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Abstract. The method of characteristics is used to study the structure of 

steady, relativistic jets containing a toroidal magnetic field component. We assume 

axisymmetry and perfect conductivity for the Buid Bows. Oblique, relativistic, 

magnetic shocks are handled using a shock fitting procedure. The effects of the 

magnetic field on the collimation and propagation of the jets are studied when the 

external medium has a constant or decreasing pressure distribution. Our parameter 

study is confined to underexpanded jet Bows which have an ultra-relativistic equation 

of st.Hk aud extremely supermagnetosonic bulk velocities. The magnetic energy 

density, however, may range from zero to extreme dominance. These simulations are 

therefore relevant to compact radio jet sources which exhibit superluminal motion. 

For slightly underexpanded jets propagating into a constant pressure external 

medium the jet structure is quite periodic. This periodicity is enhanced as the toroidal 

field strength increases and the jet is strongly pinched. Recollimation occurs whether 

or not a toroidal field is present. 

When the jet propagates into an external medium of decr~asing pressure its 

structure is very dependent upon the pressure gradient. For a pressure law p ex: z-2, 

where z is the distance from the jet BOurce, the periodic structure is lost. A non­

magnetic jet expands freely into the external medium and eventually comes into 

pressure equilibrium with it. A toroidal magnetic field cannot stop the jet from 

expanding. When p ex: z-1 a semi-periodic structure is regained; again this periodicity 

is pArt.icularly noticeable when a strong toroidal field is present. Also in this case, 

however, the magnetic field cannot prevent the jet from expanding, although it can 

reduce greatly the rate at which it does so. 
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1. Introduction 

Many observations of extragalatic radio sources show highly collimated jets of gas 

emanating from a central galaxy. These outflows, possibly composed ofelectron-proton 

or electron-positron relativistic plasma, sometimes exhibit apparent superluminal 

lUotiollS, implying relativistic bulk velocities with Lorentz factors of r '" 10 (Zensus 

and Pearson 1987). The radiation from the jets is typically highly polarized and 

follows a power-law spectrum, indicating emission by the synchrotron process. This 

characteristic signature in turn denotes the presence of magnetic fields, which, in 

many cases, will play a significant role in determining the jet structure. It is well 

known, for example, that helical fields are capable of collimating plasma streams via 

the pinch effect. In the case of high power radio jets, measurements of the X-ray 

emissivity indicate that the pressure of the surrounding medium alone is insufficient 

to confine the jet material, and therefore magnetic fields must be invoked. Moreover, 

with suitable magnetic field configurations, it is possible to reduce the tendency of jet 

disruption by Kelvin-Helmholtz and other shearing instabilities (Ferrari et al 1981). 

This would then allow the formation of jets with lengths'" 103 times their beam 

radius. 

Thus it is clear that both relativistic motion and magnetic fields play dominant 

roles in determining the structure of astrophysical jets. For this reason in this paper 

we construct jet models by solving numerically the equations of special relativistic 

magnetohydrodynamics (MHO). Our models necessarily have a number of simplifying 

assumptions; in particular we assume axisynunetric, adiabatic and steady flows 

with only a toroidal magnetic field component. These assumptions require some 

justification since real jets are three-dimensional, lose energy by radiative mechanisms 

and are turbulent to some extent. 

The two-dimensional nature ofour calculations is in the spirit of previous numerical 

jet investigations (see for example Norman and Winkler 1984, Kassl et alI990a,b,c), 

i.e. that much can be learned from such simulations before moving onto more complex 

and costly three-dimensional models. Since our jet flows are stationary we do 

not model instabilities, axisymmetric or otherwise, and therefore we are neglecting 

completely the turbulent sheath that appears in the dynamical simulations of Norman 

and Winkler and others. Sanders (1983), Wilson and FaIle (1985) and F-dlle and 

Wilson (1985) have investigated some of the properties of steady hydrodynamical jets 

in the context of active galaxies. Close to the jet source (or nozzel) steady flow is 

thought to be a good approximation and therefore structures similar to those seen 

in laboratory jets may appear. Significant portions of the jet could be steady in 

very high Mach number flows where large scale features respond slowly to pressure 

cha.nge!> (Falle 1991). Thus our interest is in the average overall structure of the jet, 

i.e. the shape of the boundary and the positions of prominent features such as knots 

and wiggles etc. which vary slowly when compared to longitudinal flow time-scales. 

Perturbation theory also indicates that highly relativistic flows are stabilized against 

shearing instabilities, and that the presence of a magnetic field enhances this stability 

still further (Ferrari et al 1981). Such results need to be verified in the non-linear 

regime by the use of high resolution time-dependent relativistic MHO codes (Oubal 

1991), however for the present we take the perturbation results to indicate that a 

turbulent sheath (if one should form) plays a minor role in the overall jet structure. 

It would be interesting to test whether the steady jet models we construct are indeed 

stable. 

Our approach to solving the relativistic MHO equations employs the method 

of characteristics, which requires that the system of partial differential equations 

be purely hyperbolic. This means that in steady two-dimensional flow the 

(magnetoacoustic) Mach number must always be greater th~ one and no dissipative 

terms can be handled. The neglect of radiation losses in the jet flow is probably the 

most serious approximation we make. Wilson (1987b) has modelled relativistic steady 

jets which are supersonic along their entire length. Many shocks occur so that the gas 

remains very hot and an ultra-relativistic equation of state (adiabatic index '"'( = 4/3) 

is appropriate. 

The method of characteristics is well suited to studying the structure of steady 

jets (Courant and Friedrichs 1948, Anderson 1982; for astrophysical applications see 

Sanders 1983 and Daly and Marscher 1988). Its power lies in the fact that domains of 

influence and dependence are modelled precisely, and thus it is possible to treat waves 

and discontinuities with high accuracy and efficiency. A number of three-dimensional 

characteristic techniques do exist, however they are complicated and, unlike the two­

dimensional ease, the approach is not unique, leading to hybrid schemes which often 

lose the original power of the characteristic approach. Therefore we have chosen to 
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start with the simpler two-dimensional problem. 

In principle our approach can handle any (axisymmetric) magnetic field 

eoufiglll'atioll, however we include only a toroidal component, he, since this is the 

most important one for collimation of the jet material (Kossl et al 1990c). It is 

probable that he helps confine the jet at the nozzel exit (Wardle and Potash 1982); a 

large he can stabilize the nozzel wall, reducing incursion of wall material into the jet 

and preventing its fragmentation by Kelvin-Helmholtz instabilities. In addition hose­

pipe motions are reduced if the toroidal field is present in a surrounding conducting 

sheath, while beam disruption due to pinching modes is reduced if velocities are highly 

relativistic. Therefore the transverse field, hi, would be large near the nozzel and 

would decay as the jet expands, while the parallel field, hilI increases due to the 

shearing of hJ.. and dominates far from the source region. A large hll at the source can 

disrupt nozzel formation, thus any asymmetry in the magnetic field configuration can 

lead to one-sided jets (Benford 1987). 

