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Some exclusive decays of charmonium states are forbidden, in heRtt~Jblfl~:" ;~.,'.yfL..~....,....,.~;-----,-----1I 
of perturbative QCD quark models, by the helicity conservation rule, "1'eIated to the 
vector coupling of gluons to (almost) massless quarks. Among them, we consider 
here "Ie and XeO decays into pp; after discussing possible non perturbative corrections, 
we show that, assigning to the quarks a constituent rather than a current mass, one 
obtains non zero values for such processes. The values found for r(XeO -+ pp) are 
almost as large as those obtained for similar, non forbidden decays in the massless 
quark scheme, Xel,e2 -+ pp; r(TJe -+ pp), however, turns out to be much smaller than 
the experimental data, enhancing, once more, the peculiarity of many "Ie decays. 
11ass corrections to some other allowed decays, XeO -+ 1r1r and XeO into longitudinally 
polarized vector mesons, are computed and shown to be relevant. 
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1 - Introduction 

Exclusive heavy meson decays into hadrons are supposed to be a good testing 

ground for perturbative QeD: the heavy quarks in the initial state can be safely 

treated in the non relativistic, zero binding approximation, and the decays are me­

diated by the exchange of hard (large Q2) gluons, which create qij pairs which, in 

turn, hadronize into the final observed hadrons. Factorization is supposed to hold, in 

tIl at the elementary constituent interaction - the creation of qij pairs starting from 

a heavy quark pair - can be computed separately according to perturbative QeD 

rules, and then convoluted with the final hadron wave functions. Such a scheme is 

expected to work in the large Q2 limit, as advocated by many authors [1-4]. 

In practice, however, experimental information is available only for charmonium 

dt!cays [5-10], that is for a Q2 region of few (GeV)2, where it is not yet clear whether 

perturbative QeD alone should account for a correct description or other non pertur­

b'I.tive effects should still be non negligible. The comparison between the theoretical 

predictions and the experimental data shows some failure as well as some successes 

of the perturbative QeD scheme, suggesting that, indeed, at least in some cases, 

higher order or non perturbative corrections should still be carefully considered. 

The computations of the decay rates of J /'I! and XcO,c2 -i> pp are among the 

perturbative QeD successes [11-14]. The numerical values depend very strongly 011 

the choice of the distribution amplitudes of the quark momenta inside the proton: 

the choice suggested by QeD sum rules [14-16] is the one which consistently best 

reproduces the experimental data. Also XcO,c2 -i> 7r7r and pp have been computed 

[17]: again, the QeD sum rule wave functions allow a very good agreement with the 

uata on r(XcO,c2 -i> 7r7r). Similar values are found for r(XcO,c2 -i> pp), but no data 

are yet available on such processes. 

In other charmonium decays, instead, the perturbative QeD scheme for ex­

clusive processes seems to fail. The reason is due to the vector coupling of gluons 

and quarks, which, in the limit of massless quarks, conserves the quark helicity: 

this simple fact leads to the "helicity conservation rule" in exclusive processes [11], 

which forbids many two-body heavy meson decays [17]. The qij pairs emitted froIn 

a gluon with high virtuality must have opposite helicities; the quark (antiquark) 

helicities sum up to the final particle (antiparticle) helicity; then, also the particle­

antiparticle pairs created, via hard gluon exchanges, in the decay of heavy mesons, 

lnll~t be in opposite helicity states. This immediately forbids, for example, the decays 
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1]e, AeO -+ pp: a spin zero particle cannot decay into two fermions with opposite he­

li<:ities. Similarly forbidden decays are "le -+ VV (V = vector meson) and J /'l! -+ 1rp 

(in general, J /'l! -+ any pseudoscalar-vector meson pair). However, most of these 

decays have been observed [10]. 

The intermediate Q2 region of charmonium decays may offer many possible 

solutions to the above problems, some of which have been investigated in the litera­

ture. The contribution of higher order Fock states (like qijg in a meson), depressed 

by powers of Q6/Q2, might still be important in some decays like J /'I! -+ p1r [4] 

and "le, XeO,e2 ,-+ w¢ [18]. Also the intrinsic transverse momentum, kT' of quarks 

inside the final hadrons might help, implying that the quark helicity does not co­

incide exactly with its spin projection onto the direction of the hadron momentum, 

so that pairs of opposite helicities quarks do not necessarily hadronize into opposite 

helicities hadrons. This correction should be proportional to kT/me, where me is 

the charmed quark mass; its full evaluation, however, is not simple and has never 

been performed. More radical solutions have also been proposed, concerning the 

Jliff -+ pTr, K* K and the "le decays, by advocating strong gluonic components inside 

the J /'I! [19] and the "le [20]; in such cases the analogous decays for the J' and the 

