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Abstract 

The problem of electroweak radiative corrections in the standard model is considered. 
Renormalization is discussed by fitting the bare parameters of the Lagrangian in terms of 
three data points. The p- parameter is considered and its importance for confrontation 
with experimental data is reviewed, expecially for the case where vector boson masses are 
input parameters. 
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Recent years have shown a general consensus on the fact that electroweak interactions 
are entering in a new era of precision experiments. In a systematic investigation of the 
validity of the standard model we must therefore consider the radiative corrections as an 
indispensable part of the verification of the theory. 

The central point in this issue is the comparison between theory and experiments, to 
be performed with the e+e- colliders going into operation, which requires at. least th~ee 
measurements. The model indeed contains three free parameters, not countIng fermton 
masses and mixing angles in the quark sector. The Higgs mass is also a free parameter 
but the measurements relevant to SLC/LEP are weakly dependent on m H , the so called 
Veltman's screening theorem. 

Most radiative corrections are less than 1% but as soon as the data will be better than 
1% we must follow a well defined and unique procedure [1]. Given the data, subtract 
radiative corrections and determine the parameters g, Ow and M. Once the parameters 
are fixed we are left with the problem of finding a gauge invariant quantity which represents 
the standard reference point. Indeed in gauge theories we are facing a constraint of internal 
consistency rather than a problem of parametrizing the data. If three measurements are 
obtained the rest must follow because of gauge invariance. A convenient way to realize 
this unambiguous procedure is to study the p- parameter [2]. 

A well known definition of p requires the knowledge of vector boson self-energies at low 
momentum. If Sij (p2) represents the i - j transition (i = W, Zo , l'), we have 

Co = cos Ow being the cosine of the weak mixing angle. The deviation of p from one 
signals the degree of isospin breaking as observed in the form of mass differences between 
the members of fermion doublets as well as a drastic departure from the minimal Higgs 
sector. In short p is sensitive to the interaction of vector bosons with fermions and possibly 
other objects and the corresponding effects are visible even if the masses of these objects 
are larger than 100 GeV. Disregarding radiative corrections the result p ~ 1/(2 I) was 
proven in [2], where I is the highest weak isospin found among Higgs particles. In the 
minimal version of the standard model p = 1 at lowest order. This expression for the 
p- parameter follows from using low energy data as input. Since in this case masses are 
not measured directly we have to consider low energy cross sections as p- decay and VJJ- e­
scattering. However the original definition goes well beyond the low q2 region. If M, Mo 
and Co are the bare Wand ZO masses together with the bare cos Ow then with 

the Higgs ~I = 1/2 rule implies p = 1. The bare parameters can be fixed by the knowledge 
of three experimental data, each of which is in principle defined at a different scale. It 
is evidently important to extend the q2 rv 0 considerations to q2 rv Mlv, Mj.. From this 
point of view the precise values of M wand M z will be a crucial test of the whole structure 
of the standard model, while until now the measurement of p from low energy data has 
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represented our best window on unexplored energy scales. 

Mz will be measured to within a fraction of a percent and we may expect that in the 
future precise measurements will be available from angular distributions in W decay or 
total cross section in W+W- production. For the three data points we may use it, GF 

and M w. The measure of M z represents a constraint on the internal consistency of the 
theory reflected by the value of p. With the values of the masses at our disposal p - 1, 
computed from the previous definition, signals new physics and its importance must be 
reevaluate well beyond considering p as a phenomenological parameter to enter ve or v 
hadron interactions. 

For these reasons we advocate the reinstatement of the original interpretation as given 
in [1-3] instead of considering p as an additional parameter to fit the data. 

The p- parameter is given by the bare parameters of the theory which are fixed in 
terms of experimental quantities and in a near future we will be in a position where to 
test the region q2 '" M}, Mlv. This is not the same as defining a p(q2) with p(O) fixed 
by low energy data. First consider q2 = O. If we only include fermions into the radiative 
corrections then Szz(O) is actually equivalent to S33(0), namely we may put s~ to zero in 
the corresponding self energy. This remains true when we include vector bosons as long as 
the renormalization is such that for the ZO - 'Y transition we have Sz-y(O) = O. Now self 
energies appear in p because by considering low energy cross sections the measured M} is 
actually M} - Szz(O) and Mlv is Mlv - Sww(O). Therefore 

_ 
p ­

M~ - Sww(O) 
c~ [M} ­ Szz(O)] 

_ 1 
- -

Sww(O) ­ c~ Szz(O) 
M~ 

= 1 _ Sww(O) ­ S33(0) 
M2w 

All of this corresponds to a physically well defined quantity. As soon as q2 increases 
c~SZZ(q2) =1= S33(q2) and the full expressions must be used. The correct definition requires 
for instance knowledge of Sz z ( - Mi) . 