Taking into account the above discussion we aim to model high Mach number 

compact jets close enough to the nozzel region that h' dominates, but sufficiently far 

that the flow is already supermagnetosonic and therefore the gravitational influence 

of the primary energy source (a black hole or otherwise) may be neglected. 

The plan of this paper is as follows. In the next section we derive the characteristic 

and compatibility equations for two-dimensional (axisymmetric), relativistic gas 

flows with a single toroidal magnetic field component. Following analogous work 

in aerodynamic nozzel design we rewrite the equations in terms of quantities 

which simplify the task of numerically solving these equations via the method of 

characteristics. Internal shocks can occur in the jet and their trajectories must be 

tracked across the characteristic grid. Therefore in section 3 we discuss the relations 

between the values of the fluid variables on either side of a relativistic, magnetic, 

oblique shock surface. In section 4 the numerical approach is described in detail. 

Section 5 presents first some tests of the numerical code and then a parameter survey 

of the general flow properties of the jets. In particular we study the effect of an 

increasingly large toroidal magnetic field on the initial expansion of the jet in constant 

and decreasing pressure external mediums. Some conclusions are drawn in section 6. 
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2. The characteristic form of the Relativistic MHD equations 

The equations which describe the flow of a perfectly conducting, non-self­

gravitating relativistic fluid in the presence of a magnetic field are, (i) the conservation 

of baryons, (ii) the conservation of energy-momentum and (iii) Maxwell's equations. 

These may be written down as (e.g. Lichnerowicz 1967; Anile 1989), 

Vo(pUO 
) = 0, V o Toll =0, vo(uahll ullha) = 0 (1) 

where p is the rest-mass density, ua is the 4-velocity of the fluid, Tall is the total 

stress-energy tensor and ha represents the magnetic field. The symbol Va denotes 

the covariant derivative compatible with a flat spacetime metric goll. For a perfect 

(non-viscous) fluid the total stress-energy tensor takes the following form; 

1 
Tall = (e +p + I'lhl2)uo ull + (p+ -l'lhI2 )gall I'hohll (lb)

2 

where p is the isotropic fluid pressure, e is the total fluid energy density, I' is the 

magnetic permeability and Ih 12 = hoho > O. Note that the magnetic field is defined 

such that U O ha 0, i.e. ha is orthogonal to the fluid 4-velocity. The quantities p, p 

and e are all measured in the fluid comoving frame. We are assuming isotropy and 

infinite conductivity of the fluid, so that the conductivity tl° ll = tlOgoll with tlo -+ 00 

and thus the field is frozen into the fluid. The speed of light is taken to be unity. 

To complete the system of equations (1) we need to add an appropriate equation 

of state of the form 

p p(e,S) (2) 

where S is the specific entropy. From Anile and Pennisi (1985) the system (1) may be 

manipulated to give, 

e~uoVaP+ (e +p)VauQ = 0 (3a) 

uOVoS = 0 (3b) 

uOV hll- hOV ull + (ullhQ - e' hlluQ) VaP = 0 (3c) 
a a P (e +p) 
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1 
(e + p + plhl2)uaVaUfl phaVahll + (gall + 2uaull )ph"Vah" respectively. Note that equation (3e) is satisfied trivially. In equations (5d) and (5e) 

1 
+ (e + p) [(e + p)gafl + (e + p - e~plhI2)uaull + phahfljVaP = 0 (3d) we have written w e +p + p( 1&')2 which is the relativistic enthalpy of the fluid plus 

the magnetic contribution. Equation (5b) indicates that the fluid motion is adiabatic, 

however this condition is satisfied trivially by our choice of a perfect fluid equation of uaullVahll +Vaha 0, (3e) 

state and therefore (5b) can be discarded. This does introduce a small error at strong 


where 
 shock fronts (Sanders 1983), but for weak or moderate shocks it is quite accurate. The 

remaining equations of the system (5) need to be solved for the unknown quantities p, 
e~ = (oe/op)s = l/v~ and therefore e~ - 1 = (1 - v~)/v~ = l/c~. (4) 

h', v r and V Z • In order to achieve this they will be written as compatibility equations 

Here Vs is the thermal sound speed of the fluid and cs = rsvs, where rev) = holding along characteristic curves. 

{I - V2 )-1/2 is the usual special relativistic Lorentz factor. We first look for combinations of (5) such that the new system has the form, 

In this paper we will use a cylindrical coordinate system (t, r, 9, z), but consider oU oU
-+A·-+B=O (6)only steady, (o/at = 0), axi-symmetric jets (i.e. no 9 dependence) with a single OZ Or 

toroidal magnetic field component h'. Thus we can write ua = r{1, vr,0, v,r) and 
where the state vector U T (p, h', v r , VZ). We find that 

ha =(O,O,h',O) since uaha = O. In this case there is never a time component of ha. 
2 rThen the system of equations (3) produces, firstly from (3a), {ph' / B)vr/v z wr2v,r/B(1+ 1/B) v'/v' 

v r 
-wr v /B ) 

r Cvr/v" [1 +(A 1)/B}vr/v" cwr2v" -cwr2

, ("OP z lJp) ( ){{Jvr {Jv" v A= (7)t: v-+'v- +e+p -+-+­
p Or oz Or oz r 1/{wr2 v") ph'/(wr2v") vr/v z 

+ r 2 
[ 

{Jvr ({Jvr ov") OVZ] } -vr/(wBc~) -ph'vr/(wBc~) -A/B r2vrvz~(BC~)(Vr)2_ + vrv" _ + _ + (V")2_ = 0 (5a)Or oz Or oz 
and 

and secondly from (3b), 

B l ' = _r2vrvz -r2vrv,r 0 __vr (8)(w Cw A ) 
r Br ' r ' , Brv: + v"~: = o. (5b) 


where
The t, r and z components of equation (3c) are identically zero, while the 9 component 

gives, 2c;. B = (rv,r)2
A r S 2'+I, -2-- A and C=~ (9)

Cs Cs BJlh' . 
r oh' Z e'P h' rVP"oh' (A.... op) _ 

V a; + v Tz - (e + p) v Or + v OZ - o. (5c) 
In the expression for A we have defined the quantity CA = r AVA where, 