1l~ should be strongly suppressed, as required by the helicity conservation rule: this 

is actually observed for the J', while no data are yet available for the "l~' 

In another attempt to overcome the problems which massless perturbative QeD 

h<1.S to face in the description of charmonium decays into pp Cand in many other 

spin effects in exclusive reactions), a quark-diquark model of the nucleon has been 

introduced and widely applied [21-23]. Two quark correlations, induced by QeD 

colour forces, must exist inside baryons [24]: in the intermediate Q2 region of the 

charmonium decays such correlations behave as effective single particles, scalar or 

(pseudo)vector diquarks. The coupling of vector diquarks to gluons allows helicity 

flips, thus avoiding the decay selection rules imposed by helicity conservation. The 

quark-diquark model has been applied to the description of "le, XcO,el,e2 -+ PP [21-22] 

and J /'I! -+ rPP [23] decays: it agrees, as well as perturbative QeD, with the data 

on r(Xel,c2 -+ pp) and it also gives a reasonable account of the data on J /'I! -+ rPP· 

Concerning the decays forbidden in perturbative QeD, it yields a value for r(Xco ~ 

pp) similar to, or greater than, those measured for Xel,e2, and in agreement with 

an existing large upper bound; however, the value found for rc"lc -+ pp), although 

ltifferent from zero, turns out to be much smaller than the experimental data. 
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In this paper we consider yet another class of non perturbative corrections to the 

original perturbative QeD scheme, namely mass corrections. According to the model 

of Refs. [1-4], the elementary interactions among quarks and gluons are computed, 

following the perturbative QeD Feynman rules, assigning the light quarks their 

current mass of few MeV. In the small Q2 region, however, one might think that the 

constituent quarks, that is the current quarks surrounded by their cloud of qij pairs 

and gluons, still act as a single particle; moreover, as shown by Weinberg [25], these 

constituent quarks can be treated as bare Dirac particles, with the same couplings 

as for current. quarks in the standard SU(3)®SU(2)®U(1) Lagrangian. It is then 

natural, in small Q2 regions, to assign the quark an effective mass xmH, like in the 

naive parton model, where x is the fraction of the four-momentum of the hadron H 

(with mass m H) carried by the quark. The different values of x will be weighted by 

the hadron wave function. Massive quarks will allow helicity flips in the elementary 

amplitudes, proportional to mH/me: we expect then to obtain non zero value for 

the charmonium decays forbidden in the perturbative QeD scheme with massless 

quarks. In particular we discuss in this paper the decays "Ie -+ pp and XeO -+ pp. 

Quark mass effects were previously considered in J /'I! -+ BE [26] and "Ie -+ VV [27] 

decays. 

The plan of the work is as follows. In Section 2 we recall the general formalism 

for the computation of the decay rate of heavy mesons in the QeD model of Refs. 

[1-4] and we first apply it, with massive quarks, to the computation of r(XeO -+ 1T'1T') 

and r(XeO -+ VL VL ), where VL is a longitudinally polarized vector meson (p, K*, </»; 

SUcll decays have already been computed in the massless case [4J, with results which 

we rederive in the limit mq -+ O. We also show e.."'<plicitely that mass corrections are 

relevant. In Section 3 we compute r(XeO -+ pp) and r("Ie -+ pp) with different choices 

of the proton wave function and compare the results with the experimental data. 

\Vhile the results for XeO are almost as large as those measured for r(Xcl,e2 -+ pp), 

the results for "Ie are still much smaller than the data. In Section 4 we give some 

further comments on the peculiarities of the "Ie decays, together with the conclusions. 

2 - General formalism and mass corrections to XeO -+ 1T'1T', VLVL decays 

In the perturbative QeD scheme of Refs. [1-4] the amplitudes for the decay of 

a heavy (cc) meson at rest with quantum numbers J, M, L, S into a pair of hadrons 
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with helicities AH, AfI, are given, in the constituent helicity basis, by [21] 

where k = (k sin a cos,8, k sin a sin,8, k cos a), Ac , Ac are respectively the c and c 
relative momentum and helicities; A = Ac Ai:; the matrix rotation D(,8, a, 0) and 

1/;(k) originate from the charmonium wave function in momentum space and the C 

are the usual Clebsch-Gordan coefficients for the c and c quarks to combine into a 

state with spin S which, in turn, combines with an orbital angular momentum L to 

make up a charmonium state with total spin J. Finally, 8 is the angle between the 

final hadron H and the spin quantization axis for the initial state, always chosen as 

the z-axis, and the helicity amplitudes M for the process cc -+ H b are given by 

MJlH JlR ,JlcJl.(8; k) = L J[dz ,,][dzhl 'ifJH,).H (z", {A,,}) 'ifJir.JlR(zh, {A"j)x 
{A" },{A,} 

