Mo, M)
+ %(M’ - m:)B;(M,m,,) + }(5M3 - m:)BO(M’m.)
+ E [(mf - m:)B,(m,,m.) - m:Bo(m,,m.) + 3(m} — mi)By(m., my)
7

-3 m:Bo(m.,mg)]
Zhw =2(M? - M}) [2B:(Mo, M) + Bo(Mo, M)} — 2 M? [2B4(\, M) + Bo(A, M)]

MYy w =13 — 9B8;,(My, M) ~ 9B,(Mo, M) + 1 By(Mo, M)
- Bn(M,m,) - Bl(Mvma) - }Bo(Mlml)
+ 22 lall(mv’mc) + Bl(mmml) + 3Bli(muvmd) + 3Bl(mttmd)]
J

Oy w =8 Bay(Me, M) — 2 Bo(Mo, M) + 8 By(Me, M) — 8 B3y (A, M)
—8B,()\, M) +2B,(), M)

where By = 2 B3, — By and ) is the photon mass. In a one loop calculation for the electric
charge we find a replacement (3]

dra=g's}(1 +ba), ba =8 4 5V 4 67 4+ 657

where §% represents wave-function factors given in ref.[3] in terms of B form factors. Two
vertex diagrams give §¥ which can be cast into the form

2
v__ 9§ vo +1
8 T 32x3 [C" ©) -

Pl

0:/(0)]

where vy = 44} — 1 and using the C form factors (6]

Crs(#) = —2C3+(Cr1+Cas) s +1, Cy(s) =6C3—(Co+Cr1 +Cas)s~1

The non e.m. contributions add up to a non zero result

W 4+ =

9
673 (A—-ln M')

where A = —-2/(n — 4) + v — In x. Also vector bosons give rise to a novel feature

Z1 - _yy €0 524(0)
§47 = v.” M #0



Indeed the Z° — 4 transition at sero momentum is

S§z40) = _8:’ 20 2 (A-1n M?)
In our approach the following happens
3
t d ztra g
§%7 =0, W e =0, = (A-ln M)

where §*°¢"* is the contribution from the extra eey vertex. At the same time the infinite
partsin the eeZ® vertex cancel against the extra eeZ° vertex. With the outiined procedure
we only need to worry about the photon self-energy diagrams. The combination gss = ¢
is easily fixed in terms of o from ep scattering

The second experimental quantity we need is given by G or rather by the muon lifetime
1 m}

gl
7. 192#° 32M*

c.m.___?_ ?2_ 2
8 _21(4 ”)

and the contribution to 6":’“" from wave-function factors, four vertex diagrams, five box

diagrams and the extra vertex from LEF£* , which we call 254, is infrared and ultraviolet
finite

(1 +6;.m. +6:elk)

where

7—4s}
433

bg = 87 [3 + In cg] +36m™

The combination M2/g? is fixed by our second fitting equation, obtained from u—decay
when we include W self-energy diagrams

M? 1438 w T T
;.’_ = —-a}ﬁ + 2n7 Eww(0), Zww =Zww + 5 Civw

A bar implies that the corresponding function has been opportunely subtracted. The third
fitting equation, namely the position of the Z2° peak, gives

M?
a = MZ+ 16 6a Taoaa Re [Szx( ~M3) - 26353, (-M}) - s4M31,, ("M;.)]
=Mz+ oo ,,Refz( M3)

The previous equation defines fz(p*). Inside the function fz we used the zero’th order
value for 3, which follows from the fitting equations

2xa

3;:.%[1- I_GFM;]

Up to first order the solution for s} is found to be

Once more the corrections to s} are not finite. To determine Mw, for instance from the
total cross section of ete™ — W*+W—, what we need is

2
:A =
I OW=FEM — Sww (@)

The pole of the propagator, p? = ~ M3, gives Mw. First we introduce
= =
fw(@®) = (Myw + 33 Myw) P’ + Zww + 3 Show
Since

2 3 -1
2 - g_ M _ 1 2
9'Aw = [g, M T fw(p )]

the second fitting equation gives

BG'p +l+Ja+G

-1
v Tww(0) - f W(P’)]

’Aw 8Gp [

Finally we need Gr/g?, which can be derived from the remaining equations



Gp 1 H GF .,
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The W propagator is

=2

a 3
9’Aw =8Gpc} {—z +3%+ TET“'T:H-H(O)" + (1 -3 - —z) %be
PR o %

Gpc.

~ -1
Ewwl(0) - fw(p")] - 2‘303 % [Eww(o) Re fz (-M3)] '}

with z = — 2/M} As a first step we use the explicit expreuionl for the self-energies and
prove that all ultraviolet divergent factors cancel out in the above formula. In this way
the W propagator is finite and scale independent. The first term in braket, —z + €3, is
nothing but the lowest order pole. The one loop corrected result is given by the zero of

fod =2
..3) COGG

- a a3
Fu()==s+8+ SaBan 0+ (1- 5
Gre;
+ 2" 22 [Eww(0) ~ Re fw(—zM3)]

20:; zc'3 [Eww(0) — Re fz (-M3)] =

For the numerical evaluation of Mw we split II,, into hadronic part plus rest [12]

0,,(0) = I} (0) + I4(0),  MA,(0) = Rell%, (—M3) — Rel%:** (—M3)

where I**¥(p?) = II(p?) — II(0). The first term is computed perturbatively with m, =
45MeV,my = T9MeV,m, = 1.35GeV,m, = 155 MeV and m;, = 5.3GeV. For the
second one we use effective quark masses, derived from a fit to a dispersion integral [12],
m, = my = 0.041 GeV,m, = 1.5GeV,m, = 0.15GeV and my = 4.5GeV. The top quark
mass is left as a free parameter. For large m, we use the asymptotic expressions for the B
form factors [9] to obtain

» Grm? &
Fw(z)~ -z ++3 i,' 0

z
a-3

Thus Mw clearly increases with m,, a situation which has an obvious correspondence with
what we get from low energy data. There Mz is not input parameter and §M3, ~ const,
SM3 ~ —m?/M32 as m( — co.

Data points are now a = 1/137.0359895 and V2Gp = 1.16637 x 1075 GeV~2. As a
result for Mz = 92GeV we find My to be

W mass (all masses in GeV)
m,/my 10 100 1000
50 80.87 80.80 80.66
100 81.14 81.06 80.92
150 81.42 81.35 81.21
200 81.77 81.70 81.55

We have made several checks for our numerical calculation. The B form factors are
computed using the FORTRAN code QFORMF [13], written in REAL*16 precision for the
VAX/8600. Cancellation of ultraviolet factors is guarantee since the results are invariant
against variations in A, the quantity substituted for 1/n — 4 in the various divergent
functions. Finally we have used a,Gp,Mw and Mz as input in order to compute p
according to the results of ref.[9]. By requiring p = 1 we obtain a value for m, for
each pair My, Mz, for example Mz = 91.9GeV and Mw = 80.9GeV correspond to

= 94.11GeV ( when my = 100GeV). Reversing the procedure we use the same
value of Mz and the derived m, to compute M. We found agreement, within few MeV,
between the two values of M.
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