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ABSTRACT 

Starting from a class of 2-body relativistic systems with action-at-a-distance described by 
two 18i -class constraints, a method for the determination of the global Dirac observables for 
a relativistic system with 18t·class constraints is developed. It is based on a decomposition 
of the gauge foliation of the constraint manifold in sectors belonging to different Poincare' 
orbits and on the use of the \Yigner theory. After the treatment of the Nambu string, it 
is sketched how the method can be applied to classical gauge field theory. 
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1. Introduction 

My study of the theory of Dirac's observables started in the early seventies, when the 
first singular Lagrangians and/or systems of Hamiltonian constraints for two relativistic 
particles with adion-at-a-distance become popular. In this way it was possible to undertake 
the systematic study of constrained systems without the complications of general relativity 
and gauge field theory, for whose study Diracl and Bergmann2 introduced the concept of 
Hamiltonian constraint in the fifties. 

The following historical motivations generated these particle models: 

A) Bilocal field theory. It tried to give a description of elementary particles as extended 
relativistic systems, in an attempt to find a solution to the divergences of local quantum 
field theory, which also was the main unsolved problem for the late Dirac. After an attempt 
by Markov3 , Yukawa4 developed two models of bilocal field theory, which at the classical 
level correspond to three and one 1 ~(-class constraints respectively. Many models were 
subsequently developed essentially by the Japanese school and among them particularly 
relevant was the simple relativistic oscillator model of Takabayasi : see the review paper 
of Takabayasi5 and the talks of Hara6 and Ishida7

• 

However at the classical level most of these models were formulated in terms of center
of-mass (c.o.m.) and relative variables and the interactions were not separable. Since no 
intrinsic concept of individual particle positions was defined, the na.tural coupling to an 
external gravitational field shows a pole-dipole structure8 concentrated in the c.o.m.: in 
Minkowski space-time one has a point-like system and an inner world of relative variables 
only manifests itself through a dipole (or higher multipoles) structure sitting on the c.o.m., 
which contributes to build the mass spectrum and the spin of the system. By natural 
coupling it is meant that the variables rf relative to the c.o.m. Xll are decomposed as 
rf = L:!,,3 A~ria; where A~\ A = 0,1,.,3, with TJ PIJ TJAB A~AB' is a 4-dimensional 

x Porthogonal moving frame (a set of vierbeins) attached to and the 3-vector rela.tive 
coordinates ria belong to an inner Euclidean space. See Hanson-Regge9 for the treatment 
of the A~ and ref.IIO] for applications to two-particles modelS, to th~ spllCric..J rigid bou: 
and to a string model. 

Analogous remarks can be done for the classical basis of the infinite component wave 
equations: see the talks of Barutll and Bohml2 

. 

B) Nambu-Goto string. It induced I<alb-Van Alstine13 to investigate a model of the 
previous type14 and to begin the theoretical study of singular Lagrangians. 

C) The quasi-potential approach to the Bethe-Salpeter equation. Looking for an 
instantaneous, in the c.o.m. frame, approximation with exact relativistic kinematics, 
Todorov15 introduced two I.llt-class ;constraints with vanishing mutual Poisson bracket in 
the form of modified mass.-shell cons'traints. The model was defined in terms of the particle 
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canonical positions and momenta and allowed separable interactions: therefore it was an 
extended relativistic system not of the pole-dipole type, as it was confirmed by the study 
of its coupling to an external gravitational field l6 • By artificially introducing individual 
particle positions in the previous models of A) one could obtain extended systems also in 
that case: however this cannot be done in a unique way and only confined systems can be 
described (see Appendix A of ref.[16]). 

After quantization the Todorov model gives rise to two coupled integrable Klein
Gordon equations with an integro-differential interaction: their solutions, the mass spec
trum, the scalar product and the definition of a Cauchy problem were discussed in ref.[17] 
with a methodology from which the technique for finding the Dirac observables was orig
inated. In particular the problem of the relative time is solved without quantizing it and 
without fixing the gauge: this is the prototype of the way out from the problem of t.he 
spurious solutions of the Bethe-Salpeter equation, connected to the relative times, see the 
talks of Nakanishi18 and S azdj ian 19 , in this approach. It implies 3-dimensional normal
izations of the wave functions instead of 4-dimensional ones;: probably one has to wait a 
better understanding of the functional Schroedinger representation20 of gauge field theories 
and of its nssociat,ed Fork spnce bdorc arriving nt a final clarification of t.his point. In this 
representation the Hamiltonian will be well defined and the asympt.otic conditions of the 
inf.eraction picture will be abandoned. 

The Todorov model was subsequently extended to a pair of 1 ~t-class constraints for 
spinning particles by Crater21 

: after quantization one gets coupled integrable Dirac equa
tions and the possibility of good fits to the meson spectrum by using phenomenological 
potentials. 

D) General relath·ity. Looking for toy models to investigate the properties of systems 
invariant under reparametrization, Komar22 rediscovered the Todorov model. 