The r and z components of equation (3d) can be manipulated, using the t component, 
VA = [p(h')2/wf/2 (10)

to produce 

r ovr {Jvr) oh' op which is the relativistic Alfven wave velocity in the rest frame of the fluid (see Appl wr2 v _ +vz _ + ph,- + - =0 (5d)( or OZ Or Or and Camenzind 1988; Sloan and Smarr 1987). 
and The eigenvalues of the matrix A are found to be, the double root, 

{Jvz {JvZ) oh' op rwr2 vr_+v"- +ph,-+-=O (oo) . Ao v( or OZ OZ oz 
V Z 

(11) 
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representing the Alfven and slow magnetoacoustic waves, and 

M"MZ ±..JAM2 - A2 
A±=--~(~M~z~)2--A~-- (12) 

representing the fast magnetoacoustic waves. Here Mi is the relativistic Mach number 

ddiucd by M' rvi/cs, and M2 = MiMi. The system (6) is now re-written as, 

au au 
I··-+A·'··-+'··B ° with i = o,± (13)I az •lOr' 

where Ii denotes the left eigenvectors which are found by solving Ii . A Ai'i. From 

(7) the left eigenvectors are found to be, first, using (12), 

Awr2vz Awr2v,.) 
I± ( 1,l'h',±JAM2 _ A2,=F vAM2 _ A2 . (14) 

Then from (11), since Au is a double root there are two eigenvectors associated with 

this solution, we find 

dz 

I 
'0 

( AI'h
8 v,.)

= 0, (A -1)r2vz w' V Z ,I and II 
'0 = (A v,.)-rvZw ,0,-,1.2 V Z 

(15) 

The compatibility equations are then, 

Ii' dU + Ii' Bdz = ° along dr Ai. (16) 

From (16) for the case of Ai = A± we have that 

2 2
d + h"dh8 ± Awr v" dv" Awr v,. dv z 

P I' VAM2 _ A2 =F JAM2 _ A2 
2 r

Awr [ AV"] v+-- vz± -dz=O (17)
B JAM2 _A2 r 

which are satisfied along the characteristic curve 

dr MrMz ± .../AM2 A2 
(18)dz B 

while for Ai = Ao, we obtain 

r 
I Al'h' dh' + v dv" +dvz =° (19)

V Z 

and 

A v"
II Z 

r 2v zw dp + vzdvr +dv = ° (20) 

9 

which both hold along the characteristic curve 

dr v" 
(21) 

V Zdz 

If we had included equation (5b) in the scheme then Ao would have been a triple root 

with the third solution giving dS =°along the streamline (21). 

At this point equations (17)-(21) may be written in a form more suitable for a 

numerical solution. Following Courant and Friedrichs (1967), (see also Sanders 1983, 

Daly and Marscher 1988 and Anderson 1985) we write the fluid 3-velocity components 

as 

v,. = Vsina and v" = VC089 (22) 

where a is the angle between the velocity vector of magnitude V and the symmetry 

axis (z-axis) of the jet. We also introduce the relativistic Mach angle, 1', defined by 

sin I' = 11M, (23) 

however, for the magnetic flows considered here it is more convenient to use a modified 

version of this, which is given by 

sin2 e A sin2 1'. (24) 

We note from (18) that in order for the characteristics to be real (i.e. for the system 

to be hyperbolic) we must have M2 ~ A or equivalently Isin eI ~ 1, and therefore 

the substitution (24) is valid for the purposes of the solution method described here. 

This is just the condition that the flow be supermagnetosonic in order to maintain a 

hyperbolic system. Substituting (22) and (24) into equations (17)-(21) produces the 

following compatibility equations, 

dp + ~l'dH +w(r2 - l)tane [(cote ~ cot a) din r ± da] ° (25) 

holding along the C+ and C- curves 

dr - = tan(a ± e) (26)
dz 

and 

A
I -.-l'dH + dlnr =° (27) 
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A
II -dp+dlnr=O (28)

w 

holding along the streamline 

dr 

dz = tane, (29) 


where H = (h')2. 

By combining equations (27) and (28) it is possible to obtain a generalization of 

the relativistic Bernoulli equation when a magnetic field is present; 

p~./t.llr = constant along a streamline, (30) 

where p. = p + tpH is the effective total pressure. 

3. Junction conditions at an oblique shock front 

If the ratio of the jet pressure to the external pressure is sufficiently high or low, 

then internal shocks will occur. Since the characteristic method cannot 'capture' 

shocks it is necessary to use a shock fitting scheme. For this we require the relations 

between fluid variables on either side of the shock region. These are given by the 

following jump conditions (Lichnerowicz 1967), 

(puOt] N° = 0 (31) 

[TOtP] N° = 0 (32) 

and 

[uOhP - uPhO] NOt = 0 (33) 

where (Z] denotes the jump in the quantity Z across the shock and No are the 

components of the unit four-vector normal to the shock surface. We call .p the 

angle between the shock normal and the positive z-direction (see figure 1), then the 

components of No are 

No ;::: (O,sin.p,O,cos.p). (34) 

11 

The configurations considered in this paper are such that the magnetic field always 

acts transversely to the direction of propagation of the shock surface, i.e. 

hOtNOt =0. (35) 

Thus in our case, the system (31)-(33) reduces to the following, 

PuT"V".1. = p.r.v...1. (36) 

W"r;V".1. = w..r!v.. .1. (37) 

2 2 1 2 2 1
w"r.v• .1. + p" + '2I'H. = w..r .. v...1. + P.. + '2I'H.. (38) 

w"r!v".1.V"" w.. r!v.. .1. v.. II (39) 

and 

h:r"v".1. = h!r..v...1. (40) 

where V.1. and VII are the velocity components perpendicular and parallel to the 

shock surface, respectively. The unshocked values of the fluid variables (upstream 

of the shock) are indicated by the subscript u, while the subscript s is used for the 

shocked values. The component of fluid velocity parallel to the shock surface must 

be continuous across the shock as can be easily verified by combining equations (37) 

and (39). For a stable shock the normal component of velocity must instead decrease 

across it; so, as in Konigl (1980), we introduce the quantity 

x = v...1. = tan(.p-e,,) < 1 (41)
V • .1. tan(.p - e .. ) ­

which provides a measure of the shock strength . 