~avi~g outlined our strategy we now proceed in the implementation of a specific renor­
malizatlon procedure, namely we construct a scheme for fitting the parameters. A major 
ingredient is given by the one-loop corrected propagators of the theory. Basically what we 
have to do amounts to t.he following [5]. Consider for a certain particle all self-energy dia­
gram~ th~t do n?t cont81n any further self-energy part in the internal lines. The sum of the 
contrIbutIons wIll be denoted by S (.6oF,p2) , .6oF being bare propagators ( for simplicity 
we consider scalar particles ). Next we define functions .6.~) 

Here .60<;) = .6oF. Assuming that the limit exists we have for the complete propagator 
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In actual calculations the propagators must be calculated with a certain accuracy in 
the coupling constant. For our considerations the recipe is simple. We consider diagrams 
with one closed loop ( no self-energy loops) and bare propagators, and tree diagrams with 
dressed propagators where S is computed by considering one loop self-energy diagrams. 
Internal consistency requires that we neglect the two loop reducible diagrams, because two 
loop renormalization should be done according to the previous definition. 

Before considering dressed propagators however, we discuss some technical details con­
nected with renormalization. The way we perform renormalization avoids the explicit 
introduction of renormalization constants. Three quantities are computed, electric charge, 
Fermi coupling constant and position of the ZO peak. By comparison g, S(J and Mare 
fixed. 

9 = Ig (a,GF,Mz ) 
S(J = I, (a,GF,Mz) 
M = 1M (a,GF,Mz ) 

These quantities are by themselves infinite and scale dependent, but infinities and the 
arbitrary mass scale cancel out of all physical results, including p as it should be. Consider 
the electric charge defined to be the residue of the pole at zero momentum transfer in eJL 
scattering. In a one loop renormalization what we get is a replacement of the type [3] 

6a denotes the contributions of wave-function factors, two vertex diagrams, ; propagator 
insertions and ZO - ; transition. It is a well known fact that purelye.m. contributions, 
exclusive of photon propagator diagrams, cancel. Vector bosons however modify this situ­
ation. First we compute infinities ( and finite parts as well) containing mIL and me' They 
cancel as expected and therefore we only consider the massless limit. Consider 

6W is given in ref. [3] in terms of B form factors [6]. The two vertex diagrams give 6v 
which can be cast into the form 

where V(J = 4 s~ - 1 and using the C form factors [6] 

--~~-.~---~-~.- ----------------------­
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Cff{S) = -2C24 + (Cll + C23 ) S+ 1 

Cf{s) = 6C24 - (Co + Cll + C23 ) s-l 

The non e.m. contributions add up to a non zero result 

where a = -2/{n - 4) + ,-In?T. Also vector bosons give rise to a novel feature 

Indeed the ZO - , transition at zero momentum is 

Being SW +SV +Sz~ different from zero we seem to loose a very appealing aspect of QED, 
namely the possibility of expressing electric charge renormalization via the summation of 
photon self- energy diagrams alone. 

The same problem has been considered and solved in a different approach to radiative 
corrections by the authors of ref. [4]. Here we supply our solution. See however also the 
approach of ref [7]. Start with a triplet of vector bosons B! and a singlet B!. The relevant 
terms in the interaction Lagrangian are 

. ( B3 + "Bo£, -'!.. (- -) p, 9 p, 9 p, J2gW: ) ( 5) (v)- 4 v,e , '2 W-v ~g p, -gB;+g"B! 1+, e 

where for simplicity we considered only one fermion doublet. Moreover F is the Higgs 
vacuum expectation value. Before diagonalizing the mass matrix we introduce a new 
coupling constant g, related to 9 by 