E) Relativistic mechanics with action-at-a-distance. One aspect of this line of re
search was the study23 of canonical realizations of the Poincare' algebra for systems of 
particles. It ended with the No- Interaction-Theorem24, according to which the require
ments: i) Hamilt.oniml ciynamics; ii) relativistic invariance (i.e. a canonical realization of 
the Poincare' group); iii) covariant world-lines; are consistent only for free particles (see 
ref.[25] for the nonrelativistic formulation). It turns out26 that in a description of interact
ing relativistic particles with 1 ~t-class constraints, the canonical c.o.m. coordinate, after 
a canonical transformation adapted to the constraints (see later on), cannot be covariant 
under Lorentz boosts when the constraints hold (it becomes a classical analogue of objects 
like the Newton-Wigner position operator27

). On the other hand every covariant c.o.m. 
position cannot be canonical. Instead the relative variables have Wigner covariance as we 
shall see. As shown in ref.[28], when one considers irreducible canonical representations 
of the Poincare' group, it is possible to define three different 3-vectors having the same 
3-velocity: i) the M~ller "center of mass,, 29 R (one puts the energy density in p1ace of 
the mass density in the nonrelativistic definition of c.o.m.), which is not covariant under 
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Lorentz boosts and not local, i.e. {Ri,Rj} i= 0; ii) the Fokker "center of inertia,,30 Q, 
obtained by Ro (i.e. R in the rest frame) by boosting it to the laboratory frame: Q is 
not local, {Qi, Qj} i= 0, but covariant, i.e. it defines an invariant (that is frame indepen
dent) world-line QIl; iii) the canonical position X (or "center of spin"; it is the classical 
analogue of the Foldy-Wouthuysen mean position operator for a Dirac particle and h~s 
the same covariance problems as the Newton-Wigner operator), which is not covariant. R, 

Q and X coincide in the rest frame but R and X define frame-dependent world-lines. If 
in an arbitrary given frame we consider the invariant world-line Qil and all the possible 
frame-dependent world-lines associated to R and to X, then these world-lines fill a world
tube having Qil as a central axis and with radius d = S/JP2 C (Pll is the total timelike 
momentum and S is the modulus of the relative angular momentum or "classical spin"). 

This radius is the naive minimal one of a relativistic matter bulk with mass 111 = .JP2 
and spin S, if the peripheral points have a velocity not exceeding the velocity of light c. 
M0ller29 showed that if the energy density of the matter is everywhere positive definite, 
the spatial extension of the matter cannot have a dimension less than d. Therefore the 
canonical c.o.m. position has a noncovariance induced by a spin effect and this results in 
a kind of "delocalization" of the c.o.m. if only frame-independent statements about the 
dynamics are accepted. 

Another aspect of this line of research was the search of two-body relativistic models, 
which could be interpreted as instantaneous approximations to the Tetrode, Fokker and 
Feynman-Wheeler dynamics31 . Bel32 with his predictive mechanics (see ref.[25] for its 
nonrelativistic formulation) in configuration space and Droz Vincent33 with his multi
time Hamiltonian approach emphasized the fact that, once one knows the world-lines 
of the two interacting particles, it is possible to rescale the affine paramet.ers along the 
world-lines independently of one another and to reformulate the dynamics as a two-times 
problem (either with the predictive equations of motion or with two Hamiltonians with 
vanishing mutual Poisson bracket): it turns out34 that one recovers the Todorov model, 
if the dynamics is reformulated with l.!t-class constraints. As shown in ref.[27]' the final 
canonical variables adapted to the constraints of this model, which is defined only for 
p2 > 0, contain a noncovariant canonical c.o.m. position, a spin-l \Vigner 3-vector for 
the relative coordinate, a Poincare' invariant relative time, a Lorentz invariant c.o.m. time 
(the time in the rest frame) aud the conjugaLeci. momentum variable::;. in Lllis model the 
interaction is a 1-1 spacelike correlation between the world-lines instantaneous in the rest 
frame as it is confirmed by the energy-momentum tensorl6. In the nonrelativistic analysis 
of ref.[25]' it turns out that the No-Interaction-Theorem derives from the ident.ification 
of the predictive configuration positions q!(ta) with the canonical positions X!(tl,t 2, ... ), 
which is possible only in absence of interactions (x! = X~(ta) = q!(ta». The same holds 
true at the relativistic level: however let us remark that this result rests on the description 
of free particles as tensor products of single free particles. This allows the possibility 
that a free particle may be in the absolute future of another one. If the time correlations 
among the free particles are restricted to forbid this possibility, i.e. if the free particles are 
described in a way consistent with the preparation of a relativistic experiment, then the 
No-Interaction- Theorem will hold afso for frre particles. 

See ref. [34] and [35J for some bibliography to the many other variants of these models 
and to the description of spinning particles with Grassmann variables. 

What is still lacking is a covariant Hamiltonian treatment of the Feynman-Wheeler 
dynamics, in which there is a 1-2 lightlike correlation between the world-lines and which 
is connected to field theory34 and to an effective action for fermions in a suitable strong 
coupling limit of quantum field theory36. See however the talk of Crater21 and ref.[37], 
where Dirac constraints are introduced. A final expected outcome should be that the Fock 
space of the Schroedinger representation should use multi local wave functions instead of 
tensor products of free particle wave functions, as in the Fock space for the interaction 
picture and the S matrix theory. In this respect see also ref.[38J. 