For the purpose of numerical integration it is convenient to rewrite equations 

(36)-(40) such that the shocked values are expressed only in terms of the upstream 

values and the angle .p. Assuming an ultra-relativistic (barotropic) equation of state, 

p = b - l)e, we obtain a quadratic for X, with solutions, 

(2 -l)I'H.
Y [1 ±x = 

1 + Y-Y(Pu + tI'H.) 
(42) 
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where 

y '1 (Pu + !pH.) (r;v!.1. +1) r 2V2 = (r! 1)(I+tan.ptane.)2 
2wu r!v!.1. and 

u • .1. (1 + tan2fjJ)(1 + tan2e.) 

From (42) we see that only the plus sign provides a physical solution, in which case, 

tane, = xtan.p(I+tan.ptane.)-(tan.p tan e.) 
(43)

tan.p(tan.p - tan e.) + x(1 + tan.ptane.) 

r. 
r, = VI + r!v!.1. (1 -= x2 ) 

(44) 

h'
h' = -!!.. 'I +r!v!.1. (1 - X2) (45)

• X V 

p, = [1 + r!v!.1. (1 - X2)] [Pu - (1 1)(1 - X) 1 (46)X '1X2 pH•. 

Given the conditions of the flow upstream of the shock it is clear that once .p is 

known all quantities on the downstream side can be found. However, to determine.p, 

information from the downstream side of the shock must be provided. This information 

is obtained via the C- or C+ curves, depending on whether the shock is incident or 

reflected. Further details and a description of the numerical procedure adopted are 

given in the next section. 

Figures 2 and 3 show solutions of the jump conditions (42)-(46) when '1 = 4/3. 

The parts of the figures show logarithmic contour plots of (a) the downstream Mach 

number and (b) the thermal pressure jump, P./P., for the upstream Mach number 

between 1 and 50 and the shock angle 6 = .p - e. between 0° and 90°. In the case of 

figure 2 no magnetic field is present (hydrodynamical shocks), while for figure 3 the 

upstream thermal and magnetic pressures are equal (i.e. P. = !pH.). The magnetic 

field jump, h:/h~, is qualitatively identical to the pressure jump. 

Since we are using the method of characteristics it is necessary for the flow to 

be supermagnetosonic (i.e. M2 > A) everywhere. The shaded region on the left of 

the figures is where this condition is not satisfied. Apart from slightly supersonic 

upstream flows the transition from super to submagnetosonic flows occurs at almost 

constant values of shock angle; these being 6 30° and 6 45° for figures 2 and 

3 respectively. It is interesting to note that once the upstream flow is moderately 

supersonic, e.g. M ~ 4, then the downstream Mach number is essentially only a 

function of the shock angle 6. Unless the shocks are quite oblique the bulk fluid 

velocity can be reduced very substantially. For example, a fluid with an initial Mach 

number of 20 passing through a shock with 6 = 60° has a final Mach number of 

""" 2.5, if no magnetic field is present. For equal thermal and magnetic pressures the 

final Mach number is higher at """ 3.5 (and is increasing for increasing field strength), 

nevertheless it is still substantially reduced. This does not, of course, take account 

of jet expansion, which, for a supersonic flow, would increase the velocity. However 

if the jet is well collimated, at least near the nozzel as we assume, then no such 

speed up would occur. This suggests that in order for a jet to form and progress into 

the surrounding medium then, close to the nozzel, either no or very weak shocks are 

present, or they are very oblique. A very small number (two or three) of moderately 

perpendicular shocks (6 < 60°) would rapidly disrupt the progress of the jet due to 

the flow becoming subsonic and turbulent. For an increasing magnetic field the shock 

strength (as measured by the ratio P./P.) decreases. This is due to a stiffening of 

the jet fluid since it behaves with an effective adiabatic index '1 -+ 2 as the field 

increases. This is because the magnetoacoustic and Alfven wave speeds approach the 

velocity of light. Then it becomes increasingly difficult to produce strong shocks (see 

De Hoffman and Teller 1950; Kennel and Coroniti 1984; Appl and Camenzind 1988). 

Thus the toroidal magnetic field could have a number of vital roles in the production 

and propagation of the jet. First, the toroidal field helps to form the nozzel itself; 

second, it can reduce the tendency of nozzel breakup due to fluid instabilities; third, a 

strong toroidal field can inhibit the formation of strong shocks, which could otherwise 

cause a rapid termination of the jet. Since the toroidal field strength appears to be a 

crucial factor, any significant asymmetries in the field configuration can easily lead to 

one-sided sources (Benford, 1987). 

When X > 1 the fluid velocity component normal to the shock front is not 

supermagnetosonic and therefore a shock cannot form. This condition is indicated 

by the shaded region on the right-hand--side of figures 2 and 3. The boundary of the 

region at X = 1 corresponds to the solution log(p./p.) = o. 
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4. Numerical solution method 

The system (25)-(29) is a set of seven equations which must be solved for the 

unknown variables p, a, H and r on a grid constructed from characteristic curves, 

i.e. the grid itself must be obtained as part of the solution. We will outline the salient 

features of the numerical procedure adopted to do this since, although the techniques 

are well known in engineering fluid dynamics, they may not be familiar to many 

astrophysicists. Moreover there are a number of novel features in our problem which 

make the integration procedure somewhat non-standard, in particular the presence of 

the magnetic field and the fact that we will integrate along the streamlines in addition 

to the forward and backward characteristic curves. 

The basic techniques described here are similar to those used in jet nozzel design 

(see e.g. Anderson 1982, 1985 or Owczarek 1964) except that in this case the outer 

boundary is a free surface rather than a wall. There are primarily four different types 

of grid point; (i) an internal point, (ii) an axis point, (iii) a free surface point and (iv) 

a shock point, shown in figures 4(a)-(d) respectively. We will consider the treatment 

of each type of point in tum. 

(i) Internal points: 

Since the system is hyperbolic the equations are integrated in the z-direction (taken 

to be a pseudo time) from an initial r =constant Cauchy slice. Consider the situation 

shown in figure 4( a) in which the filled circles represent grid points at which the data 

is known. The goal is to use this data to compute not only the unknowns at the new 

grid points (open circle), but also the positions of such points. This requires the use of 

an iterative procedure. First, the position of point 3 in figure 4( a) is determined by the 

intersection of the C+ and C- characteristic curves from points 1 and 2 respectively, 

the slopes of which are given by equation (26). We will approximate the characteristic 

curves between adjacent grid points by straight lines. Referring to figure 4(a), it is 

also necessary for the streamline to pass through grid point 3, and therefore initial 

data must be interpolated from points 1 and 2 to a point 4 where the base of the 

streamline intersects a line joining 1 and 2. A simple linear interpolation scheme is 

adequate for this purpose. Thus, at the general point 3 all seven equations need to be 

solved together iteratively to find Pa, aa, H3t r a, ra, Za and r4 where the subscript 

refers to the grid point numbers shown in figure 4( a). 

