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ABSTRACT 
The Einstein-Hilbert action with a cosmological term is used to derive a new action 

in 1+1 spacetime dimensions. It is shown that the tw~dimensional theory is equiv­

alent to planar symmetry in General Relativity. The tw~dimensional theory admits 

black hola and free dilatona. and has a structure similar to tw~dimensionalstrinl 

theone.. SiDce 'bJ coDatruction these lOlutiou alIo 101ft Eiutein', equationa, such 

a theory can be the key io briq two-djmeD,ional reIUlii inio the four-dimensional 

real world. In particular the tw~dimenaional black hole is &lao a black hole in 

General Realtivity. 

General Relativity is thought to be the correct theory from the largest conceivable 

scales up to the Planck length, 10-33cm. A place to test these tinyest radii can be 

found in the late stages of black hole evaporation. This is a DOD-trivial issue and 

one is still probing regions where a semi-classical approximation is valid. The two­

dimensional (20) black holes found in the context of string theories [1,2] are being 

used to compute and analyze the back-reaction of the radiation on the geometry 

(3]. Such 20 theories are, in principle, toy models and it seems essential to build 

a bridge into the four-dimensional (40) world. \Yith this purpose, we consider the 

following action, 

(1) 
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where 9 is the determinant of the 2D metric, R is· the scalar cur\"ature~ <i> is a scalar 

field and .x is a constant. Equation (1) is very similar to the simplest 2D action 

derived by imposing the vanish of the ;3 functions in string theory, and given by, 

(2) 

As \ve will show, action (1) comes from 4D Einstein gravity and also admits black 

hole solutions. It is tempting to generalize both these actions into, 

(3) 

where w is a parameter. Equations (1) and (2) have w = -i and w = -1, re­

spectively. For w = 0 one has the lackiw-Teitelboim theory [4], where the scalar 

curvature is a constant. Equation (3) is a 2D Brans-Dicke theory [5]. It seems 

plausible to have black hole solutions for several different values of w. 

How can we obtain the action (1) from 4D General Relativity? The idea. 

is to reduce from 3 + 1 to 1 + 1 spacetime dimensions, loosing the less possible 

information. This is the case if, (i) the 3-space manifold splits into a direct product 

of a 2D manifold E2 with the real line, M3 = E2XR and, (0) the physics and 

geometry (metric) on 1::2 are invariant under the action of the 3-parameter group, 

G3 , of motions, i.e., the action is an isometry. Conditions (i) and (ii) imply planar 

symmetry. Thus the infinitesimal generators of the group G3 are two orthogonal 

translations and one rotation about the axis. By a known theorem [6] if a group 

G3 of motions has spatial orbits of dimension 2, these orbits admit orthogonal 

spacetime 2-surfaces. We \vill label the spatial planar 2-surfaces by (y, z). 

Now, Einstein-Hilbert action is, 

s = I!'" J 2A),4'%../-g(4) (R(4) - (4) 
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where the superscript (4) denotes 4D quantities and A is the 4D cosmological con­

stant. Also, the most general plane-symmetric metric can be written as, 

(5) 

where a, b = 0,1, and gab and </> are functions on the spacetime 2-surfaces. The scalar 

function </> is called for obvious reasons the dilaton. From standard dimensional 

reduction techniques [7] on (4) and (5), we obtain equation (1). Thus the 2D 

graviton-dilaton theory given by equation (1) can be related in a very direct manner 

with General Relativity. To obtain (1) we have integrated over a 'spurious' 2D 

planar compact manifold, say a 2D planar torus, on which we have imposed the 

normalization Jdydz = 8, and set A = _2;\2 • Adding a pure 2D cosmological term 

to the action (1), 211r JcPxFgl, 1 a constant~ is equivalent to spherical symmetry 

in General Relativity [8]. With a different motivation, but also using dimensional 

reduction arguments, equation (2) has been derived out of a Chern-Simons action 

[9]. 

Variation of (1) with respect to gab and ¢> yields the gravitational and dilaton 

field equations, respectively, 

iG4~ + D4D~¢> - (D.¢» (D~¢» - g4~DcDCH 

+~ga6 (Dc¢>)(Dc¢>) - g4~>.2 = T.~e2<P, (6) 

2DcDc</> - 2 (Dc</» (Dc</» + R + 4;\2 = 0, (7) 

where D represents the covariant derivative. \Ve have add a matter term Sm to (1) 

such that :::t =- ~FgTab. In 2D the Einstein tensor is Gab =O. 

To find solutions of this theory we have to exhibit explicitly the 2D metric 

gab. By performing a coordinate transformation we can put gab into diagonal form, 
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ds2 = _e211 dt2 +e2P.dx2 , where v and 1-', (as well as cb), are functions of the spacetime 

coordinates (t, x). We still have the freedom to choose a gauge. any gauge will do. 

