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The Wigner-Helsenberg super-oscillator technique extended her'e for two -

|
|
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dimensionsk is effectively applied for an easier spectral resolution of the
anisotropic ring-shaped oscillator potential ar+b (rsin®) 2+s (rcos®) 2 +

d r%in® + e rZcos®s. Connections of the present method with the
S0(2,1)eS0(2,1) approach of earlier work and also ‘with the two dimensional

supersymmetric quantum mechanical algebra for this system are pointed out.
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1. Introduction

Spectral problems invoving ring-shaped oscillators have rceived
recent attention [1,2,3] in this Journal. Specifically Boschi Filho and Vaidya
[1] have discussed the S0(2,1)eS0(2,1) dynamical algebra associated with the

anisotropic ring-shaped oscillator potential
Vir) = a r2+b (rsim?)-z-t-s (rcosﬂ)'z-l—d rZ sin%e + e r2cos®e (1)

(where a, b, s, d and e are positive constants) and have calculated the Green

function, energy spectrum and wave functlions. This potential has as particular

cases the ring-shaped oscillator discussed by Quesne [4] and the double

ring-shaped oscillator for which the spectral resolution was ) obtained by
Carpio-Bernido and Bernido using the path integral technique [2] a.nd' the
s0(2,1)eS0(2,1) algebraic approach [3]. In this letter we employ a much
simpler algebraic technique owing to two of the present authors (Jayaraman and
Rodrigues [5] ) based on a super-realized general oscillator algebra of
Wigner-Heisenberg (WH) [6-12] but extended here effectively for two dimensions
(2D). Our method in fact is a super-linearization of the S0(2,1)eS0(2,1)
approach of refs. [1-3] and has the advantage of providing an easier spectf;al
resolution of the quantum mechanical problem of a particle confined to
potential (1). The highlight of the present method 'is, as will be seexi, the
simple use of only creation and annihilation operators -the super Wigner
ladder operators- at every stage for the complete spectral resolution. In the
end we point out briefly how the super Wigner ladder operators constitute a
super-linearization (in the sense of taking a square root) of the S0(2,1)
operators of refs. [1-3]. We also make manifest the realization of the charge
operators of the supersymmetric quantum mechanical (SUSYQM) algebra [13]

assoclated with (1) in terms of the super Wigner ladder operators.



2. The Super Wigner-Heisenberg Algebra

Employing circular cylindrical coordinates p, ¢ and 2z, the

time-independent Schrédinger equation associated with the potential (1)

becomes
H y¥(z,p,9) = E ¥(z,p,9), ¥l(z,p,0) = x(z) Riplexplimp), (2)
H=H + H,E=E + Ea’ Hix(z)=E1x(z),‘ HzR(p)=E2R(p), (3) .
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h
172
1.2 2Mb 1.2 1.2
uz-é-(m + 2 ) while éMwl-(e-t-a) and ész—(aAd).

Noting the complete symmetry of the two eigenvalue problems in (3-5)

under the.  formal exchange . of the  variables (x1=z)<—>(x2.-_p),

¥
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(5;('1-—5?2- 3;2 ‘6—5"29), wlg—-)wz_\(:and_,‘pi(—mz with ( iaxi) '-( iaxi?’ —(i—1,2), we

provide below a unified treatment of the cases i1=1 and. 2. Following the -

operator technique of Jayaraman and Rodrigues [5], we begin with the following

super-realized mutually adjoint operators:
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“In (8,7), E=(%, £,

, 2;), (1=1,2) constitute two sets of mutually commuting

- Paull spin matrices that provide the fermionic ccordinates for the cases i1=1




and 2 respectively.
It is readily checked that A: and A; are indeed the creation and

annihilation operators for the spectra of the 1D Wigner Hamiltonlans

H (p --é—) , 0
1 %m At AT | . (8)
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1 P72 'Y !
* 0 3,cl-a-("ll 2)
1, +7 _ £ o
[Ri(p1+§). A’ ]_ = shw A, (1=1,2). (9)

In (8), the Hamiltonians of the bosonic (i.e fermionic number Ni=%-(1—2;)->0)
and fermionic (i.e fermionic number Nl-%u-z;)-n ) sectors are respectively

given (for 1=1 and 2) by the equalites:
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Thus we have embedded the Hamiltonians H1 and H2 of equations (4) and (5)
respectiirely in the bosonlc sectors of the 1D Wigner‘Hamiltonia.ns Ri(ui-»-zi—),
(1=1,2), of (8).

Further, the ladder operators AT satisfy a generalized super Wigner

commutation relation in the form'

[A: , A: ]_= {1+(2p1+1)22}, (1=1,2), (12)
with
5t 2_ 5 1 _ 0 ] 1,1 _ _
[3] -1, [3, Iy ]: > [23. ;ci(p;-z—)]“- 0, (1=1,2). (13)

The (anti-)commutation relations given by (8), (9), (12) and (13)

constitute a super WH-algebra which is a general oscillator algebra.



