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ABSTRACT 

A general formalism for proton-neutron excitations in odd-odd nuclei within a 

particle number projected treatment of the quasi-particle Random-Phase Approximation 

is presented. It is a generalized and improved combination of a known formalism used to 

. describe identical nucleon systems. The expressions of the matrix-elements for 

neutrinoless and two-neutrino double {J decay modes are presented. By means of our 

projected QRP A version the numerical calculation requires only a little more 

computational effort than unprojected ones. The formalism is very well suited for 

application on calculations of observables, where the BCS s11:peI'fiuid parameters are 

different for initial and final states. \ 
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I. INTRODUCTION 


In recent years, the goal ·of testing the symmetry properties of the standard '1 

model(1,2,S), has encouraged great effort in performing nuclear double (J-decay calculations. 

1here are many reviews in the literature(4) which give a comple~e explanation of this' 

question. 

Because of the dimensions of the problem, the proton-neutron version of the 

quasi-particle Random Phase ApproXimation (QRPA) has been widely applied to the 

double ,8-decay of medium and heavy nuclei(S). This approximation causes an explicit 

violation of the SU(4) symmetry and it is suggested that the extreme sensitivity of the 

fJ{J-decay amplitude to the proton-neutron coupling is a consequence of the violation of the 

particle number conservation. It is well established that number projection is essential in 

BeS Tamm-Dancoff spectroscopy calculations(6). 

Only recently, Civitarese et. al(7-8) performed {J,8-decay rate calculations in a fully 

number-:-projected, QRP A framework. They extended the number conserving version of 

QRP A for like quasi-particle pairs studied in Ref. (9) to unlike ones for medium and heavy 

nuclei. It is found that the particle number projection yields non-vanishing matrix 

elements in the neighbourhood of critical values of the proton-neutron coupling 

interaction. (7) Calculations of {J,8-decay observables within this approximation(lO) show 

that the number projection is important for light nuclei, too. 

In the present paper, in order to develope a proton-neutron number projection 

QRP A formalism, we use the generating function technique introduced by Ottaviani and 

Savoia(ll) in TDA for identical nucleon systems. Within the version for nuclear closure 

a.pproximation proposed in Ref.12, the explicit for~ulas for the nuclear matrix elements for 
" . 

two-neutrino and neutrinoless modes are presented. 
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ll. FORMALISM 

The total Hamiltonian is conveniently expressed as 

H' - H +H +H (1)
p n pn 

where . H and H describe the effective Hamiltonian in proton and neutron space, 
p n . ,. 

respectively, while H denotes the effective interaction between protons and neutrons. 
pn 

The quantities H ,H and H , in second quantized form, are given by
p n pn 

Ht - I. (et - '\) ct ct + i I. <t1 ~IVlt3 t.>Act ct2 c c (2)
t4 ts 

t t's 

and 

H <pn IVI plnl> : ct ct c c : (3)
pn J. p n n' piI. 

pp'nn l 

where the subscripts t(t) stand for p(p) or n(n), depending on whether H or H is being 
p n 

considered. Here t:: t, m ,with t:: (n It jt) and m :: m. , and all the remainingt t t . Jt _ 

notation has the standard meaning: e is the single particle energy (s.p.e.), At is the 
t 

chemical potential, ct (c ) ,are the single particle creation (annihilation) operators, the 
t 

label J. denotes the matrix elements with respect to anti symmetric states and the symbol 

denotes a normal product of fermion operators. 

In order to calculate the matrix elements of the Hamiltonian (1), we introduce the 

z-dependent canonical transformation: 
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dt pl/2 (U ct - z Y C-) · p-l = U2 + z2 y2 (4a)-P P pp ppp' P P P P 

and 

dt - pl/2 (u ct -z v c-) • p-1 = u2 + z2 v2 (4b)
n n oo.noo' n p 0 0 

for protons and· -neutrons, respectively, ;with 

(_)t+mt cCT = (5)
" t,--mt 

The unbarred ut ' vt and barred tit' Yt parameters are obtained by solving the 

BeS equations for the initial (N,Z) nucleus and for the final (N - 2, Z + 2) nucleus, 

respectively. It is easy to see that 

(6a) 

(6b) 

and 

d f 0+ ,Z Z > -·d 10+ z Z > = 0 (7)p pn n 'po 

where 

10+' Z Z > - II (u + z vet cI) IT (fi + z vet J) 10 > , (8a) 
, p n p>o p p p p p 0>0 n non n 

and 10> represents the particle vacuum. 

The generating wave function (eq.8a), can be also rewritten" as 
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P nmax max 

IO+·Z Z >  (8b), p' n L l: 
p=o n=O 

where· ION> ~ith N = 2n + 2p , is a wave function with fixed numbers of 2p-protons .. c 

and 2n-neutrons. 