The equations (25)-(29) are finite-differenced in a very simple way, e.g. from (26) 

the C+ curve from 1 to 3 is written as, 

1
r3 - rl = "2(tan(S3 + ~3) + tan(e l +~dl(z3 ZI), (47) 

and from (25) the equation holding along this curve is written as, 

1 (H H) 1 [W3(r~ - 1) tan~3 wl(rl- 1) tan ~1] I (r3)(P3 - PI ) + -I' 3 - 1 + - + n ­2 2 cot 6 +cot a 3 cot~l +cot e 1 rl 

+ ~(W3(r~ - 1) tan~3 + Wl(r~ - 1) tan~11(aa - ad = o. (48) 

The other equations are differenced in a similar way. With initial estimates for the 

unknowns the coupled non-linear algebraic equations can be solved at each grid point 

using the MINPACK iteration routine HYBRD1; this has proved to be an efficient 

solution method. 

(ii) Azis points: 

The jets are axisymmetric and therefore the z-axis is a coordinate singularity and 

special treatment is required for equation (25). There are two possible situations to 

consider; (a) when the data at the axis point is known and is being used to propagate 

data forward, or (b) when the data is to be computed on the axis point. Figure 4(b) 

shows both situations, which occur alternately as we integrate in ~he z-direction. In 

case (a) the equation holding along the C+ characteristic curve from point 1 must be 

modified. Consider the term dlnr/(cot~ + cot a) in the limit r --+ O. We have that 

a --+ 0 also since at r = 0 the flow must be along the axis. Therefore, 

( 1 dr l' l' - de d (49)11m· ) - = 1m tan e -dr = 1m adr = - r de . 
r,8-+0 cot ~ + cot a r r,8-+0 r r,8-+0 r dr 

With this modification grid point 3 is treated in exactly the same way as an ordinary 

internal point described above. For case (b) (grid point 5 in figure 4(b», due to 

axisymmetry not all seven equations are required. The position of the grid point is 

r = 0 with the z value to be obtained from the intersection of the C- curve with the 

axis. By symmetry the C+ equation is the Inirror image and so can be discarded. In 

addition the streamline itself is known, it is simply the z-axis, thus e = 0 which implies 

that equation (29) can also be discarded. Another condition on the axis concerns 

the magnetic field component h', which, in order to be non-singular, must vanish. 
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Therefore equation (27) is discarded and H = 0 on the axis may be used to simplify 

the remaining equations. Then the unknown quantities at grid point 5 are P5, r5 and 

Z5, and the equations used are the c- curve from (26), its compatibility equation from 

(25), which must be modified using the limit shown in (49), and equation (28) holding 

along the streamline between points 1 and 5. 

(iii) Boundary point,,: 

The outer boundary is a free surface where the pressure of the external medium 

is specified. In principle it is possible to specify the flow angle, e, rather than the 

pressure, so that the jet shape can be customized, leading to a particular behaviour 

of the external pressure gradient. This was done by Wilson (1987a), however here we 

will use only specified external pressure values. 

The grid structure at the boundary is shown in figure 4( c) where the data is known 

at points 1 and 2 and the boundary values of e, H, r and position r, z at point 3 

are to be determined. Noting that the jet boundary, curve 2 to 3, is a streamline the 

equations required are the C+ curve from 1 to 3 and its compatibility equation (from 

(26) and (25) respectively) and the streamline equations (27)-(29). Again an iterative 

procedure is used. 

(iv) Shock point,,: 

As discussed in the previous section, if the ratio of jet pressure to external pressure 

is sufficiently high or low then internal shocks will occur. There are two problems to 

consider in the numerical treatment of these shocks; firstly their detection and secondly 

their propagation through the characteristic grid. 

A shock is indicated when two characteristics of the same family, say C+, 

intersect. The position of the shock point is easily determined from the slopes of the 

characteristic curves. At the shock point it is then necessary to solve the relativistic 

Rankine-Hugoniot relations (42)-(46) along with the characteristic and compatibility 

equations. The shock detection and fitting procedure is essentially the same as that 

used to propagate a previously inserted shock point, which we now describe. 

Once a shock point has been detected it must be propagated throughout the 

characteristic grid. The following procedure is based on that described by Moe and 

Troesch (1960) and Illingworth (1953) for their Newtonian jet calculations. 

Consider the situation shown in figure 4(d) where 1, 2 and 3 are known data points 
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and 2 is a shock point (which is double valued in that it carries a set of unshocked 

and shocked values of the fluid variables). First point 4 is obtained from 1 and the 

unshocked side of 2 using the standard procedure for an internal point, as described 

above. From the value of the shock angle, 62 = (tIJ - e,,}z, at 2, point 5 may be 

determined as the intersection of the shock path with the C+ characteristic curve 1 to 

4. At 5 the unshocked values e., r., P. and H. may be determined by interpolation 

between 1 and 4. To find the shocked values of the quantities and the new shock 

angle it is necessary to solve the jump conditions (42)-(46) at 5 along with the C­

characteristic and compatibility equations extending back from point 5, with base 

values at point 6 interpolated from points 2 (shocked side) and 3. From equations 

(25) and (26) we have that these last two equations are: 

1
r5 r6 = 2[tan(e. - e.) t tan(e. - e.)}(Z5 - Z6), (50) 

and 

1 (H H) 1 [w.(r! l)tane. w.(r~ -1)tane6jl (r.)(P. - P6 ) + -I' •- 6 + - + n ­2 2 cote.-cote. cote6- cotS, r6 

- ~[w.(r! -l)tane. +W6(r: 1) tan e,}(e. - e 6 ) o. (51) 

Once again this is an iterative procedure to find the shocked values e., r., P. and H., 

the new shock angle 65 = (tIJ - e.)5, and the foot of the interpolated C- characteristic 

curve, r6, Z6; a total of seven equations for seven unknowns. 