X T{ A,,},{A, };Ac Ac: (k; :l: h, :l:h, 8) 
(2.2) 

where by Zi and {Ai} we denote respectively the whole set of momentum fractions 

and helicities carried by the quarks inside the hadron f (f = H, ii). As usual, 

[dXi] = d:l: 1 d:l: 2 •••d:l:nr S(1 - :l:1 - :l:2'" - :l:nr), with n1 the number of valence quarks 

inside hadron f. The 1/; are the (flavour, colour, spin and momentum) final hadron 

wave functions and the T are the helicity amplitudes for the elementary interaction 

which annihilates the initial cc pair and creates new qij pairs. All final quarks are 

supposed to be collinear, moving parallel to their parent hadron, and their helicities 

SUlll up to the hadron helicity. In Eq. (2.2) we have not explicitely shown the Q2 

dependence of the hadronic wave function induced by QCD evolution [2]. 

Eqs. (2.1,2) apply, in principle, to the two-body decays of mesons with a very 

large mass, such that the virtual gluons exchanged between qq pairs all have a large 

value of Q2 and lowest order perturbative QCD gives the leading contribution. In 

such case all masses, including the final hadron masses, can safely be neglected. 

How"ever, charmonium masses, typically between 3 and 4 Ge V, might not yet be, 

as we said in the Introduction, in the above asymptotic region; certainly, in most 

ca.ses, the final hadron masses cannot be neglected relatively to the c quark mass. It 
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is the purpose of this paper, as we explained in the previous Section, to leave aside 

other possible corrections and to explore the consequences of assigning the quarks, 

throughout the paper, not their tiny current masses, but their constituent ones. 

Our computation of charmonium decay rates will be still performed in the theo­

retical scheme of Eqs. (2.1,2); the only difference is that each quark is now carrying 

a fraction z of the hadron four-momentum, so that its mass, like in the naive quark 

model, is mq = zmH; we also properly keep into account, in all the kinematics and 

phase space integrations, the hadron masses mHo The elementary quark interac­

tions are computed according to the usual perturbative QeD rules, which amounts 

to consider the constituent quarks as effective Dirac particles with the usual point­

like couplings [25]. The only ambiguity in such a scheme, as we shall see in Section 

3, might be related to the value of the mass of the quark which should appear in its 

propagator. 

In this Section we start by computing, with massive quarks, the decay rates 

f(Xco -+ 71"71", VLVL), where VL is a longitudinally polarized (Av = 0) vector meson. 

Such decays have also been computed in the massless case [17], in good agreement, 

although strongly dependent on the choice of the meson wave functions, with the 

existing experimental data. We can then check that our results reproduce, in the 

mq -+ 0 limit, the previous ones and show that the mass corrections can be very 

sizeable. 

2a. The decay XcO -+ 71"+71"­

Inserting the quantum numbers of the Xco charmoniumstate (L = S = 1, J = 0) 

into Eq. (2.1), we have (dropping all helicity indices which are trivially zero) 

-02v'21r1 J 3 M++(9, k) (2.3)A(9) = - d k tPXco(k) { 

The pion wave functions are given by: 

(2.4) 

where f1r is the pion decay constant whose value (according to the conventions here 

adopted) is f1r ~ 133 MeV. In Eq. (2.4) we have omitted, for simplicity of notations, 
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k 

(1 - Y)P2 


FIG. 2.1 : Feynman diagrams contributing, to lowest order in a., to the elemen­

tary process QQ --+ Q1Q1Q2Q2, for a quarkonium state with charge conjugation C = 
+1. In the QQ center-of-mass frame, c"" = (E, k/2), c"" = (E, -k/2), with k = 
(ksinacos/3, ksinasin/3, k cos a); pr = (E,p), p~ = (E,-i), with p = (psin9,O, 

p cos 9). a, b, i, j, k, It,2, nl,2 are colour indices; the A's label helicities. 

the colour indices and the cp are the distribution amplitudes of the quarks inside the 

pions. By using Eqs. (2.4) into Eq. (2.2) one obtains 

!; JMACAl! = 48 dz dy cp(z)cp(y) {T+--+jACAl! + 
(2.5) 

+ T_++-jACAl! - T+-+-;ACAl! - T-+-+;ACAl!} 

One has now to compute the elementary amplitudes T contributing to Eq. (2.5); 

the corresponding Feynman diagrams are shown in Fig. 2.1, where we also define 

the kinematics. 