Where r is for the moment a free coefficient. Next we define fields A and ZO by
p, p, 
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_g' B3 +gBO 

A - I' I' 
I' - (-2 '2)1/29 +g 

The final result follows by using 

, " So _ ", , + g" 
M 

g=g =--g, 9 = 9 , F=v12-= 
Co 9 

For the quadratic terms we get 

Charged and neutral currents receive extra contributions 

'-3 
5£"Jir" = - ;~r [w: v," (1 + ,."s) e + W; ei" (1 + i ) v] 

£iViJ4 = ~g3r (soAI' +coZ!) [el'l' (1 +1'5) e - VI'I' (1 +1'5) v] 

At this point we fix r by requiring 

1 
r = 811"2 Bo(O, M, M) 

where Bo is the scalar two-point function [6]. With this choice the vector boson self-energies 
are modified. Dropping from now on the bar we get 

2 

Szz = 169 2 2 [(S~z - 3211"2 M2 r) - 2s~ (S~')' + 1611"2 M2 r) + S~p2 II')'')']
11" C(J 

2 

Sz,), = 169 2 80 [(S~-y + 1611"2 M2 r) - 8~p2 II-y-y] 
1f' C(J 


2 


Sww = 1:11"2 [(IIWw + 8~ IIWw) p2 + (l!Ww - 3211"2 M2 r) + 8~l!WW] 

The explicit expressions will be given in appendix. The important fact to be noted here is 
the following 
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SZ'Y(O) = 0 

which makes 5z 'Y = 0 in the corrections to the electric charge. Moreover the extra ee, (J-lJ-L,) 
vertex gives rise to a contribution 

2 
5eztra = --g- (L1-ln M2)

161r2 

Thus 

and photon propagator diagrams alone contribute to the shift in e2 
• At the same time 

we consider the eeZo coupling. The infinite parts coming from wave-function factors and 
vertices add up to 

. 3 

.LeeZ = - (21r)4 i 3::1r2 CeL1 VIP, (1 + /5) U 

which is exactly cancelled by the extra eeZO vertex proportional to r. By means of the 
same mechanism all the required cancellations take place. There is no parity violation in 
low energy for the e.m.. current, no ultraviolet divergence contained in the vv/ coupling 
and moreover the neutrino charge remains zero. 

The second experimental quantity we need is given by GF or rather by the muon lifetime 

where 

If we compute 5;:eak from wave-function factors, four vertex diagrams and five box diagrams 
[3], we obtain 

The extra contribution from .LeiJa gives 

-----~.• 
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Therefore we have an infrared and ultraviolet finite correction beside W self-energy dia­

grams 

(' g2 [3 + 7 - 48~ In c2] + se.m. 
(J p. = 411"2 4 8~ 6 p. 

We are now in a position to write down the one loop dressed propagators. 

where with S we denote the corresponding S opportunely subtracted. Before constructing 
p we discuss in some details how renormalization actually works for e+ e- -t p+p-. With 
the outlined procedure we only need to worry about self-energy diagrams. In fitting the 
parameters the combination g86 = e is easily fixed in terms of 0: from ep scattering 

111
-=-+-11 (0)g2 8~ 411"0: 1611"2 "Y"Y 

Thus photon exchange in e+e- -t p+p - gives an amplitude proportional to 

where the combination of self-energies is ultraviolet finite. For the ZO propagator the 
situation is slightly more complicated. Given 

M2 
A _12 ( 2)
.u. = p + -2 - Szz P 

C6 

we first obtain 
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2 [ 2 M2 2 ]-1C9 C9 2 C9 2tl = - - p +- - - Sz Z(p ) g2 g2 g2 g2 

Using the second fitting equation, obtained from 1-'- decay, the combination M2 / g2 is fixed 

M2 1 + oG 1­
8 -2 = G + -22 Eww(O)

9 F 1f' 

where oG = 1/2op.. Therefore we get 

The third fitting equation, namely the position of the ZO pole, gives 

The previous equation defines J(p2). By combining the two equations we easily obtain a 
solution for c~/g2 

2C~ GF [- (2)]8GFMz2=1+oG+-22Re Eww(O)-J -Mz
9 1f' 