5. Results of calculations 

In a constant external medium our jet models are characterized by three 

parameters; a, {J and Mjd where 

a = (press~e ~~ external medium at b.ase of jet) 1/2 = (pC!Z,)1/2 
ImtIal pressure at base of Jet Pjd 

{J = (larg~t ~agnetic pressure at b~e of jet) = (tI'Hmu)
1mtlal pressure at base of Jet Pj d 

Mjd initial Mach number of jet flow. 
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Note that our p is the reciprocal of the usual plasma fJ. For all the models shown in 

this paper an ultra-relativistic equation of state, p =h - l)e, with adiabatic index 

'Y = 4/3, is used. The initial conditions at the nozzel entrance are shown in figure 5. In 

practise the step function at the boundary is modelled by three grid points. Given the 

pressure a.nd magnetic field values on the boundary it is possible to obtain the Lorentz 

factor there by using the Bernoulli relation (30) and assuming the streamline constant 

is approximately the same for adjacent points. The toroidal field configuration is given 

by 

H = Hmu(r/r,atclt)'J. if r < r,.Ccl 

H = Hmas(r,atc/t/r)'J. if r ~ r,.tcl 

where usually r,atc/t = 0.98rjd' This configuration is similar to that used by Lind 

et al (1989) in their dynamical simulations. For a typical case the initial data line 

is modelled using '" 80 grid points. As the calculation proceeds grid points may be 

added if the dista.nce between adjacent points exceeds a certain value (with linear 

interpolation to the new points) or deleted if they are too close. This facility is vital 

for the success of the characteristic method. A complete calculation may consist of 

more than '" 105 data points. 

5.1. Teats of the code 

In order to check that the code is performing as expected we have used the analytic 

expressions obtained by Daly and Marscher (1988) for the maximum radius, rmu, and 

length-scale, Zmas (the dista.nce from the nozzel entrance to the next minimum radius, 

see figure 1 of Daly and Marscher) of a non-magnetic supersonic jet propagating in a 

uniform pressure medium. They state that 

rmas 
rjd 

'" 1 + 1.9 ( 1 - vfa ) 
2vfa-l 

(52) 

and 

Zmas 
rjd 

'" 3.3 (rjd) . 
0 2 (53) 

These expressions have been obtained by taking small angle expansions in the two­

dimensional (planar) characteristic equations (Daly and Marscher, 1988). They are 

accurate for large r jet a.nd 0 close to one. 
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Taking rjel = 1 a.nd rjd = 7.14 (corresponding to Mjee = 10) we have computed 

rmu: a.nd Zmazo for various values of a. As can be seen from Table 1 the numerical and 

theoretical values are close for 0 '" 1, but diverge as the pressure ratio becomes larger, 

as would be expected. Some additional discreeancy occurs because we are simulating 

axisymmetric jets rather than pla.nar ones. From expression (49) we see that on the 

z-axis there is a factor of 2 difference in equation (Ud) of Daly a.nd Marscher between 

pla.nar and axisymmetric jets. Their expression (23) for the minimum pressure is 

therefore invalid in our case, and indeed, we obtain significantly lower values of the 

minimum pressure. This would aid collimation, leading to lower values of r max and 

Zmu, which is consistent with our results. 

A consistency check on the code is possible by making use of the Bernoulli equation 

(30) along the z-axis; which is a streamline. The percentage deviation from a constant 

value for expression (30) is shown in figure 6 for two jets with 1/a2 1.2, p = 0 (solid 

lines) and 1/a2 = 1.2, fJ = 1 (broken lines), both of which have either 40 or 80 grid 

points across the nozzel entra.nce. No shocks occur in these jets. It can be seen that 

the Bernoulli equation is satisfied to < 1% in the case of 40 points and < 0.5% in 

the case of 80 points. Thus the discretization error can be reduced by increasing the 

number of points in the jet. Some numerical experiments have indicated that the 

error behaves in a first-order way, i.e. doubling the number of points across the nozzel 

reduces the percentage deviation by approximately half. 

5.2. Collimation via a toroidal magnetic field - constant external pressure 

For a first application of our code we will study the effect of an increasingly strong 

toroidal magnetic field on the structure of an underexpanded jet propagating into an 

external medium of uniform pressure. As mentioned previously in section 3, such a 

magnetic field could be responsible fOJ: the initial creation, stability and continued 

propagation of the jet. 

There are four characteristic velocities associated with the flows under 

consideration here. These are; 

(i) sound velocity Vs = 1/-13 
(ii) Alfven wave velocity VA = (,8/(2 + fJ)J1/2 

(iii) fluid bulk velocity Vjet (Mle,/(2 + MletW/2 
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(iv) fast magnetosonic velocity VM = [(c~ + r~~)/(1 + c~ +r~c~>p/2. 

All of these quantities can also be written in a quasi-Newtonian form (they 

can approach infinity and there is some formal similarity with the corresponding 

Newtonian equations when such quantities are used, see Konigl 1980), i.e. 

sound velocity Cs = 1/-12 
(ii) Alfven wave velocity CA = (fJ/2)1/2 

(iii) fluid bulk velocity Cjd = Mjd/-12 
2(iv) fast magnetosonic velocity CM = (cs + r2~ )1/2SA' 

Note that eM is a particular case of equation (45) in Konigl (1980). Of course, the 

quasi-Newtonian quantities are not physical in the special relativity regime. From 

these expressions it can be seen tha~ for a flow to be super-Alfvenic only a modest 

Mach number is required, even if the magnetic field is extremely strong; i.e. M]ee 2: f3. 
Thus if f3 = 4 we require only that Mjd 2: 2. The relativistic Alfven Mach number 

can be written as MA = CA/CS = J7l. For our simulations, typically Mjd 2: 10, so 

the jets are always highly supermagnetosonic, at least close to the nozzel. 

Initially we take fixed parameter values of l/a2 = 1.5 and Mjd = 10. Then f3 is 

varied from f3 0 (purely hydro dynamical) to fJ = 2 (dominant magnetic field). In 

these cases the pressure discontinuity is sufficiently weak that the jets do not produce 

shocks, even when the magnetic field is zero. The results of the calculations are 

shown in figures 7(a)-(c). In 7(a) the jet radius is plotted as a function of distance 

along the z-axis. Even when no magnetic field is present the jet is well collimated, 

due to the existence of the constant pressure external medium. The maximum radial 

expansion is only 20% larger than the starting radius. In addition, it can be seen 

that a small toroidal field can substantially reduce the jet expansion. For fJ > 0.5 

the jet is severely pinched and it contracts. The least variation in the jet boundary 

shape is produced when fJ rv 0.5. As fJ increases the jet oscillations become more 

frequent and the jet boundary shape more periodic. Thus portions of a jet with 

a strong toroidal magnetic field component could exhibit several very periodic bright 

feat ures (e.g. knots), particularly since at such points the pressure on the axis is greatly 

enhanced and radio emission is likely to follow the fluid pressure. This pinch effect is 

clearly seen in figure 7(b) which plots the logarithm of the jet pressure on the z-axis. 
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The external pressure is constant at put = 1. However, figure 7(c) shows that the bulk 

fluid velocity is reduced as the magnetic field strength increases and this would then 

reduce the relativistic beaming. The high pressure regions work against collimation, 

but this is more than compensated for by the pinching effect of the toroidal field. In 

figure 8 we show contour plots for, (a) the logarithm of the thermal pressure; (b) the 

logarithm of the Mach number, and (c) the magnetic pressure, for the case of f3 = 2. 