We choose the unitary gauge, I-' = O. Then the metric is, 

(8) 

If we now look for static (exists a Killing vector :t)' vacuum (Tab = 0) spacetimes 

we obtain from (6), (7) and (8) the following three equations, (only two of them are 

independent ), 

3 2 2 
¢,z:z: - 2¢'Z: + A = 0, (9) 

122
2¢'Z: - V,z:¢,z: - A = 0, (10) 

(11) 

The linear, free, dilaton solution is of course of the form, ¢ ex x. Equation (9) then 

gIves, 

¢> = -I[>..x + constant, (12) 

while (10) puts the metric in the form, 

(13) 

Given there is a free dilaton solution, string theories hint that we should look for a 

black hole. The general solution of (9) is of the form, cb = -f In (.4 cosh (/"fAX) + 

B sinh (/"fAX)) .We now set B = 0, (this can always be done if A >1 B I).Then, 

(14) 
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The absolute value of the dilaton increases at each spatial infinity, x -+ 00 and 

x -+ -00. Equation (10) yields the metric, 

(15) 

The metric (15) has singularities at x = 0, x -+ +00 and x -+ -00. How­

ever, they are merely coordinate singularities since the scalar curvature, R = 
4 2 sinh' v'fAx 

- 3' A , :\It ,has a regular behavior at these ends. In fact, equations (14)
cosh '2Ax 

and (15) describe the geometry external to the horizon at x = O. To bypass the 

coordinate singularity at x = 0, and to show that (15) is a black hole, we display 

its maximal analytical extension [101. First, if we specify the intermediary coordi­

nate r = /f-l- cosh i ( /fAx), we can put (15) in the Schwarzschild gauge, ds2 = 

- (a2r2 - aIr) dt2+ a2r~r~..L ,where a == 1A. We can then define a second interme­
4" y'3 

diary coordinate, r. = ! [lIn (ar - 1)2 -lin (a2r2 + ar + 1) + 7a arctan 2a*I]. 

This puts the metric in the conformal gauge, ds2 = - (a2 r2 (r*) - arlr. ) ) 

(-dt2 + dr. 2
). To expose the maximal analytical extension we can now define 

the Kruskal null coordinates, U = --l-jie-vifA(t-r.) and V = -l-jievifA(t+r.). 

In Kruskal coordinates the metric takes the form 

1 + (ar-I) 
I (a2r2 + ar + 1)'"

3 

ds2 = _ (a 2 r2+ar+I) 2 -==------::---=-:------dUdV, (16)
ar v'3 arctan 24*1 3A2 e 3 - TUV 

where r is given implicitly as a function of U and V. Near the horizon, the metric 

is given by, ds2 ~ -3v'3 ffadUdV , which is immediatly recognizable as a black 
e 2 3-tA2uV 

hole metric. This was expected, since at the horizon, x ~ 0, the metric (15) takes 

the form ds2 ~ - tanh2 
( /fAx) dt2 + dx2 which is similar to the black hole in 2D 

string theory. The true singularity, at ar = 0, obeys UV = ahe@.. This equation 

yields the usual two-branched horizontal hyperbolae, the future branch representing 
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the black hole singularity and the past branch a naked singularity. Also, at ar -+ 00, 

-- 311' 

one has UV = - 3i2 e 2../3, which are two vertical hyperbolae. In figure 1 we draw 

the corresponding Kruskal diagram. The causal structure of this manifold may then 

be interpreted in the usual way, like the Schwarzschild solution. 

Region I can be interpreted as the exterior gravitational solution. The black 

hole is in region II. No signal leaves region II. Upon time reversal, region II trans­

forms into region IV which is called a white hole. We may regard region III as the 

x < 0 copy of region I (x > 0). Then x = 0 corresponds to the Einstein-Rosen 

wormhole Regions V and VI, above and below the singularities, have recently re­

ceived some attention [11,2], although it is still uncertain what is the exact meaning 

of extending a solution past the geometrical singularity. 

The black hole solution (14) and (15) is asymptotic to the linear dilaton 

spacetime (12) and (13). Now, asymptotically there is a timelike killing vector 

tt' Thus we expect the existence of the conserved quantity Toaea
, where ea is the 

normalized killing vector. Using standard techniques one can calculate the ADM 

mass at x -+ 00, given by, 

(17) 

where 4>0 is the value of the dilaton at x = 0, (see equation (14)). The second term 

on the right hand side has an infinite value and can be interpreted as the infinite 

'cosmological' mass of this 2D universe. The first term on the right side can then 

be regarded as the mass of the black hole, MBH, given by, 

(18) 
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Analogously to the 2D string theory. the mass of the black hole is linked with the 

value of the dilaton at the horizon. Starting with the free dilaton solution one can 

create a black hole by throwing in a massive particle from infinity. 