2. Multitemporal equations and Dirac observables. 

The theory of singular Lagrangians and Dirac-Bergmann theory of constraints unify 
the description of all relativistic systems: interacting particles, extended objects like the 
string, classical gauge field theories and general relativity, due essentially to the require
ments of manifest covariance and of gauge invariance through the minimal coupling. These 
systems fall into two classes: i) Gauge theories. Here behind the gauge freedom there are 
Lie groups and the Dirac observables are the measurable quantities (bilinear in the Fermi 
fields, when fermions are present), which can be extracted from the original variables; ii) 
Theories invariant under diffeomorphism groups of the underlying spacetime, like general 
relativity, strings and reparametrization invariant systems of particles. In this case the 
gauge freedom is the arbitrariness for the observer in the choice of the definition of what is 
space and/or time, i.e. of the definitory properties of the measuring apparatus. The Dirac 
observables are now the independent Cauchy data for the equations of motion, which result 
after a convention, about what space and/or time is, has been made. Since the canonical 
Hamiltonian vanishes, both kinematics and dynamics are contained in the l.8t-class con
straints describing the system: these can be interpreted as generalized Hamilton-Jacobi 
eqllatiom:39 ,22. so that the Dirac observables turn out. to be the Jacobi data. 

A problem, which till now has not been cleverly investigated, is how to obtain a global 
and manifestly covariant description, at least at the Hamiltonian level, only in terms of a 
canonical basis, or at least of a Poisson algebra40 , of Dirac observables. One would expect 
that when this is not possible, the relativistic system is intrinsically ill defined already at 
the classical level: at the quantum level this should manifest itself with the presence of 
not curable anomalies (which can be present also for a classically well defined system). 
Since the mathematical theory of the anomalies relies on cohomological properties, see the 
descent equations41 , of the manifolds relevant to the description of the system, which have 
to be defined already at the classical level,··one· expects1l. classical-background-of these 
properties in the form of obstructions present in the theory of classical gauge canonical 
transformations. 
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When a good description of the system in terms of Dirac observables exists, one is 
going to face the problem of quantizing only the true physical degrees of freedom, which 
generically are nonlinear and nonlocal functions or functionals of the original variables, 
without fixing the gauge, becouse the gauge variables have been decoupled. When a 
quantization is possible, there is a high probability to get a quantum theory inequivalent 
to that obtained by first quantizing the original variables and then making the reduction 
to the physical degrees of freedom at the quantum level (see for instance the BRS method). 

With regards to field theory, this method has the drawback that generically the phys
ical Hamiltonian, and therefore also the Lagrangian, is non polynomial in the physical 
degrees of freedom. Power counting methods cannot be used when looking for regular
izations and renormalizations of the theory, and the advantages of a global control of the 
dynamics of physical quantities and of the possibility to check whether a model is clas
sically well defined are destroyed by our present inhability to solve these problems. The 
question, which puzzled both Dirac and Yukawa, reappears, whether it is possible to de
fine an intrinsic ultraviolet cutoff and a regularization scheme independent from the power 
counting. 

Motivated by all these problems, preliminarly I felt the need to study42 the theory of 
singular Lagrangians and Hamiltonian constraints in the finite-dimensional case, trying to 
clarify all its unsolved aspects. In ref.[43] there is a review of what has been obtained till 
now; what is essentially still lacking is the study of the classical background of the anoma
lies. Here, for the case in which only 1 ", ·class constraints are present at the Hamiltonian 
level, I will recall three main ingredients of the theory: 

i) The Euler-Lagrange equations associated with a singular Lagrangian do not deter
mine the gauge part of the extremals. However it cannot be totally arbitrary, but must 
be compatible with the algebraic properties of the Noether gauge transformat.ions under 
\\'hich the action is either invariant or quasi-invariant. In the Hamiltonian formulation these 
properties are contained in the structure constants, or functions, of the Poisson brackets of 
the 1 "'·class constraints and the gauge arbitrariness of the trajectories is described by the 
Dirac multipliers appearing in the Dirac Hamiltonian. In both formulations one has to add 
extra et1uations~ tile either LagrangialJ or Hamilr.onia!J l1lultitemporal equations, to have ;. 
consistent determination of the gauge part of the trajectory. \\Then the Poisson brackets 
of the Hamiltonian I·d ·class constraints imply a canonical realization of a Lie algebra, the 
extra Hamiltonian multitemporal equations have the 1 "t·class constraints as Hamiltonians 
(so that the Dirac Hamiltonian is reduced to the canonical Hamiltonian) and the time pa
rameters (replacing the Dirac multipliers) are the coordinates of a group manifold for a Lie 
group whose algebra is the given Lie algebra: they enter in the multi temporal equations 
via a set of left invariant vector fields on the group manifold. 

To understand the meaning of these equations, let us consider the constraint manifold 
in phase space. By itself this manifold is only an exact presymplectic manifold: it has a 
degenerate exact two-form and ther7fore no notion of Poisson brackets exists. One consid

ers it embedded in the big unphysical phase space, to be able to use its Poisson brackets. 
The constraint presymplectic manifold is foliated by the gauge canonical transformations 
generat.ed by the PI-class constraints. In the ideal case in which the foliation is nice, nll 
the leaves (or gauge orbits) are diffeomorphic and in the simplest case all of them are 
diffeomorphic to the group manifold of a Lie group. In this ideal case to rebuild a gauge 
orbit from one of its points (and therefore to determine the gauge part of the trajectories 
passing through that point) one needs the Lie equations' associated with the given Lie 
group: the Hamiltonian multi temporal equations are generalized Lie equations describing 
all the gauge orbits simultaneously. In a generic case this description holds only locally for 
a set of diffeomerphic orbits, also in the case of systems invariant under diffeomorphisms. 