These plots clearly show the very periodic formation of islands of slowly moving, high 

pressure gas pinched by an intense magnetic field. 

From the results of these simulations the following comments can be made about 

the effects of the toroidal magnetic field. When no field is present the jet can have 

very large pressure and velocity changes along its length. From figure 7(a) when P= 0 

the maximum z-axis pressure is approximately equal to that at the nozzel entrance. 

On the other hand, the maximum Mach number (or equivalently r) can increase by 

a factor of two. These variations decrease as f3 increases. The least variation in jet 

pressure and velocity occurs approximately for f3 = 0.5. Above this value the jet 

radius decreases. When fJ is large the thermal pressure on the z-axis can be much 

larger than the external pressure without decollimation occurring. Thus bright knots 

could be associated with a locally strong toroidal magnetic field. However, if a strong 

longitudinal magnetic field were present, this could work against collimation (Kossl et 

alI990c). 

5.3. Collimation via a toroidal magnetic field - decreasing external pressure 

A more realistic environment for astrophysical jets is one of an external medium 

with varying pressure distribution. X-ray data seem to indicate a general power-law 

fall-off in pressure with distance from the jet source, at least for elliptical galaxies 

(Schreier et alI982). Here we will investigate the effects of the toroidal magnetic field 

on the structure of the jet when it propagates into an external medium with a pressure 

distribution given by, 

'( ) Puc (54)
P z = [1 + (Z/Zcore)r.]m/n· 

This is similar to that used by Wilson and Fal.le (1985). Within the core radius, Zcore, 

the external pressure is roughly constant, but outside it has a power-law fall-off as 

p' (X Z -m. Typically 1 :5 m :5 2 and Zcore rv a few jet radii. 
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In this investigation the values of the parameters describing the underexpanded 

jets of the previous subsection will again be used, but this time with the external 

pressure given by (5.4). We will first take Zcore = 15, n = 4 and m = 2. Then 

the external pressure drops sufficiently rapidly that a pure hydrodynamical jet will 

undergo free expansion (Wilson and FalIe 1985). The range of fJ is again taken to be 

from fJ = 0 to fJ = 2. Figures 9(a)~(d) shows the results of the simulations. Since 

the struct ures of these jets are much less periodic than those in a constant pressure 

external medium, we have allowed them to propagate much further. 

As expected the fJ = 0 jet expands continuously, giving rise to a region of extremely 

low pressure and high velocity gas. This gas is quite strongly shocked, which brings 

it into near pressure equilibrium with the external medium (the pressure distribution 

of the external medium is shown as the thick solid line in 9(b». There is no evidence 

of recollimation of the jet. In fact, from figure 9(80), it can be seen that no significant 

recollimation occurs for any value of fJ used here. This is because as the jet expands 

and the external pressure decreases the magnetic field strength is reduced and becomes 

less effective at pinching the plasma (see figure 9(d». The magnetic field, however, 

does prevent shock formation and keeps the jet pressure substantially higher than 

that of the external medium. Moreover when the toroidal field is very strong (fJ > 2) 

pressure perturbations at the nozzel are efficiently propagated downstream to produce 

a number of peaks in the z-axis pressure. Such jets would appear with bright knots of 

increasing separation (and decreasing brightness). In figure 10(80)-(c) we show contours 

of (a) the logarithm of pressure, (b) logarithm of Mach number and (c) magnetic field 

strength for the fJ =2 model. 

We have repeated a similar experiment to the above, but this time with Zcore: = 15, 

n =4 and m = 1, so that the external pressure drops as p' ex Z -1. In this case, as can 

be seen from figure 11(80)-(d), the periodic structure seen in the Puc = constant models 

reappears, particularly as f3 increases. Again, however, the jets continue to expand, 

although this time reconfinement shoulders do appear even in the fJ 0 model. When 

f3 = 0 the jet pressure oscillates continuously about the external pressure value. For 

f3 > 0, as in the previous cases, the jet pressure is always much higher than the external 

pressure. In figure 12(a)-(c) we show contour plots of (a) the logarithm of pressure, 

(b) logarithm of Mach number and (c) magnetic field strength for the fJ = 2 model. 
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6. Conclusions and Discussion 

The previous results show aspects of steady relativistic MHD flows which may be 

of direct relevance to astrophysical jets, in particular compact radio jets which exhibit 

superluminal motion (Blandford and Konigl 1979). No attempt has been made to 

model any specific observed jet since the physics we have used is far too simplified for 

detailed comparisons with observations. We can, however, make a number of general 

comments. 

An important dynamical effect of the magnetic field is in reducing the tendency 

for strong shock formation in the flow, however, large pressure peaks still form when 

the jet reconfines. These high pressure regions coincide with large toroidal magnetic 

field strengths and low bulk fluid velocities. As such they would be identified with 

the bright knots in a jet, but, while the high pressure and magnetic field enhances 

synchrotron emission, beaming is reduced due to a lower Lorentz factor. The actual 

brightness of the knots in a synthesised radio map requires a correct treatment of the 

synchrotron radiation process taking into account beaming and line~of~sight effects 

(see e.g. Matthews and Scheuer 1990a,b). It is also of interest to note that while the 

toroidal field can keep the jet pressure well above that of the external medium, it 

cannot stop the radial expansion of the jet when the external pressure drops. The 

rate of radial expansion, however, is reduced with increasing toroidal field strength. 

The constant external pressure scenario is not a realistic one for astrophysical jets, 

but it illustrates an important phenomenon which persists when the external medium 

has varying pressure. As the toroidal field strength increases the jet structure becomes 

more and more periodic. In addition reconfinement and reexpansion of the jet occurs 

on a shorter and shorter length scale. This is due to the dynamics being taken over 

by the magnetic field, which has as its characteristic velocity the Alfven wave speed. 

Then as the magnetic field strength increases this velocity approaches light speed. 

When the external pressure varies as p' ex z-2 no periodic structures appear in the 

jet in the absence of a magnetic field. In this case the jet ultimately reduces to a stream 

of gas with a very high Mach number (> 40) in approximate pressure equilibrium with 

its surroundings and with an almost constant opening angle. This portion of the jet 

is unlikely to be visible. Moreover there are no significant pressure enhancements 

anywhere, even close to the nozzel (see figure 9). Therefore none of this jet may be 
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visible. As the magnetic field strength is increased the pressure perturbation, which is 

formed close to the nozzel by the pinching effect of the field, is propagated downstream 

with greater and greater efficiency. The first pressure peak is always the largest and 

can be identified with the bright core of tke jet. Subsequent pressure peaks could 

give rise to knots which probably decrease in brightness and have an increasing inter­

knot distance moving out along the jet axis (see figure 9(b)). For a fixed pressure 

distribution of the external medium the knots would increase in brightness and 

decrease in separation as the toroidal field strength increases. Moreover, additional 

knots could appear where none existed before. 