In order to include quantum field effects in the classical geometry of the black 

hole we must compute the Hawking temperature. The Euclideanized solution is 

periodic in imaginary time with period JjA' This is characteristic of a thermal 

state emitting radiation at temperature, 

(19) 


This is independent of the mass, a result which has been reported in other 2D theo­

ries, and which we will be interpreting below in the context of a 4D planar spacetime 

[12]. A step further towards a full quantum gravitational treatment should include 

back reaction of the radiation on geometry by using the trace anomaly relation [3], 

but that is a matter for another place. 

How can we relate these solutions with the 4D world? By construction, solu­

tions (14) and (15) can be paste together to yield, 

+cosh i (/fAX) e-2•• (dy2 + dz2) , (20) 

which is a planar black hole in General Relativity! 

A mass M in 2D is a surface density u in 4D. From (6) we can infer that they 

are connected through AI I"'W ue-2 t/>. Now, if we increase -</>0, we are changing the 

gauge of our planar coordinates, y ~ e-t/>o y, z -+- e-t/>o z, or in other words, our 

units of length are being decreased. An aereal unit is transformed into a smaller 
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area, so (7 increses, and therefore M increases. This 4D viewsight clears up the 

dependence of the 2D mass on <Po. 

The independence of the Hawking temperature on the 2D mass can also be 

explained. Changing our units of length on the planar 2-surface doesnot alter the 

units on the orthogonal spacetime surface. Thus the event horizon in Schwarzschild­

like coordinates is at r H = I"ft, and its surface gravity is k = I"f).. = 2;8. Since 

these are not altered by such a change of units, there is nothing to change the 2D 

temperature. A crude dimensional argument shows that a 4D mass m, must be 

linked to ).. by m = ;>. where a ~ 0 is a constant. Therefore in the 4D world one 

would have T ,....., ~, restoring our expectations. 

We have found and commented on two solutions only, namely the free dilaton 

and the black hole. But, of course, there are many other solutions. Equations (6) 

and (7) have an in-built symmetry which transforms vacuum static solutions into 

homogeneous (time-dependent) solutions by making, ).. -+ i).., t -+ iX and x -+ iT. 

In addition, from 4D planar General Relativity we know we have the Taub, the 

planar Kasner, and the Horsky-Novotny solutions [4], which are also solutions in 

this 2D theory. All of these have interesting causal structures. Out of these, the 

most fundamental is maybe Taub's which has so far eluded a clear interpretation. In 

both backgrounds, either in 2D or in 4D planar symmetry, we can now interpret the 

Taub solution as the spacetime which takes over when the geometrical singularity 

of the planar black hole is approached. In this context, one is carried into the 

viewpoint that the Taub solution is an approximation to the Schwarzschild spherical 

solution near the singularity, inside the event horizon. Although the topology of 

the 2D spatial surfaces of the orbits of the group of isometries as well as the groups 

themselves are very different, (in the planar case being SlXS1 or R2 with the group 

being composed of two translations and one rotation, and in the spherical case 
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being S2 with the SO (3) group), an observer in that region could set up some 

semi-local coordinate system, (not as local as a quasi-~1inkowskian observer~ at 

least on a trajectory orthogonal to the 2D spatial surfaces), where Taub spacetime 

approximates the Schwarzschild solution. 

Another interesting solution in this 2D theory is the one-particle (delta­

function) solution with horizons [13], which corresponds in 4D to the Ipser dust 

wall [14]. In this connection we mention that a solution with horizons in a 2D the­

ory was found by Brown, Henneaux and Teitelboim [15]. It is a one-particle solution 

and relates to the Vilenkin wall [16]. It is an object which doesnot belong to the 

theory we have been presenting, since the theory itself cannot admit 'transversal' 

pressures. In fact this particle solution is an object of the R = T theory in 2D 

[17]. One could continue to list several other possible 2D solutions containing mat­

ter: the multiple particle solution [18], the string (cosmological) solution, and the 

'beadcollar' string solution (i.e., a string sprinkled with particles) [13]. One could 

also try gravitational collapse in 2D. A relation between the collapse of dust and the 

collapse of null radiation could be found, as it is suggested by the spherical collapse 

in 4D [19]. This would also allow to test cosmic censorship and the formation of 

naked singularities. 

String theories in 1+1 dimensions are being used to gain insight towards a 

quantum treatment of the graviton. One problem that is always raised is, how 

the 2D results connect to the 4D world. In this letter we have built a bridge that 

provides such a link. We have constructed a 2D theory, with a structure similar 

to the string theory, which is formally and directly related to 4D planar symmetry 

in General Relativity. The other part emerges when we are able to relate generic 

features, (such as the existence of black holes), from within these type of2D theories, 
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perhaps using the Brans-Dicke parameter w. In any case we should start to fully 

understand 4D plane-symmetric systems. 