Finally tl may be cast into the following form 

i.\ =8GFM~ ;~ ([I Ha +~; Eww(O)] (p2 +M1)

G 1-:;Re [Mi/(p2)+P2!(-Mi)1-i ;:i1m!(p2)f 
2 
9 PZ1= 8 GFMk cg2 

The quantity in braket is ultraviolet finite. Inside the function J we used the zero'th order 
value for 8~, which follows from the fitting equations 
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Up to first order the solution for 8~ is found to be 

2 -2 C9 
89 = 89 ( 1 + -2 

-2 
-2 '" 

) 

C9 - 89 

'" = bG - ~ll'Y,),(O) + 2G~ [Eww(O) - Ref (-M})]
41t' 1t' 

Once more the corrections to 8~ are not finite. However the ZO - ZO propagator diagram 
together with the two ZO - I transition diagrams give a finite answer 

In conclusion we turn to the p- parameter. As discussed at length in the first part we 
assume precise knowledge of four quantities, a,GF,Mw and Mz. Suppose to fix the 
parameters with a, GF and Mw and to consider the measure of Mz as a constraint on the 
internal consistency of the theory. Solving for 92 

, 8~ and M2 we get 

-2 
2 8GFMiv 2 89 

9 = Q , 89 = 
1 + 41r Re b9 1 + 4Q

1r 
Re b. 

where 

i (2) 2 i ( 2) i ( 2)Sww -Mw = -Mw llww -Mw + Eww -Mw 

and 

41t' 1 {I [-;::0 ( 2) -0 ] -1 ( 2) -1 }b9 = ~ bG - Miv 8~ Sww -Mw - Eww(O) + Sww -Mw - Eww(O) 

~----~--~--~-~--------------------
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Also 

1 [1 -0 ( 2) -1 ( 2 )]~M = - Miv si SWW -Mw + SWW -Mw 

Now let Mo be the ZO bare mass, we get 

-2M2 
2 2 Co Z 

Co M 0 = 1 ..s.. R CI+ 41f' eVM 

I 1 { 1 [-0 ( 2) -2 -::::=0 ( 2)] si [-0 ( 2) -0 ()]~M= s~c~ -M} Szz -Mz -2soS z "Y -Mz - Miv Sww -Mw -~ww 0 

+-4 [41r ~ + II (_M2) _ II (0) _ S!vw (-Miv) - ~!vw(O)] }
So a p, "Y"Y Z "Y"Y M2 

W 

From the previous results it follows 

Miv 
p = M2-2 

ZCo 
M2 _ W 

[1 + ~p]- M2-2 
ZCo 

In ~k - SM we use Mo = Mw/co. Although the various quantities appearing in Sk and 
8M are by themselves infinite, the combination occurring for the p- parameter is finite, as 
it should be. In conclusion we consider the dependence of the p- parameter on a new as 
yet undiscovered quark doublet ( or top-bottom as well ). From low energy data we obtain 
the well known result 

If masses are input parameters then 



12 


2~ 2 
1C' Co C [3 (2 2) -2 M2 (1 -2 10 -:-4)] 1 -2 3(2 2) -2 1 mdGF °pud = 4' mu + md Co - w 2" - So + '9 So n Co + 4' mu + md So n Mfv 

+ 2 [~(m~ - m;) - ~ M~] (ci - i;) 2: ReG2 (x~) 
i 


3 M 2 (1 4 -2 + 16 -4) '""" R G ( i )
- w 2" - 3" So '9 So L...J e 3 XZ'1I 

i 

- 3Miv (! - ~ ii + t S:) 2: Re G3(X~cI) 
i 

+ 3Miv (c; - :si) 2: ReG3(X~) + 3m; (! - ii) 2: ReG1(x~) 
i i 

Where we have defined the following quantities 

1,2Xw are the roots of M~z2 + (m; - m~ - M~) X + m; - if = 0 
1,2 M 2 2 M2 2 • 0th tX Zu(d) are e roo s 0 f OZ - OX +mu(d) - tf = 

and 

The previous result follows when we express the B form factors in terms of F and G 
functions [6] 

Bo (p2, ml> m2) = i 11"2 [A -In(_p2 - iE) - ~ Gl(Z.)] 