The two-body decay of the spinless XeD is isotropic: thus, it suffices to compute 

the. elementary amplitudes T in the simplest configuration of the 1t"+ moving along 
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the z-axis «(J = 0). We do not repeat here the details of the calculation which can 

be found in Ref. [28]; one finds: 

- E2 [k sin2 
a: + 8.Aq1 .AC(z - y)p] 8Aq1 ,-Af2 8ACA i! + 

E3 }+ 4k Mx [.AQl (x + ~ - 1) sin a: .Ac sin a: cos a:] 8Aql ,-Af2 8Ac ,-Ai! ­

- i8Cf{z - y)p{m; cos a 0:>..,:>'., O:>'C:>'. + 4>'cm; ~ sin a o:>..,:>..,o:>'c,-:>'. + 
x 

(2.6) 

where 

(2.7a) 

(2.7b) 

with 

C _ 
-

. 4
-tcF91J 

9i9~ 
(2.7c) 

(2.7d) 

(2.7e) 

(2.7£) 

/2 = k .p = kp cos a: (2.7g) 

In Eq. (2.7c) CF is the colour factor which, when convoluted with the final meson 

\vave functions, yields a factor 2/(3v'3). 

We proceed by using Eqs. (2.7) and (2.6) into Eqs. (2.5) and (2.3), and perform 

the d3 k integral, by exploiting the explicit form of the xco wave function 1jJ(k) in the 

non relativistic limit 

'I/J'Xco(k) = i3y"2; IR'(O)I :3 o(k) (2.8) 
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It results 


+ -) - ,4096 3 2 !;IR'(O)I I ()
A(Xco --+ 1f' 1f' - -l ;;:; 1f' as M 4 xco f (2.9)
9v3 x 

where f = m1f'/Mx and the integral IXco{ f) is given by: 

(2.10) 

In the limit f --+ 0 the integral Ixco (f) reduces to the corresponding integral 

found, with massless quarks, by Chernyak and Zhitnitsky [4J 

(2.11) 


Finally, from 

(2.12) 

we derive 

rex --+ 1f'+1f'-) = (~) 5 2131f'2a 4(1 _ 4f2)1/2j4IR'(O)12 [2 (f) (2.13), cO 3 • 1f' M8 Xco 
X 

which, in the f --+ 0 limit, agrees with the result of Ref. [4J. 

2b .. Numerical estimates of mass corrections for the decays XcO --+ 1f'7r 

and XcO --+ VL VL 

The above results can easily be modified to the case of the decay XcO --+ VL VL, 

where VL is a vector meson longitudinally polarized, "'v 0; such decay is the only 

,)Tie allowed by the helicity conservation ru1e induced by the perturbative coupling 

of gluons to massless quarks, and has already been computed [1,4]. Again, by com­

puting it with massive quarks, we shall evaluate the relative importance of mass 

corrections and, as a consistency chek, we recover, in the limit mq --+ 0, the existing 

results. 
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The main difference between a pion and a longitudinally polarized vector meson 

is obviously the spin wave function, which now reads 

1 
~8pin(S = 1,A = 0) = y'2(I- + > + I+ - » (2.14) 

The sign difference with respect to the pion wave function (2.4) reflects in few 

changes of some signs; it is easy to realize that Eqs. (2.9,12,13) still hold true, with 

the obvious replacements m7r -+ mv, 17r -+ lv, and the only change in Eq. (2.10) 

is a different sign in front of the last line (mass correction terms). The c.p are the 

distribution amplitudes of the proper final mesons. 

\Ve are now in the position of estimating the size of the mass corrections to 

rc'tco -+ mesons) decays. The results in the two cases, mq = 0 and mq =J 0, can be 

read from Eq. (2.13) and (2.10) (and the analogous ones for vector mesons), setting, 

respectively, e = mM IMx (where mM is the mass of the meson) and e = O. Apart 

from the factor (1 - 4e2)1/2, the difference comes from the different values, in the 

two cases, of the integral Ixco( e). To give a first estimate of the relative importance 

of the mass corrections we evaluate Ixco(e) for different choices of the momentum 

distribution amplitudes c.p, taken to be of the kind 

(2.15) 

where N is the normalization factor such that f01 dz c.p = 1. 

In Table 2.1 we show the values of Ixco (e = mMIMx) for different final mesons 

(with helicity 0) and several choices of a a~d {3. For particles with uneven quark 

contents, like K and K*, we allow a to differ from (3. We also give the values of 

Ixco(e = 0), which only depend on a and {3 and not on the final mesons, together 

with the relative variation of the decay width, (r(mq 0) - r(mq = O))/r(mq = 0). 

In Table 2.2 we show the mass corrections to the results, in agreement with the 

data (when the comparison is possible), obtained by Chernyak and Zhitnitsky; that 

is, 'we compute the decay rates using the same distribution amplitudes as in Ref. [4], 

but with massive quarks. 