Acknowledgements- I thank useful conversations with Jose Mourao. I have profited 

from the lectures on two-dimensional systems given by V. Frolov in the First Iberian 

1\1eeting on Gravity at Evora, Portugal. I also thank Nilton Santos for providing 

a good working atmosphere at Observatorio Nacional, Rio. Research grants from 

CNPq-Brazil and JNICT-Portugal are acknowledge, as well as material and space 

facilities from Centro de Fisica da Materia Condensada, Lisbon. 

References 

1. 	G. Manda!, A. M. Sengupta, S. R. Wadia, Mod. Phys. Lett. A, 6, 18, (1991). 

2. 	 E. Witten, Phys. Re'V. D, 44, 314, (1991). 

3. C. G. Callan, S. B. Giddings, J. A. Harvey, A. Strominger, Phys. Re'V. D,45, 

R1005, (1992); J. G. Russo, L. Susskind, L. Thorlacius, Phys. Lett. B, 292, 

13, (1992); S. W. Hawking, Phys. Re'V. Lett., 69, 406, (1992). 

4. C. Teitelboim, in Quantum Theory of Gravity, essays in honor of the 60th birth­

day of B. De Witt, ed. S. Christensen, p. 327, Adam Hilger-Bristol, (1984); R. 

J ackiw, in Quantum Theory of Gravity, essays in honor of the 60th birthday of 

B. De Witt, ed. S. Christensen, p. 403 , Adam Hilger-Bristol, (1984). 

5. 	 the 2D Brans-Dicke action (3) is a particular case of a more general action 

proposed by T. Banks, M. O'Loughlin, Nucl. Phys. B, 362, 649, (1991). See 

also, J. Gegenberg, G. Kunstatter, WIN-92-9, UNB Technical Report 92-05, 

gr-qc 9302006, (1992). 

10 



6. 	 D. Kramer, H. Stephani. M. MacCallum, E. Herlt, Exact Solutions of Einstein's 

Field Equations, Cambridge University Press, (1980). 

7. 	 Yu. A. Kubyshin, J. M. Mourao, G. Rudolph, 1. P. Volobujev, Dimensional 

Reduction of Gauge Theories, Spontaneotl.S Compactification and Model Build­

ing, Lectures Notes in Physics vol. 349, Springer-Verlag, (1989). 

8. 	 P. Thomi, B. Isaak, P. Hajicek, Phys. Rev. D, 30, 1168, (1984). 

9. 	 A. Achucarro, Phys. Rev. Lett., 70, 1037, (1993). 

10. 	 R. M. Wald, General Relativity, Chicago University Press, 1984. 

11. D. Lynden-Bell, 	J. Katz, Mon. Not. R. astra Soc., 247, 651, (1990); D. 

Lynden-Bell, J. Katz, C. Hellaby, Mon. Not. R. astr. Soc., 262, 325, (1993); 

G. Gibbons, M. Perry, Int. J. Mod. Phys. D, 1,335, (1992). The 2D string 

black hole which emerges as an exact solution of a Wess-Zumino-Witten model 

has the property that spacetime is free of singularities, see M. J . Perry, E. Teo, 

Phys. Rev. Lett., 70, 2669, (1993). 

12. 	 some 2D theories have the Hawking temperature depending on the mass, 

see R. B. Mann, T. Steele, Class. Quantum Grav., 9, 475, (1992). See also 

references [17]. 

13. 	 J. P. S. Lemos, (to be published). 

14. 	 J. R. Ipser, Phys. Rev. D, 30, 2452, (1984). 

15. 	J. D. Brown, M. Henneaux, C. Teitelboim, Phys. Rev. D, 33, 319, (1986). 

16. 	A. Vilenkin, Phys. Lett. B, 133, 177, (1983). 

17. R. B. Mann, 	A. Shiekh, L. Tarasov, Nucl. Phys. B 341, 134, (1990); A. E. 

Sikkema, R. B. Mann, Class. Quantum Grav., 8, 219, (1991); R. B. ~lann, S. 

F. Ross, Class. Quantum Grav., 9, 2335, (1992). 

18. P. S. Letelier, Class. Quantum Grav. 7, L203, (1990). 

19. 	J. P. S. Lemos, Phys. Rev. Lett., 68, 1447, (1992). 

11 



t' 

• 


Figure 1. The Kruskal diagram for the maximal analytical extension of the black 

hole solution. Region I and III describe two identical but space-inverted regions, 

asymptotic to the free dilaton and connected through a wormhole. Regions II and 

IV describe two identical but time-reversed regions, representing the black hole and 

the white hole, respectively. No signal leaves region II. Regions V and VI are beyond 

the singularity and do not have a clear interpretation. 
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