ii) The Shanmugadhasan canonical transformation'u. In the finite dimensional case 
general theorems connected with the Lie theory of function groups ensure the existence 
of local canonical transformations from the original canonical variables X o, Po, in terms of 
which the pt·class constraints (assumed globally defined) have the form f,cx(x,p) ~ 0, to 
canonical bases Po, Q0, PA, QA, such that the equations Po ~ 0 locally define the same 
original constraint manifold (the Po are an abelianization of the pt-class constraints); 
the Qo are the adapted abelian gauge variables describing the gauge orbits (they are a 
realization of the times of the multitemporal equations in terms of variables pertaining to 
the given system); the QA, PA are an adapted canonical basis of Dirac observables. 

Therefore the problem of the search of the Dirac observables becomes the problem of 
finding Shanmugadhasan canonical transformations. The strategy is to find abelianizations 
Po of the original constraints, to solve the multi temporal equations for XO) Po associated 
with the Pcx , to determine the multitimes Qo and to identify the Dirac observables PA , 

QA from the remaining original variables, i.e. from those their combinations independent 
from Po and Qcx. 

iii) Global Shanmugadhasan canonical transformations. This is the main point in the 
search of a global description of a physical system in terms of Dirac observables. In general 
given a.n arbitrary singular Lagrangian and its associated Hamiltonian constraints, no such 
global canonical transformation exists. However when the system under investigation has 
liOlIl(, global symmetry gnmp, the associated theory of the momcntunl map45 is a source of 
globality. Now all the physical systems defined in the flat Minkowski spacetime, have the 
global Poincare' symmetry. This suggests to study the structure of the constraint manifold 
from the point of view of the orbits of the Poincare' group. If PI' is the total momentum of 
the system, the constraint manifold has to be divided in four sectors (some of them may be 
absent for certain systems) according to whether p2 > 0, p 2 = 0, p2 < 0 or PI' O. Due 
to the different little groups of the various Poincare' orbits, the gauge orbits of different 
sectors will not be diffeomorphic. Therefore the gauge foliations of relativistic systems are 
nearly neyer nice, but rather one has to do with singular foliations. 

For an acceptable relativistic system the sector -P2 '<: 0 -has to be absent to avoid 
tachions. To study the sectors p 2 = 0 and pll = 0 one has to add these relations as extra 
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constraints. For all the sectors the next step is to do a canonical transformation from the 
original variables to a new set consisting of c.o.m. variables X,l , pP and of variables relative 
to the c.o.m.. Let us now consider the sector p 2 > O. using the standard \7.,Tigner 
boost Le(p,p.) (PP = L~(P,P.,)p:) p!, = 77JP2(1;5), 77 signPO), one boosts the 
relative variables at rest. The new variables are still canonical and the base is completed 
by pP and by a new c.o.m. coordinate XiI) differing from XiI for spin terms. xP has 
complicated covariance properties l7 ; instead the new relative variables are either Poincare' 
scalars or Wigner spin-1 vectors, transforming under the group O(3)(P) of the Wigner 
rotations induced by the Lorentz transformations. A final canonical transformation17 , 

leaving fixed the relative variables, sends the c.o.m. coordinates xP , pP in the new set 
P'X/77VJii = P'X/77VJii (the time in the rest frame), 77..fii2 (the total mass), k= P/77JP2 
(the spatial componentsofthe 4-velocity kP = PP/77JP2, k2 1), z= 77JP2(f-xop/pO). 
z is the noncovariant c.o.m. canonical coordinate of the Introduction multiplied by the 
total mass. Analogous considerations could be done for the other sectors. 

The na.ture of the relative variables depends on the system. The 1~t -class constraints, 
once rewritten in terms of the new variables, can be manipulated to find suitable global 
and Lorentz scalar abelianizations. Usually there is a combination of the constraints which 
determines 77.Jii2, i.e. the mass spectrum, so that the time in the rest frame P . x/77JP2 
is the conjugated Lorentz scalar gauge variable. The other constraints eliminate some of 
the relative variables (in particular the relative time for systems of interacting relativistic 
particles and the string): their conjugated coordinates are the other gauge variables, which 
are identified with a possible set of time parameters by the multi temporal equations. The 
Dirac observables (apart from the c.o.m. ones k and Z) have to be extracted from the 
remaining relative variables and the construction shows that they will be either Poincare' 
scalars or vVigner covariant objects. 

In this way in each sector preferred global Shanmugadhasan canonical transformations 
are identified, when no other kind of obstruction to globalit.y is present inside the various 
sectors: for interacting relativistic particles and for the Nambu string l!:lobalit.v can be 
achieved. 