Few comments are now in order: 

- The mass corrections to r(Xco -+ 1T'1T'), given the smallness of the ratio m7r/mc: 

are indeed negligible; with increasing masses the corrections become larger, up 

to 40-60% for p, K* and </>. The qualitative results of the models, however, are 

not changed by the introduction of massive quarks: changing the meson wave 
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a: {3 0 m,.. mK mp mK* m¢ 

1 1 3.039 3.002 2.853 2.324 2.163 1.992 

-3 -16 -48 -57 -66 

2 2 1.764 1.764 1.771 1.497 1.416 1.324 

0 -4 -36 -45 -55 

3 3 1.472 1.475 1.501 1.282 1.220 1.148 

0 0 -32 -41 -51 

1 2 3.528 3.370 2.579 

-13 -54 

1 3 5.579 5.317 4.046 

-13 -55 

2 3 1.831 1.849 1.485 

-2 -44 

. 

Table 2.1 Evaluations of mass corrections to the decays XcO -+ MAl, for different final 


mesons. For each value of a and f3 (see Eq. (2.15», the first line gives the value of 


Ixco(e), and the second gives, in percentage, the relative variation of the decay width, 


(r(mq =j:. 0) - r(mq =O»/r(mq =0). 
' ­

functions still induces variations in the results much bigger than those induced 

by mass corrections. 

- The Chernyak-Zhitnitsky wave functions, give, in most cases, much larger results 

than the wave functions (2.15): the same is true for the absolute value of the 

mass corrections, whereas their relative values show little dependance on the 

choice of the distribution amplitudes. 

- An analogous study of mass corrections has been performed also for the Xc2 ---+ 

7r7r, VL VL decays, with results similar to those shown for the XcO. More details 

can be found in Ref. [28]. 

- The fact that massive quarks give sizeable corrections, almost as big as the zero 

mass results, for decays into particles with large masses (I"V 1 GeV), suggests that 
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mesonM [CZ(O)
XcO I~!(mM/Mx) arcz (%) 

7r 14.114 13.830 -4 

K 8.896 8.078 -21 

PL 5.357 3.902 -53 

K*L 4.820 3.468 -56 

<PL 2.736 1.828 -64 

Table 2.2 Mass corrections to the results of Chernyak and Zhitnitsky [4]. For each 

meson, the first column gives the value of I~c~ with mq = O. The second column 

gives I~c:! with mass corrections, and the third one gives, in percentage, the value of 

(r(mq ;j::. 0) - r(mq =O»/r(mq =0). 

Ina5S terms alone might be able to account for the forbidden decays TIc, Xco --+ pp. 

'Ve then turn to the computation of r(TIc, XcO --+ pp) with massive quarks. 

3 - XcO and TIc decays into pp 

Let us start from XcO --+ pp and repeat the same procedure followed for the 

decay Xco --+ 7r7r in Section 2a. From Eq. (2.1) we have that the only non zero, 

independent helicity amplitude is given by 

(3.1) 

All other amplitudes are either forbidden by total angular momentum conservation 

(A+_ = A-+ = 0) or are related by parity to A++ 

(3.2) 

The most general proton wave function, proposed by Chernyak and Zhitnitsky 

[14,15], can be explicitely written as [29] 

FN {.,pP,.xp (Zb Z 2,Z3) = 2Ap 4V6 ~(123)u.xp(l)u-.xp(2)d.xp(3) 

+ ~(213)u_.xp (1 )u.xp(2)d.xp(3) + ~(132)u.xp (1 )d.xp(2)u_.xp(3) 

http:132)u.xp
http:213)u_.xp
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+ <p(321 )d>.p (1 )u_>'p (2)u>.p (3) 


- [<p(213) + <p(312)] d_>.p (1 )u>.p (2)UAp (3) 


- [<p(321) + <p(123)] u>.p(1)d_>.p(2)u Ap (3) 


~- [<p(132) + <p(231)]u>,p(1)u>,p(2)d_Ap (3)} (3.3) 

where we have omitted the colour indices and <p(i,j, k) is a short notation for 

r.p(Xi,Xj,Xk) (i,j,k = 1,2,3). FN is a dimensional constant, analogous to the pion 

decay constant and related to the value of the nucleon wave function at the origin: 

QeD sum rules yield [14,16] 

IFNI = (0.5 ± 0.03) x 10-2 (GeV)2 , (3.4) 

in qualitative agreement with a lattice calculation [30]. 

By using Eq. (3.3) in Eq. (2.2) we have 

M++;±± = ~~ J[dzi][dYil{ [",,2(132) + ",,2(231) + (",,(132) + ",,(231)) 2] 

x T++_,++_;±± 

x T++_,+_+;±± 

x T++_,_++;±± 

x T+_+,++_;±± 

x T+_+,+_+;±± 

x T+_+,_++;±± 
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X T_++,++_;±± 

X T_++,+-+i±± 

+ [,l(213) + ,,2(312) (,,(213) + ,,(312)n 
x T-++,~++j±± } (3.5) 

where, as usual, [dzi ] =dZldz2dz3b(1-Z1-Z2-Z3); by the product of two distribution 

arnplitudes, cp(i,j,k)cp(l,m,n) we mean cp(Zi,Zj,Zk)CP(YI,Ym,Yn) (i,j,k,l,m,n ­

1,2,3). 