If the external pressure p' <X z-l some periodicity of the jet structure returns, 

particularly when the magnetic field strength is large. From figure 11, however, it is 

seen that there are many pressure peaks when fJ = 2. This would give rise to a large 

number of bright knots, and since there are no observations of this type it is unlikely 

that a combination of p' <X z-l and fJ ~ 2 occurs in practice. The best parameters 

for observed jets seems to be around p' <X z-2 and fJ '" 2. In any case it could 

be possible to arrange the number, positions and brightness of knots in a jet using a 

simple combination of the external pressure distribution and the toroidal field strength 

in much the same way that FaIle and Wilson (1985) did with the external pressure 

distribution to model specific knots in M87. This will be investigated in future work. 
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Tables and table captions 

Table 1. Test of the code using the expressions for rmcu; and Zmax given by Daly and 

Marscher (1988), denoted by D-M. Here Mjd = 10 and p = o. 

l/a2 
rmax 

D-M 

rmax 

Code 

Diff 

% 
Zmax 

D-M 

Zmax 

Code 

Diff 

% 

1.1 

1.3 

1.5 

2.0 

1.0469 

1.1382 

1.2269 

1.4434 

1.0393 

1.1137 

1.1841 

1.3462 

0.73 

2.15 

3.49 

6.73 

25.923 

30.637 

35.350 

47.133 

25.425 

27.450 

30.705 

38.433 

1.92 

10.40 

13.14 

18.45 

27 28 



Figure captions 

Figure 1. Flow geometry at an incident oblique shock. See the text for details. 

Figure 2. Logarithmic contour plots of (a) the post-shock Mach number and (b) the 

pressure jump for a range of upstream Mach numbers and shock angles when 'Y = 4/3. 

In this case no magnetic field is present. The shaded area on the left denotes the 

region where the characteristics are no longer real, i.e. M2 ~ A, and is therefore not 

accessible using our numerical method. The shaded region on the right is where X > 1 

and so does not correspond to shock solutions. 

Figure 3. Same as figure 2 except that the upstream thermal and magnetic pressures 

are equal. 

Figure 4. Calculation of data at the four different types of grid point occurring during 

the integration. The filled black areas denote points at which the data is known, open 

areas are points at which data is to be determined. (a) Calculation of data at an 

internal point 3. C± are the forward and backward characteristics from point 3 and 

S is the streamline passing through 3. The foot of the streamline is at point 4. (b) 

Computation of axis points. Data points 3 and 5 require special treatment due to the 

axis singularity. (c) Computation of jet boundary points. The streamline B (2 -+ 3) 

is the jet's surface. (d) Propagation of the known shock point 2 (shown as a black 

square) through the grid. Point 5 is determined using the shock angle 6 = tP - 8. at 

2. The curve 3 -+ 5 is an interpolated backward characteristic from the new shock 

point (white square). 

Figure 5. Input conditions at base of jet (z = 0), showing the radial profiles of the 

thermal pressure, Lorentz factor and H. 

Figure 6. Consistency check on the code. The Bernoulli equation (30) is evaluated 

along the z-axis for 1/02 = 1.2 with {J = 0 (solid lines) and {J = 1 (broken lines) when 

40 or 80 grid points are placed along the nozzel entrance. The inconsistency behaves 

in a first-order way. 

Figure 7. Results for a jet with 1/02 = 1.5 and Mjd = 10 for various values of (J 

propagating into a constant pressure external medium: (a) Suppression of the radial 

expansion of the jet due to an increasingly strong toroidal magnetic field. The values 

of {J are denoted by: {J = 0 (solid line); {J = 0.25 (short dashed line); {J = 0.5 (long 

dash-short dash line); {J = 1 (dash-dot line); {J = 2 (dotted line): (b) Variation of the 

thermal pressure on the jet axis and, (c) variation of the Mach number on the jet axis. 

In (b) and (c), for clarity, only the values {J = 0, {J = 0.5 and (J = 2 are shown. 

Figure 8. Contours of (a) logarithm of the thermal pressure, (b) logarithm of the 

Mach number, and (c) the toroidal magnetic field strength for the jet with {J = 2. 

High values are denoted by the darkest regions and low values by the white regions 

(scaled between the maximum and minimum values of the quantity within the jet). 

Note that these figures have been greatly expanded in the radial direction. The initial 

jet radius is r jd = 1 while the jet length is z ~ 100. 

Figure 9. Results for a jet with 1/02 = 1.5 and Mjd = 10 for various values'of {J 

with the external pressure, p', given by (54). Here n = 4 and m = 2 so that p' ex z-2. 

Values of (J are as indicated in figure 1.: (a) Suppression of the radial expansion of the 

jet due to an increasingly strong toroidal magnetic field. (b) Variation of the thermal 

pressure on the jet axis (p' denoted by the thick solid line), (c) variation of the Mach 

number on the jet axis and (d) the decay of the magnetic field on the jet boundary. 

Figure 10. Contours of (a) logarithm of the thermal pressure, (b) logarithm of the 

Mach number, and (c) the toroidal magnetic field strength for the jet of figure 9 with 

{J = 2. Values are scaled as in figure 8 and again the radial direction has been greatly 

expanded. Here rjd = 1 and length z Fl:$ 250. 

Figure 11. Results for a jet with 1/02 = 1.5 and Mjd = 10 for various values of (J 

with the external pressure, p', given by (54). Here n = 4 and m = 1 so that p' ex z-l: 

(a) Suppression of the radial expansion of the jet due to an increasingly strong toroidal 

magnetic field. Values of {J are as indicated in figure 1. (b) Variation of the thermal 

pressure on the jet axis (p' denoted by the thick solid line), (c) variation of the Mach 

number on the jet axis and (d) the decay of the magnetic field on the jet boundary. 

Figure 12. Contours of (a) logarithm of the thermal pressure, (b) logarithm of the 

Mach number, and (c) the toroidal magnetic field strength for the jet of figure 11 with 
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fJ = 2. Values are scaled as in figure 8 and again the radial direction has been grea.tly 

expa.nded. Here Tjel = 1 a.nd length z ~ 250. 
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