In gauge field theories the situation is more complicated. oecousc the t.jleorclll~ cnsUl· 
ing the existence of the Shanmugadhasan canonical trallsformation have not been ext.ended 
to the infinite-dimensional case. One of the reasons is that some of the constraints can 
now be interpreted as elliptic equations and they can have zero modes. Let us consider the 
sector p2 > 0 of free Yang-Mills theory as a prototype and its pt-class constraints, given 

the Gauss laws and the vanishing of the time components of the canonical momenta. 
The problem of the zero modes will appear as a singularity structure of the gauge foliation 
of the allowed sectors, in particular of the sector p2 > O. This phenomenon was discov
ered in ref.[461 by studying the space of solutions of Yang-Mills and Einstein equations, 
which can be mapped onto the constraint manifold of these theories in their Hamiltonian 
description. It turns out that the space of solutions has a "cone over cone" structure of 
singularities: if we have a line of soJ.utions with a certain number of symmetries, in each 

point of this line there is a cone of solutions with one less symmetry. In the Yang-Mills 
case the symmetries of a gauge potential are connected with the generators of its stability 
group, i.e. with the subgroup of those special gauge transformations which lea.ve invariant 
that gauge Since the Gauss laws are the generators of the gauge transformations 

on the chosen gauge potential through the covariant derivative), this means 
that for a gauge potential with non trivial stability group those combinations of the Gauss 
laws corresponding to the generators of the stability group cannot be any more 1 H-class 
constraints, since they do not generate effective gauge transformations but special symme
try transformations. This problematics has still to be clarified, but it seems that in this 
case these components of the Gauss laws become 3rd-class constraints, which are not gen
erators of true gauge transformations. This new kind of constraints was introduced in the 
second paper of ref.[42] in the finite dimensional case as a result of the study of some ex-

in which the Jacobi equations (the linearization of the Euler-Lagrange equations 
were that is some of their solutions were not infinitesimal deviations between two 
neighbouring extremals of the Euler-Lagrange equations, This interpretation seems to be 
confirmed by the fact that the singularity structure discovered in ref.[46] follows from the 
existence of singularities of the linearized Yang-Mills and Einstein equations. 

Other possible sources of singularities of the gauge foliation of Yang-Mills theory in 
the sector p2 > 0 may be: i) different classes of gauge potentials identified by the field 
illvaraints; ii) the orbit structure of the rest frame (or Thomas) spin 5, identified by the 
Pauli-Lubanski Casimir 10/'2 of the Poincare' group. 

The final outcome of this structure of singularities is that the reduced phase-space, 
i.e. the space of the gauge orbits41 , is in general a stratified manifold with singularities4o . 

In the sector p2 > 0 of the Yang-Mills theory these singularities survive the Wick rotation 
t.o the Euclidean formulation and it is not clear how the ordinary path integral approach 
and t.he associated BRS method can take them into a.ccount. The search of a global 
canonical basis of Dirac observables for each stratum of the space of the gauge orbits can 

a definition of the measure of the phase space path integral, but at the price of a non 
polynomial Hamilt.onian. Moreover there are extra complications connected to the Gribov 
ambiguity and therefore to the existence of global Dirac observableI'. Much work is still 
Heed.ed t.u clarify all t.hese pruuJems of gauge field theories. 

A final remark on the Shanmugadhasan canonical transformations. When the co
ordinates Pen Qrn PA are globally defined and the canonical Hamiltonian vanishes, one 
has Liouville integrability: with the exception of the free C.O.m. motion, PA and QA can 
be replaced with action-angle variables lA, <PA (in the sense of Jacobi data: the <PA are 
constant of the motiont with the I A l!:loballv defined. extra dynamical symmetry 

defined functions of the angles. 
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3. Particles, strings and fields. 

In this final section I will sketch what has till now been done in the search of global 
Dirac observables: 

i) Particles. The Todorov-Komar-Droz Vincent model, with only p'l > 0, has been 
completely understood. In Appendix D of ref.[17] it is given a final canonical transforma
tion, which connects the original canonical coordinates xr, pr, i = 1,2, to a set composed 

by T P . x/rrI1Yi, E ryJFi2, TR = P . r/ryJFi2, ER = p. q/wljYi, z, k, f, q ( 
pP = pi + p~, xP (xi + xn/2, rP = xi - x~, qP = (pi pn/2). f, qare \\Tigner 
spin-1 vectors. This transformation is the closest one to a Shanmugadhasan canonical 
transformation, becouse in the particle case the sum of the l"t-class constraints becomes 
an algebraic equation for the mass spectrum E in terms of f, q. The diference of the two 
constraints is ER (m~ mD/2E ~ 0, implying that the relative time TR is a gauge vari
able. A true Shanmugadhasan transformation could be defined for each branch of the mass 
spectrum. 

ii) Narnbu string. The study of the abelianization of its constraints using light-
cone coordinates was done in ref.[48]. Due to the total loss of manifest covariance and to 
the existence of two overlapping charts with different abeIianizations and different local 
Shanmugadhasan transformations, a study of the sector p'l > 0 (also the sect.ors p 2 = 0 
and pi' 0 are present at the ctassical level) with the Wigner techniQue used for the 
Todorov model was done in ref.[491, for both the open and closed 

Let us consider the open string: the closed one is technically more involved, but the 
steps are the same. After a canonical transformation from the original variables x P(T, 
pP(T,O') to c.o.m. and relative variables xl', pI', yP(T.O'), Pp(T,O'), the relativ,: variables 

have been boo~ted at rest and the new basis !i: P, PI', ti( T, 0'). P( T, 0'), y( T, 0'), P( T, 0') was 

obtained. y, P are \\Tigner spin-l vectors, while ti, P are Poincare' scalars (Y(T,O') are 
the infinite relative times). After rewri ting the original constraints 0' ) (p( T, 0') =t= 