The helicity amplitudes for the elementary process, TAUA'l2A'l3,AlllAIl2AIl3;AcAc!" 

can be computed from the Feynman diagrams of Fig. 3.1, where we also define the 

kinematical variables (details of the computation can be found in Ref. [28]). 

By inserting their expressions into Eqs. (3.5) and (3.1) and performing the d3 k 

integration with the help of Eq. (2.8) we obtain 

A++(Xco -+ pp) = 25~1l"4a!F~IR'(O)lmp(M~ - 4m;)1/2
27v3 

1 

x [(1 - z2)YaM~ + (1 - Z2 - Y3)2m; - e2m;] 

1 

2 2]2 [ 2X { mp cP++_;++_ cP+-+;+-+ + cP-++;-++ 

yi)(l Z2 + Ya - e)M~ 

Z2 - Y2)M~ + (Z2 - Y2)2mj 
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k 

-c, Ac,j 

FIG. 3.1 : Feynman diagrams contributing, to lowest order in a" to the elemen­

tary process QQ - Q1Q2q3Q1Q2q3, for a quarkonium state with charge conjugation 

C = +1. In the QQ center-of-mass frame, ell- = (E, k/2), ell- = (E, -k/2), with 

k =(ksinacosj3,ksinasinj3,kcosa); Qi = :l:iP, Qi =YiP (i = 1,2,3), with plI- = (E,p), 

pll- = (E, -p) and p = (psin8,O,pcos8). a,b,e,i,j,k,l,ml,2,3,nl,2,3 are colour indices; 
the A's label helicities. 
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1 (:V2 - Y2)2(M~ - 4m;) ) ]
+ ( - 1 + 1 Y3 

4 2"(2:V2Y2 - :V2 Y2)M~ + (:V2 Y2)2m; 

+ 1V[~ ['P!-+;-++ + <P:++;+_+] 

1 ' (:V2 - Y2)2(M~ - 4m;) ] }
x [ - - 1 (1 - :V2) (3.6)

4 t(2:V2Y2 - :V2 - Y2)M~ + (:V2 - Y2)2m; 

where by c,ol A A 'A A '\ we mean the bilinear combinations of c,o's appearing in 
91 92 93' ~h ill Aq3 

the squared brackets multiplying TAq1Aq2A93;Aq1Aq2Aq3;±± in Eq. (3.5). 

The above amplitude, as expected, is proportional to the proton mass, m p , so 

t,hat it gives zero in the limit in which all masses are neglected. The parameter t 

appearing in Eq. (3.6) requires some explanation. In each of -the Feynman diagrams 

of Fig. 3.1 there is a quark propagator which brings a factor (9 + m)/(q2 - m 2), if q 

is the quark four-momentum and m its mass. In our scheme, where the (constituent) 

quarks are considered as Dirac particles with an effective mass xmp or ymp, it is 

not clear what value to use for the quark mass m in the propagator; we have kept 

lrace of this ambiguity by defining E = m/mp • However, in all subsequent numerical 

evaluations we shall fix E = 0; that is, we properly take into account the quark 

masses in the kinematics and external Feynman diagram legs, but stick to the usual 

perturbative QeD Feynman rules for gluon and quark couplings and propagators. 

The value of IR'(O)I, the first derivative of the radial wave function at the origin, 

ca.n be fixed from experiment. The two gluon decays of XcO,c2 are computed to be 

[31] 

r(XcO -+ gg) (3.7a) 

(3. 7b) 

where we have given, consistently with our calculation, only the lowest order results. 

The data tell us [9,32] 

r(XcO -+ hadrons) = (13.5 ± 5.3) MeV (3.8a) 



17 


r(Xc2 -+ hadrons) = (1.71 ± 0.21) MeV (3.8b) 

A.;suming, as usual, r(Xc -+ hadrons) :::::: r(Xc -+ 99), and comparing Eqs. (3.7) and 

(3.8), we obtain 

IR~co(O)1 = (0.52 ± 0.10) (GeV)5/2 (3.ga) 

IR~C2(0)1 = (0.39 ± 0.03) (GeV)5/2 (3.9b) 

The two above values, as they should, agree with each other, at least within errors. 

In our numerical computations we shall use their average value 

IR'(O)I = (0.46 0.10) (GeV)5/2 (3.10) 

From the knowledge of the decay amplitu~e we have the decay width 

(3.11 ) 

where the remaining dX2,3 and dY2,3 integrations in A++ can be performed numeri­

cally. 