By means of the inverse transformations obtained from (4), and neglecting the 

residual interactions between identical quasiparticle) the Hamiltonian (1) reads: 
,. 

with 

(lOa) 

(lOb) 

(lOC) 

H~O = L Pnz! [v! (En - -\ -~ z! fin) -~ Un vn .in] , (lOd) 

n 

H11 _ ~ p [(e - A - z2 ii )(u2 - z2 v2) + 2 z2 u. v ~] dt d (10e)
n £..in n n nn D nn nnn n Dn 


n 
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~ P [(e -;\ - Z2 P, ) ii v -l (ii2 
- Z2 V2) ii ]

.£..,.n n n n n n n .G n n n n 
n 

x,_ [dt d-t + d~ d ] , (10f)
n, n "n n 

~'~(p p p, P .)1/2 [<pnIVlp'n'> 1 (U ii U , ii -, +
.£.. ;- p n p n-' Jl p n p n 


pp'nn 

,. 

Z2 Z2 V V V ,V,) - <pii' IVlp'ii> I (Z2 U V U , V , + Z2 V ii V, ii I)]
P n P n P n Jl n p n p n p p n p n 

(lOg) 

( p p p, P ,)1/2 <pnJVlp'n'> JZ Z u ii V ,v ,
p n p n ,It. p n p n p n 

(lOh) 

The gap parameters ii and the self-energies p, are given by 

ii - -lp...l ~ pi U , V , P , G(pp p'p';O) (lla)
P .G .£.. P P P 

pi 

ii - _1 ii-I ~ ft'ii l v l p G(nn nln'·O) (lIb)n ~ k n n n' , 

n' 


Pp - - p...l LpI V:' Ppl F(pp p'p';O) (12a) 
p' 



7 


7t = - fi-1 	~ ii' V 
2 P F(nn n'n'·O·) (12b)

""0 	 k 0' 0' , 

n l 

The quantities. F(abcd;I) and G(abcd;I) are, respectively, the particle-hole and 

particle-particle antisymmetrized· matrix elements of the interaction(14) and 

t =~(2jt+l)I/2A 
The QRP A phonons for a proton-neutron mode with angular momentum I are 

approximated by the expansion 

rt(aI) = 	 L [X(pnI;ll') Dt(pnI) - Y(pnI;ll') D(pnl)] , (13) 
pn 

in a finite set of basis operators 

(14) 

with the normalization factor 	)/ obtained from the orthogonal condition: 

<ON+ID(p'n'I) Dt(pnI)ION+> = 6 ,6 , . (15)
pp on 

The forward- and backward-going amplitudes X(pnI;a) and Y(pnI;a) as well as 

the eigenvalues w are obtained, as in the usual QRPA formalism 13 ,from the equation of 
aI 

motion: 
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(16a) 

and . 

(16b) 

The generating function (8) has the property that matrix elements between 

projected 'statesof any operator b preserving the particle number can be derived by 

where the contour of integration includes the origin. Then, the equation of motion (16) can 

be rewri tten as: 

A(I) B(I)] (X(0'1)] _ [X(O'I)] 
(18)(-A(I) -B(I) Y(0'1) war Y(aI) 

with the matrix elements given by 

A(pn,p'n'jI) = i-I [2~r§dz zp-2p-1 §dZ zn-2n-l p n 

" (O+j zp,zn I[D(pnI), H,Dt(p'n'I)]O I0+; zp,zn) , (19) 

x (0+; z ,z I[D(pnI), H,D (plnl I)]O I0+; z ,z) . (20)p n . p n 
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For the Hamiltonian (9), in a straightforward way, we have obtained the explicit 

formulas: 

A(pn,p'n'jI) = {C [R2p(pp) 12n(n) + R2n(nn) 12p(p)] + R2p,2n(pn pin')} Jl-(pnI) 
pn,p'n' 11 n 11 p 22' 

(21) 

and 

B(pn,p'n';I) - R!~,2n(pn,plnl) i(pnI) (22) 

where 

R;~(nn) = (En -An) [u! I!n(nn) -v! I!n-2(nn)] + fi-l l: fi'{v!,[ii! I!n-2(n'nn)
n' 

R2p,2n(pn pin') = [U fi U fi 12P(pp') 12n(nn') + V v V v l 1
2P-2(pp')22' p n pl. n' p n p n pi n p 


12n
- 2(nn')] G(pn p'n'-I) + [U v U V 12p(ppl) 12n-2(nnl) - V fi v fi 
n 'p n p' n' p n p n p' n' 

(23c) 
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R42PO,2n(pn,p'n') = [(V u u, v , + u v V , U I) F(pn pln';I) - (u U V , v I+
P n P n pn P n P n P n 

(23d) 

and the normalization ... 

(23e) 

The residuum integrals are defined as 

IK(pp' .. · r) 1 f d -K-l( ) II ( 2 + 2 -2 ) , (24a)- 2"i1 zp zp Pp Pp' • •• Pr u" Z v " P P P Ppi t >0 

(-2 2 2 ) IK(nn'o · .s) - 1 f d -K-l( ) n u It+ Z v " , (24b)2"i1 Zn Zn Pn,· •• Ps n n
n Pn 
n">O 

n 


where the integration path encloses the origin but no other singularities. 

kNumerically, instead of the residuum integral I (ab ... w) one can to evaluate 

sums (IS) 

k 1 (M-l}/2 [ -Ie 2 2 2]
L (ab .... w) - M {1 + 2 E Real Z (PaPb'."Pw) n (ut + Z vt ) . 


m=l t>O 


(24c) 

where Z = exp(inn/M), with M a large odd-number. 