Xx\;-,O')f ~ 0, X'I'(T,O') ==- aT ..~;.D\ ill the new variables (A± t.he followiub 
abelianization was discovered: there are two sets of global Poincare' invariant. Abelian 
constraints xl(T, 0') corresponding to the two disjoint sheets, 71 signPO, of the mass 
hyperboliod p 2 > O. The conjugated global Poincare' invariant Abelian gauge varia.bles 
TJ(T,O') (the multi times of the multi temporal approach) were found and it was shown 

that the Dirac obsenrables had to be extracted from the Wigner unit vectors fi~(T, 0') = 

The solutions of the multitemporal equations for the unit vectors 

allowed the identification of nontrivial functions Bl"(T, 0') of the gauge variables, needed 
to a generalized harmonic analysis of the unit vectors. The generalized Fourier 
coefficients an of the unit vectors are. Wigner spin-l Dirac satisfying a-model 

like constraints implied by, ~~'l (T, 0') ~ 1. Therefore the an are not independent oscillators, 

as it is confirmed by their Poisson brackets. 

One of these constraints, together with a combination of the original constraints, gives 
the mass spectrum ryJFi2 in terms of the an. This is equivalent to the L o ~ 0 Virasoro 
constraint; all the other Virasoro constraints are decoupled and live in the gauge world 
spanned by xl, TJ, so that they are not to be quantized: this avoids the Virasoro 
cohomology mechanism for producing the critical dimension in the covariant approach. 
Moreover there are the c.o.m. observables z, k. Both for the open and closed string the 
unit vectors fi~(T, 0') are tangent to closed curves with the functions B'!U(T. 0') as natural 
parameters. 

To get a true Shanmugadhasan canonical transformation, one has to extract a canon
ical basis of Dirac observables from the an. To avoid the other mechanism for the critical 
dimension, i.e. the nonlinearity of the Poincare' realization of the noncovariant approach, 
a reduction like in a-models has to be discarded. Instead one has to try to extend the 
Pauri-Prosperi49 theorems on the canonical realizations of the Lie algebras to this infinite
dimensional case, in which th:. relevant algebra is 0(3)(P). One has to look for variables 

adapted to the Thomas spin 5, which is nn observnble: the new clUlOuicn.l bn.'liB will lw 
r:;2 

formed by two pairs {S3,arctgS2/Sd, {S V S ,¢I} (¢I is an angle) and by Poincare' 
scalar action-angle variables In, ¢In' The Poincare' generators are realized only by using 
the first two pairs and z, k, so that they can be consistently quantized in 4 dimensions. The 
results of Pron 'koso, who applied the inverse scattering method for periodic potentials to 
the Nambu string, seems to show that the In exist and are globally defined, because 
are the integral invariants of the closed curves having ~~(T,O') as unit tangent vectors: if 
this is true one obtains a definition of Liouville integrability for the Nambu 
If the infinite-dimensional algebra of Pohlmeyer-Rehren51 conserved 
(it contains the Poincare' and, for this extended object, it avoids the Coleman
.Mandula no-go theorem, origin of supersymmetry for pointlike systems, because it has 
structure functions depending on the total momentum instead of structure constants) im
plies that also the angles ¢n are globally defined, then one can quantize the N ambu 
in 4 dimensions and due to the nature of these variables one would also obtain the de
composiLioll of the spin levels over each mass level into irreducible components. Othenvise 
the Virasoro cohomological problem, notwithstanding all the nonlocal operations needed 
to build these new variables, could reappear in connection with the transition functions on 
the overlap of the charts of the symplectic atlas needed to describe In and ¢In and a critical 
dimension will show up like in the other approaches. In any case it would be worthwhile 
to suceed in building this canonical transformation explicitely. 

Gauge fields. In the case of the electromagnetic field most of the work for the 
search of the Dirac observables was done by Dirac52 himself. The potentials Ap(t,x) have 
conjugated momenta 1I'°(t, x) 0, 1I'i(t, x) = -Ei(t,Ji) = FOi(tL:i). Th~ Dira~ Hamiltonia~ 
is HD = He +Jd3 x[Ao(t,x)r(t,x) +>'(t, x)1I'°(t, x)] with He = Jd3 x[i2 (t, + 

x) = Eijk8jAk(t,x) 1/2fijk F jk(t,x), and the Gauss law r(t,x) 

10 11 



o is the only secondary constraint. We assume boundary conditions such that we can 
integrate by parts and such that the Laplacian 6 has no zero modes. From now on we 
sEall omi~ the tim! t inside the fi!lds. By me~s of the l!0d~e decomyo~tion we obtain 
A(i) = a.,.,(i) + D(i), i(i) = (a/6)r(i) + P(i) with a· D(i) = a· P(i) == O. Here 
"l(i) = (a/6).A(i) = J d3yC(i, f)'A(f), where C(i, f) is the distribution defined in ref.[52] 
, which satisfies ax .C(i, f) 03(i - f). The gauge world is composed by the canonical 
pairs (Ao(i),1fO(i», (.,.,(i), r(i)). The Dirac observables are the transverse fields D(i), 
P(i) (Bi(i) fijkaj Dk(i» satisfying {Di(i), pj(f)} = (oji - aiaj /6)03(i f) and 

whose dynamics i~ governed by the physical Hamiltonian HP = 1/2 Jd3 x[P2 (i) + .82 (i)], 

so that P(i) = D(i). To obtain a Shanmugadhasan transformation one should extra.ct 
the transverse degrees of freedom from D(i), P(i), possibly in an Euclidean covariant 
way. The Coulomb gauge "l(i) R:: 0 is compatible53 with the temporal gauge Ao(i) ~ 0, 
when the Gauss law holds, since ry(i) {"l(i), H D} = Ao(i) - (1/6)r(i) ~ Ao(x) ~ 0, 
Ao(i) = >'(x) ~ 0, and we get a special case of the Lorentz gauge al,A"(x) O. 