The results given by Eqs. (3.11) and (3.6) depend on the choice of the proton 

Inomentum distribution amplitudes "'. In our computation we shall use the following 

different wave functions, which can be found in the literature. 

Asymptotic QeD predicts [2] 

(3.12a) 

Chernyak and Zhitnitsky [15], first modified the above expression by exploiting QCD 

sum rules, to obtain 

",CZ(xd = ",AS(xd [18.06xi + 4.62x~ + 
(3.12b) 

+ 8.82x; - 1.68x3 - 2.94] 

1vlore refined versions of the previous QCD sum rule wave function were subsequently 

proposed by King and Sachrajda [16] 

cpKS(xd = cpAS(Xi) [20.16xi 15.12x~ + 
(3.12c) 

+ 22.682x; - 6.72x3 + 1.68(Xl - X2) - 5.04] 
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DA NR AS CZ COZ KS GS 

r (2 ± 1) .10-3 0.46 ± 0.23 45±22 26 ± 13 10 ±5 23 ± 11 

Table 3.1 Values of r(;~co -+ pp), for the different distribution amplitudes considered 

ill the text. All results are in eV. Experimentally, r(Xco -+ pp) < 12000 eV. 

and by Chernyak, Ogloblin and Zhitnitsky [14] 

<p0oz(zd = <pAS(Zi) [23.814zi + 12.978z~ + 
(3.12d) 

+ 6.174z; + 5.88z3 - 7.098] 

Another possible choice is offered by Gari and Stefanis [33] 

<pGS(Zi) = <pAS(Zi) [-1.027zi + 12.307z; + 
(3.12e) 

+ 111.32z1z 3 + 25.88z2 + 9.105(Zl - Z3) - 19.84] 

and, finally, we mention the non relativistic distribution 

(3.12f) 

In Table 3.1 we show the values obtained for r(Xco ~ pp) with the different 

distribution amplitudes (DA) described above. We have used, in agreement with 

Ref. [9], a,,(Mx ) ~ 0.27. 

The same procedure can be repeated for the process TIc ~ pp. In such a case 

(L = S = 0), instead of Eq. (3.1) we have 

(3.13) 

with 
A+_(1]c -;. pp) = A_+(1]c -;. pp) = 0 

(3.14) 
A __ (Tlc -;. pp) = -A++(Tlc -;. pp) 


\Ve can now exploit the non relativistic TIc wave function 


(3.15) 



to write 
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(3.16) 

where the lV/++;±± can be computed from Eq. (3.5) and the Feynman diagrams of 

Fig. 3.1. The final result is 

. 64 4 3 2 . 2 2 2
A++(1]c -i> pp) = 'l27J37r o"FNIR(O)lmpM'7(kI'7 - 4mp) 

x /.1 dX2 /.1-Z2 (1 dY2 /.1-Y2 
dY3 [(dX3 	 1 

o 	 0 Jo 0 X2Y2 - X2 Y2 + 1)M~ 


1 

x ------------------------------------ ­

[X2Y2M~ + (X2 - Y2)2m~][x3Y3M~ + (X3 - Y3)2m~] 


1 


x [(1 - X2)Y3.L1l~ + (1 - X2 - Y3)2m; - €2m~J 

(X2 - Y2)X-1~--------~----~----------
[2"( 2X 2Y2 - X2 - Y2)M~ Y2)2m~] 

(3.17) 

The value of IR(O)I can be evaluated by comparing the computed expression 

[31J of 

r(1]c -i> 1'1') = 
16 0 2 

27m~ IR(0)12 (3.18) 

with the experimental value [34] 

(3.19) 

which yields 

IR(O)I = (0.64 0.15) (GeV)3/2 (3.20) 

Finally, from 

(3.21 ) 

We! can compute the .decay width for the process 1]c -i> pji. In Table 3.2 we show the 

values obtained with the different distribution amplitudes (DA) described in Eqs. 

(3.12). 

Let us now comment on the results summarized in Tables (3.1,2). 
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DA NR AS CZ COZ KS GS 

r 0 (4 ± 2) .10-4 1.8 ± 1.0 1.0 ± 0.5 0.4 ± 0.2 14.0 ± 7.0 

Table. 3.2 Values of r(71c -+ pp), for the different distribution a.mplitudes considered 


in the text. All results a.re in eV. Experimentally, r(71c -+ pp) = (12.1 ± 7.9) KeV. 


- As usual, the asymptotic and non relativistic wave iunctions give much smaller 

results than the other distribution amplitudes. 