The nuclear matrix element for a (J{J-decay is of the form(4): 



11 

(25) 

where JPT and Jf are, respectively, the Gamow-Teller (OT) and Ferm.i(F) transition 

amplitudes. 

, In the two neutrino case; the a.mplitude 0+ -+ 0+ 2vpfJ is given by(12) 

.Il (I) - L <Of II 0.(1) II it It> < it It II 0.(1) II or> / D(aI) (26)
2V

a ,. 

where J(2V(I=1) == X;;; and J(2,,(1=0) ==.(". The Of and Or stand for the ground state 

of the final and initial nuclei, respectively, and 0:(1) are the one-body charge-exchange 

operators, expressed in second-quantization as: 

O",(I) - L<tIIO(I)t",lt2> ctl c~ (27) 
tis 

where 0(1=0) = 1 and 0(1=1) = q with <plt+ln> = 1. The energy denominator 

D(aI) , in natural units (1\ = c = me = 1) , reads: 

D(a1) (28) 

where E is the initial energy and. Qpp the Q-value of the decay, and the sum in eq.{26}j 

extends over a complete set of intermediate states IQ 1+> . 

Using the relations (4a) and (4b) the charge-exchange operators (27) take the 

following forms: , 
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(29a) 

I
0.(1) = L(A~ (pnIHd~ d/+ A~ (pnl)[d!d!J ) , (29b) 

, pn ' 

where 

A2 (pnI) = i-1t/) p )1/2 z u v <p II 0 (I) II n> , (30a)
pD' D P D 

AO (pnI) = _i-l{p P )1/2 z V ii <p II 0 (I) II n> . (30b)
- pDP P D 

In our formalism the <ON I component of the wave function (8b) is the 

ground-state of the final and initial nuclei in eq.(26). Using the relation (17), the 

transition matrix elements are given by 

with 

A.( al) = i-I [~ <p II 0.(1) II n> A.(pnI,a) .N(PnI)] Ko , (32a) 

A.( Of) = i-I [~ <p /I 0.(1) /I n> A.(pnl,a) .N(pnI)]Ko , (32b) 

where 
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AApnI,o:) = u v X(pnI,o:) 12p(p) I2n- 1(n) + V ii Y(pnI,o:) I2p-l(p) 12n(n) (33a)
pn p n pn p n 

(33b) 

and 

(34) 

Within our QRPA method, the energy denominator D(aI) reads: 

(35) 

where 

which allows us to rewrite (26) in the form 

(37) 

In the case of the zero neutrino decay mode (Oll{J{J) , we have the same matrix 

element 1N given by (25), and the 0+ ... 0+ amplit~des are approximated by(16): 
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(38) 

where oi2 = 1 :a.nd U;;.:.... qt· '~2' theneutrino·potential.:H(r) = ;(Dr)/r, with· 

r = 111-121 'and .D = <E.>-E. + ~ Q{J{J +1 ; here E. is the energy of the intermediate 
J I ~ J 

state. 

The matrix elements of a two-body operator 012 in (38) is defined as 

<012> = ~ L <OC II [c!,cii,]Iu a I'1"><a Ill" " Ie! ciiPIi Or> 
pnp'n'

Ir-aI I 


(_)n+p'+I+I' i,2 {p n I} <pp'I'1 t+(1) t+(2) 0 Inn'!'> . (39)
n' p' I' 12 

In our QRP A formalism, the matrix elements of the one-body transition densities 

are given, analogously to (31), by 

(40a) 

and 

(40b) 

Finally, in order to apply. the QRP A formalism to double {J-decay calculation we 

need to solve the BCS equations. 

There are two procedures for the variation method, where 

6<0+IHIO+> _ o , (41)
<0+ 10+> 
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is imposed. The PBCS approximation, where the variation (41) is performed before the 

number projection with the BCS vacuum in our formalism is expressed by 

" 

1\ Dives a condition on'\ and'\ ,respectively
o· P D 

(43a) 

and 

(43b) 

In the FBCS approximation the variation (41) is evaluated after the projection on the wave 
+ 

funtion ION> with a fixed number N of particles. 
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III. CONCLUSION 

In this work we developed a. proton-neutron .number projected- -version of the 

quasi-particle Random-Phase Approximation, based on the generating function technique. 

The extensive formulas are !?iven. The formalism is very well suited for applications,; 

on {3 and {3{3-decay calculations. 

Our formalism differs from that evaluated by Civitarese et. 1Ll.(7) -in the choice of 

,.the vacua (lOa) and, consequentely, in the form of the excited states IJr> in intermediate 

(N-1,Z+1) nucleus. This causes the absence of the overlap (JrIJ~) in our expressions 

for the matrix-elements of {3{3-decay rates. 
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