vVhen massive Dirac fermions, described by Grassmann spinors, are present, the 
Gauss law becomes rei) = a· i(i) et/Jt(i)t/J(i) and the Dirac Hamiltonian is HD = 

J d3x[it/J t (i)5.at/J(x)+et/J t (x)5.A( x)t/J(x)-mt/J t (x)f3t/J( i)+1/2( i 2
( X')+.82 (x»+Ao(x)r( x)+ 

>'(x)1fO(x)], with {t/Ja(X),t/J1(f)} = -i0 3 (i - YJ. Dirac52 introduced the gauge invariant 
fermion fields t/J*(x) t/J(i)exp(i.,.,(i»), satisfying the same Poisson brackets of the original 
ones: the bilinears in them a.re even Dirac observables, but are not local objects not having 
compact support. They describe the electron with its Coulomb cloud. The Coulomb gauge 
is now not compatible with the temporal one, becouse ry( i) ~ Ao( x) + e(1 / 6)t/J t (i)t/J( X') ~ 
O. D(i), P(i), t/.)*(x), t/J*t(x) are the Dirac observables, with a dynamics governed by the 
physical Hamiltonian 

Hp = J d3x{it/J*t(i)5· at/J"'(x) - mt/J*t(x)f3t/J*(i) + 1/2(P2(x) + .82 (X'» + et/J*t(x)5· 
D(i)tjJ*(x)] + e2 J d3xd3y[¢*t(i)tjJ*(i)Jc(i,YJ[t/J*t(YJ¢*(YJ] 

with 6;rc(X', YJ = 63 (x YJ. The last term is the nonlocal Coulomb interaction and the 
preceding term is the coupling to the ext.ernal radiation field. The difficult problem is how 
to quantize the Coulomb term. 

Instead the problem of obtaining a manifestly covariant formulation can be solved54 

reformulating the theory in parametrized form on arbitrary spacelike hypersurfaces, follow
ing Dirac l . If zl!( r, a') are the coordinates of a point on the hypersurface, then z~ (r, a') := 

8%;~;,iT), cr O = r, are a set of vierbeins and the metric tensor on the hypersurface is 
gAB(r,a') = z~(r,a')"lltllzB(r,a'). The independent fields are AA(r,a') = z~(r,a')AII(r,a'), 
so that FAB z~zBFI!" and the action is S = -1/4J drd3cr!y'9gACgBDFABFCD}{r,a'), 
where gAB is the inverse metric. The canonical Hamiltonian vanishes and one has the 1st_ 

class constraints H ,,( r, a') p,,( r, iT) +Tn (r, iT)l" (r, iT) - Trr( r, iT)Zr" (r, iT) R:: 0, 1fT (7, a') ::::: 
0, x(r,a') = (Y1fr(r,a') ~ O. Hefe p,,(r,a') is the momentum conjugated to zl'(r,iT), 
1"(r, iT) the unit normal to the hypersurface and Trr(r, iT), Trr( r, iT) are components 

of the electromagnetic energy momentum tensor. By eliminating the electromagnetic 
constraints and gauge variables as before, one remains with the 4 Abelian constraints 
Hp,,(r,a') = Pll(r,a') + Tprr(r,iT)l,,(r,iT) - TPTr(r,iT)zr,,(r,iT) ~ 0, which depend on the 
transverse observables Dr(r, (1), Pre r, iT). Then, since we are working in special relativity, 
we restrict the hypersurfaces to spacelike hyperplanes z"(r,iT) = x"(r) + b~(r)crr, where 
b~ (r) with b~ (r) = IIl( r) are orthonormal vierbeins. Only 10 constraints are left 

H~ = PI' 1/21"(r)J d3 a(p2 + B2)(r,a') -bJ;(r)J d3 cr(P x .8)II(r,a') ~ 0 

H~" SIl"-b~(r )1"1(r )1/2 J d3 crcr"(P2+.82 
)( r, a')-b~( r )b=) (r) J d3crcr s (P X BY(r, iT) 

~O 

where pI! J d3crpll(r,a') and Sil" are respectively the total momentum and the spin 
tensor conjugated to the vierbeins b~ (see ref.[9] for their treatment). Therefore manifest 
covariance is obtained at the price of introducing 10 extra degrees of freedom, associated 
with the Poincare' group. If we restrict ourselves to the sector of field configurations with 
p2 > 0, we can select the special foliation of the Minkowski spacetime given by the family 
of hyperplanes normal to pI': this can be done by imposing bA = L~=A(P,P.. ). Then the 
indices A = r become spin-l Wigner indices .. Only the 4 }lit-class constraints H~ are left 
and by using the c.o.m. variables defined in section 2 they can be written in the form 