- The QCD sum rule wave functions, Eqs. (3.12b-d), yield sizeable values of 

f(Xco --+ pp), in agreement with the only available experimental information 

[5J, a huge upper bound. These results are only a factor I"oJ 2 to 10 smaller than 

the values measured for r(Xcl,c2 --+ pp) [6,7,9], decays which are not forbidden 

by the helicity conservation rule and have been successfully computed in pure 

perturbative QCD schemes with massless quarks [14]. Actually, on phase space 

considerations alone, one expects the pp decay rate for Xo to be indeed smaller 

than for Xl,2' Also the Gari-Stefanis wave function, Eq. (3.12e), gives a large 

result. 

- The values of r(Xco --+ pp), obtained here with massive quarks, are somewhat 

smaller than the values obtained within the quark-diquark model of the nu­

cleon [21], where both constituent quarks and diquarks are present. A definite 

measurement of r(Xco --+ pp) would help in understanding whether a genuine 

diquark contribution is present or not; some common features of the quark and 

the quark-diquark models are expected, from the observation, made in Ref. [35]~ 

that the QCD sum rule wave functions, strongly asymmetric in the sharing of 

the proton momentum by the three quarks, correspond to a quark-scalar diquark 

configuration. 

- The results obtained for r(11c --+ pp) are not zero, but much smaller than the 

experimental data [8]: once more [27], 'Y/c decays seem to defeat any attempt 

of explanation. The values obtained here, Table (3.2), are comparable to those 

obtained in the quark-diquark scheme [21,22]. The Gari-Stefanis wave function, 

Eq. (3.12e), gives the relatively best result; it is not clear, however, if it satisfies 

the QCD sum rules, and before concluding that it indeed gives a better de­

scription of the quark momentum distribution, more detailed phenomenological 

analyses should be done. We shall comment again on the "1c in the conclusions. 
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4 - "'C decays and conclusions 

\Ve have shown that mass corrections to charmonium decays into H fI are, as 

expected, large and proportional to mH fmc; in cases where massless perturbative 

QeD gives a fair description of the process, mass corrections can be, depending on 

1nH, as large as 40-60% of the zero mass result. Such is the case of XcO,c2 decays into 

longitudinally polarized p, K* and </>. Incouraged by these results we have computed, 

with nlassive quarks, the decay widths r(Xco -4 pp) and r(",c -4 pp): the latter 

processes are forbidden in massless perturbative QeD by the helicity conservation 

rule, which can be broken by terms proportional to mH fmc. 

We have found that, using the proton wave functions suggested by QeD sunl 

rules, it is easy to obtain sizeable values of r(xco -4 pp), values comparable, taking 

into account the smaller mass of the XcO, with those measured for the analogous 

decays r(Xcl,c2 -4 pp); although there is no precise experimental value for r(Xco -4 

pji), but only a very large upper bound, we still consider significant to have obtained 

such results. Of course, a definite measurement of the process would help in clarifying 

the situation. 

The decay TJc -4 pp is different: even with massive quarks the results obtained, 

although non zero, are still consistently smaller than the data. Moreover, one should 

remember that mass corrections to other forbidden TJc decays, previously computed, 

like TJc -4 vector meson pairs, are strictly zero [27]. Other non perturbative correc­

tions to the massless QeD scheme, like those modeled in the quark-diquark scheme, 

also fail with "7c -4 pp decay [21,22]. While it remains to be seen if further correc­

tions, like higher order Fock states or intrisic transverse momentum of the quarks, 

11light help with the "7c decays, one h~s to admit, at this stage, that there is no clear 

\vay of computing them. It might be that a more drastic modification is needed, like 

assuming that the TJc is not a pure cc state but has a large gluonic component [20]_ 

In the energy region of the charmonium decays, Q2 ~ 10 (GeV)2, one expects 

several non perturbative or higher order corrections to playa non negligible role; we 

have here explored mass corrections alone, leaving aside other possible effects, like the 

Fermi motion of the quarks or higher order components of the hadron wave functions. 

The importance of two quark correlations - diquarks - has already been studied and 

found to be relevant [21], in the case of decays into pp,with the usual exception of the 

r/c- As, in the quark-diquark model, the nucleons also contain massive constituent 



22 


quarks, it is difficult to evaluate separately the pure mass corrections and the pure 

diquark ones. 

Charmonium decays are clearly in a Q2 transition region where both perturba­

five and non perturbative effects are present; moreover, the latter are of different 

natures and this makes it difficult to disentangle the various contributions. Never­

theless, a detailed study of these decays, with better and more refined experimental 

information, should yield a valuable information about the structure of hadrons in 

t.his transition region of few (Ge V)2, region of great importance for most of the high 

energy experiments. Of course, it would be most interesting to have also data on the 

dt>cays of heavier mesons, like bb bound states, to see if indeed the pure perturbative 

regime eventually takes over. 
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