Bl (p2,ml,m2) = _ti1l"2 [A -In(-p2 -iE) - 2~ G2(Zi)] 

B21 (p2, ml> m2) = li 11"2 [A -In(_p2 - iE) - 3 ~ Gl(Z.)] 
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~ is the ultraviolet factor, namely ~ = -2/(n - 4) + '1-ln 11", Zi are the roots of _p2 z 2+ 
(p2 + m~ - mi)z + mi - if = 0 and 

For mu > Mw, md we use the asymptotic behavior of the F, G- functions [2] 

As a consequence we find a cancellation of the logarithms in the asymptotic behavior of 
Spud and the expected result emerges 

For a very heavy quark the same result is obtained, independently from the input param­
eters, i.e. low energy data or vector boson masses. However for mtop ~ 100 - 200 GeV 
we have to use the full expression for Pud and not its asymptotic form. For degenerate 
fermions (mu = md = m) we easily find that terms proportional to GFm2ln(m 2/ Mlv ) 
and to GFm2 cancel out in the final answer when m > Mw, as expected. Actually we get 
Spud = 0(1 m; - m~ I) for mu ~ md > Mw. For light quarks, mu,md <t:: Mw we only 
need the behavior of Gn ( z) near 0 and 1 

z ~ 1, 

z ~ 0, 

This gives 

For completeness we give the explicit expressions for the functions I1,),'1" ••• , ~Ww in terms 
of B - form factors. 
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n")''')' = ~ - 12B21 (M, M) + 7Bo(M,M) 

+4 L 	[B,(me, me) + ~B,(mu,mu) + lB,(md,md)], 
S~")' =p2 {~-10B21(M,M) + 13 Bo(M,M)2

+ L [B,(me ,m2) +2B,(mu,mu) +B,(md,md)]} - 2M2Bo(M,M), 
so 	 2n0 ~O zz = P zz + LlZZ 

II~z = 	~ - 9B21(M, M) + 24
5 Bo(M,M) - B 21 (Mo,mH) 


- B1(Mo, m H) -l Bo(Mo, m H) 


+!L [B,(me,me) +B,(m",m,,) +3B,(mu,mu) +3B,(md,md)] 
I 

~~z = 	 - 2M2BO(M,M) + ! M~Bl(Mo,mH) + ~ M~Bo(Mo,mH) 


- !m~B1(Mo,mH) -lm~Bo(Mo,mH) 


!L [m!Bo(m",m,,) +m;Bo(me, me) 
I 

+3m;Bo(mu,mu) +3m~Bo(md,md)] 

~~w = ~ (M~ M 2)B1(Mo, M) + l (13M~ - 21M2)Bo(Mo, M) 


+! (M2 - m~)B1(M,mH) +l (5M2 - m~)Bo(M,mH) 


+ L [(m; - m!)B1(m", me) - m!Bo(m",me) + 3 (m~ m;)Bl(mU' md) 
I 

-3m;Bo(mu,md)] 

~~w =2(M2 - M~) [2B1(Mo,M) + Bo(Mo,M)] - 2M2 [2B1(A,M) + Bo(A,M)] 

n~w = ~ - 9B21 (Mo,M) - 9B1(Mo,M) + ~ Bo(Mo, M) 


B21 (M,mH) - B1(M,mH) - ~Bo(M,mH) 


+ 2 L [B21 (m",me) +B1(m",me) +3B21 (mU,md) +3B1(mu,md)], 
II~w =BB21(Mo,M) - 2Bo(Mo,M) + BBl(Mo,M) - BB21 (A,M) 


- 8B1(A,M) + 2Bo(A,M) 


where B I = 2 B21 - Bo and A is the photon mass. Ultraviolet finiteness for physical 
quantities can be verified very easily by using the following infinite parts 
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P.P. (~z) = (rZp2 + JL2) Ll -0 )P.P. ( SZ"Y = rzp Ll 

P.P. (~W) = (r Z p2 + JL2) Ll P.P. (II"Y"Y) = T "Y Ll 

where P.P. stands for pole part and 


32 N 19 4 N
3T"Y = - 9" " r z = "6 - 3' , 


JL2 = M; - 6 M2 - ~ L (m; +m; + 3 m! + 3 m~) 

J 
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