HT =.,.,.JP2 - lIr = "l# -1/2J d3 cr(P2 +B2)(r,iT) ~ 0 

liT = J d3cr(P x BY(r,a') ~ 0 

Besides the transverse electromagnetic degrees of freedom we have the remaining 8 
c.o.m. variables associated to the hyperplanes. VT, V r is the total momentum of the 
field configuration. The previous construction clearly points toward the existence of a 
canonical transformation from the transverse variables D(i), P(i) to a basis containing 
the field c.o.m. variables liT, vr, TT, zr and an infinite number of relative variables. 
TT and Z are the rest frame time and the non covariant canonical c.o.m. position of the 
field configuration, which naturally have to be restricted so that these variables and the 
10 Poincare' generators exist and are finite. It would be important to find this canonical 
basis, since it would allow to show explicitely the unification of the Wigner description of 
particles, strings and fields. Once this basis is known, one can eliminate the last degrees of 
freedom of the hyperplanes in the sector p2 > 0 by imP ....osing tEe gauge-fixings z- i ~ 0, 

T rp. x/"lJlYi - ~ 0: only the field degrees offreedom Z, TT, V, vr and all the transverse 
field variables relative to the c.o.m. (transforming like \Vigner spin-l vectors) would be 
left to be quantized. 

I have found 54 the generalization of the procedure for finding the transverse Dirac 
observables of the free Yang-Mills theory in the c~~_ Qf ~ trivial principalJ)~ndle..47 and. 
for a gauge potential without stability group, to avoid the singularities of ref.[46]. In this 
case the Gauss laws do not have zero modes and a Green function, which solves them, 
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has been found. By solving the multitemporal equations and by introducing a generalIzed 
Hodge decomposition, what could be called a generalized Coulomb gauge has been found 
and the transverse Dirac observables and the physical Hamiltonian have been constructed. 
The Gribov ambiguity becomes a problem of coordinate singularities, but I have still to 
understand the global problems connected with the center of the gauge group, which is 
.enrnr'......... h.,.. to the center of the holonomy group of the given connection. To pass from 
imariance under the small gauge transformations to gauge invariance in large one has to 
identify some global topological information, for instance which are those special loops on 
the base whose holonomy identifies the center of the holonomy group. 

Since the physical Yang-Mills Hamiltonian is nonpolynomial and since also without 
fermions the Coulomb gauge and the temporal one are not compatible53 due to the fact 
that the bosonic field is charged, we do not know how to quantize the theory before 
or aiter its covariantization. However the emergence of a canonical noncovariant c.o.m. 
coordinate Z (or better Z' = Z/r"liii) also for field configurations, shows that also in 
the case of fields one can define the noncovariance world-tube of radius d s/ffic. The 
same radius can be expressed in terms of the Poincare' Casimirs in the sector p2 > O~ 
IV2 ::f: 0, i.e. d J-W2/P2C. To zt one can apply the results found by Hegerfeldt 55 

studying the Newton-Wigner position operator. He found that if this position is ljU;rUIl.lZ,I:·U 

as a self-adjoint operator, one can define good localization properties, but then one has 
violation of Einstein causality (i.e. a spreading of a wave packet with a 
than the light velocity) in the following cases: i) initial localization on a compact set; ii) 
Gaussian and wave packets. Only with wave packets with power tails there 
is the Dossibility of no violation of causality: but to accept only such a class of wave 

is equivalent to abandon the self-adjointness of the position operator and to have 
bad localization Now the noncovariance world-tube points in the direction of 

a "delocalization", i.e. of excluding the possibility of localize the c.o.m. inside the 
world-tube to avoid frame-dependent statements. This problematics, with the 
fact that for a field configuration belonging to a Poincare' irreducible representation with 
p2 > 0, HT2 ::f: 0 (like for the vVigner definition of elementary spinning particles), one has an 
intrinsic unit of mass, M(P) 7pIJi'i, and an intrinsic unit of lenght, the radius d, points 
toward the existence of an intrinsic ultraviolet cutoff for these field configurations. By 
restricting the Heisemberg relations to forbid localization inside the lloncovariance worlci· 
tube, i.e. below a radius proportional to the Compton wavelenght of the field configuration: 
6Z'k 2: h/6 p k 2: hs/.JiYic (with s --t hs), one obtains 6pk :::; (1/s).JjYic. This can be 
reinterpreted as an intrinsic cutoff p!ar. = ..jjYic/s. There would be a smearing of short 
distances to avoid frame-dependent statements induced by spin effects. 

As suggested in ref. [57] , a different alternative possibility to be explored is noncommu
tative geometry: according to me particularly relevant could be the framework of ref. [58), 
emphasizing the analogies with the classical Lorentz and Poincare' group of their quantum 
analogues; however see also ref.[59J. The radius r could play the role of the classical basis 
of a deformation parameter independent form h, which describes the deformation of the 
Poisson brackets to the quantum co~mutators. 
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We are back to the original problems, which pushed Dirac and Yukawa to begin the 
line of research here considered. Whether all these qualitative fragments can be used to 
define a regularization procedure for nonpolynomial Hamiltonians is a completely open 
problem. I think that there is the urgent need to make an effort in this direction, in 
parallel with the attempt to understand better the functional Schroedinger representation. 

Finally one has to extend this multi temporal approach to classical general relativity, 
trying in particular to solve the constraints of the Ashtekar complex tetrad gravity60. 
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