3. Spectral Resolution

While the positive' definite form (8) gets sharpened, by virtue of

(12), to either of the following forms

1‘=’_ + - 1 R |
”1(”1'?5) hwl{ A A+ "2'[1 * (2;*{1)23]} (14a)

- T\ 1 '
- hml{A1 A 2[1 + (2}114-1..)23]}, N (14b)

the ladder relations (8) together with (14a) lead to the direct determination

(0)

. and the corresponding Wigner ground state

of the ground state energies e

(0)

wave functions ‘Fl by the simple application of the annihilation conditions

A;\I{‘”.-»o, (1=1,2), thus obtaining explicitly:

%) = xm)‘(z)' 1 . L, *172 exp -_1,2(]1 S = (15a)
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- Once e:m- has been determined the complete energy spectrum -

e™’= hw [(1+4p)+n 1, (1=1,2; n=0,1,2,...), -un

-of ?ti(nx-r—é-)‘ trivially follows from the. step-up operation provided by A:,,
which also determines the whole set of eigenfunctions ,\Il:n:? starting from

\IJ:O). Explicitly the following spinorial solutions are easily obtained.for the




even Wigner quanta i.e n =2m, (m1=0, 1,2,...):
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(@)
where I..ln (pa) are generalized Laguerre polynomials [14].

Note that (18) and (18) are also simultaneous eigenfunctions
respectivelly of the fermion numbér operator Ni%(l—z‘;), (1=1,2), for fermion |
nunber zero that defines the bosonic sectors of the respective 1D Wigner
Hamiltonians. Since the mutually commuting parts H1 and H2 of the anisotropic
ring-shaped oscillator Hamiltonian H (vide equations (2-5) and (10)) have been
embedded into the bosonic sectors of the 1D Wigner Hamiltonlans Rl(ulu/a),
equation (8), it follows directly that the complete spectra of H1 (1=1,2) and
H=H1+H2 get determined to be

(nl) (2m1) (m )
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(ml,mz) (ml) (m)
E = 51 + Ez = hwi(; e 2m1) + hw2(1 + ot 2m2), (22a)

(m ,m)) (m ) (m)

v ! 2(z,p¢)=x (2)R 2(plexplinmg), (n ,=0,1,2,...;m=0,%1,%2,...). (22b)

The energy spectra (22a) and the enérgy eigenfunctions ' (22b) (upto a
normalization) coincide with ‘those obtained in ref. (1] wusing the
| S0(2,1)eS0(2,1) algebra approach for the Gréen function.

| Actually," the WH-(super)algebra method of this letter amounts to a
super-linearization of the S0(2,1) Lie algebra generators of references [ 1-3].
" In fact starting from the (anti-)commutation relations (8) and (9) - involving
Ri(ul%) and AT, it follows directly that the operators Kﬁ"--l[lxﬂl2 and

1 2
| .ngxi(“i%) ‘satisfy the SO0(2;1)eS0(2,1) caracteristic commutation relations

[K K] 311 [K; K“:"""’Kx‘s »~(*»§=~1-’2)» o - (23)

whicﬁ'get separated into distinct sets of Lie algebra relations on respective
projections ‘to the bosdnic e.nd fermionic sector Hamiltonlians df ’f'.?fi(}li'i'"z]:),..,
(1=1,2). | | ‘

We now briefl&f 1ndicaté the construction of SUSYQM algebra
assoclated wifﬂ;h (1) based on its super' WH-algebra asséciation detalled in this
letter.. The symmetrized form of the Hamiltnian ¥ (u +-—) ‘equation (8),
terms of the Wigner ‘ladder operators: A L the genera.l super-quantum rule for A
given by (12) and. the. anti-commutativity of }: with A in (13) lead in fact to:
a straightfarwabd" construction of - the following SUSY Ha.miltonia.anu -

(1=1,2), assoclated with the asymmetric ring-shaped potential (1):

. 1 __1 l"- +"=1[A‘, A+]"‘ 2 zi[" A*] e et
Ihlisussr':= (23 Efwg‘.a[Ai’ Ay ]_ 2l T +V%hw13 IR

= [Q.’ ’ Q:] y ‘(1=1|2); s (24a) ’
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- _1 by .- + 1 1, ,%
Q = zhe, (1-2)A, Q= shw, (1+Z)A,, (24b)
“v2_ nt2 - , (24c)
(Ql) = (Q’) - 0) [ SUSY’ Q ] 0: (1 1)2] C
[Qf ' Q?'] =0 (1#3; 1,3=1,2;e,5’=t). (24d)

4, Discussion

We have obtained an easier spectral resolution for the potential (1)

via WH super-oscillator technique. A purely algebraic solution based on the 2D

’

SUSY construction in (24) will also follow by the now well-known methods .

[15-17] which, however, entail in consideration of a hiearchy of SUSY ..

Hamiltonians with shape-invariance property [15-17]. An advantage of the
present approach is the fact that no further hierarchy of Hamiltonians vneed
participate other than just the Wigner Hamiltonian and that the whole spectral
resolution can be achievéd, as shown here, by operations with super Wigner
ladder operators only. Also comparing with the SO0(2,1)eS0(2,1) approach of
refs. [1-3], the super Wigner ladder operators of this work have been shown to
provide a super—lineariza.tion of the appropr'iate SO(Z 1) generators employed

in these references and fur'nish as well a simplified treatment of the problem

with just oscillator raising and lowering operations.
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