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ABSTRACT 

In the frame of the International Tokamak Experimental Reactor (ITER) program, 
multistage superconducting Cables-In-Conduit (CIC) conductors have been developed. 
These cables were designed assuming a unifonn current distribution among strands. A basis 
for this assumption in DC operation is that the strands are fully transposed inside the 
conductor within a connection length (equal to a cable twist pitch). A geometrical analysis 
of a conductor and a detailed numerical modelling of an ITER CIC have refuted this 
hypothesis. This implies that the current sharing mnong strands inside a connection is non­
uniform and thus that the DC current distribution in the conductor is also non-uniform. 
Moreover, it is well known that the critical current of a strand is dependent on the 
perpendicular component of the magnetic field. Therefore, because of the twisting pattern, 
the self-field gradient inside a cable cross section due to the transport current leads to a 
field gradient along every strand length. Calculations of the voltage drop along conductor 
length taking into account the connection and the field gradient are compared to the critical 
current measurelnents on the first European Full Size Joint Sample (SS-FSJS) for ITER. 

INTRODUCTION 

For designing multistrand cables, the usual way is to calculate the cable critical current 
from the critical current of a single strand at the peak perpendicular magnetic field 
experienced by the conductor in the coil. Such a calculation implicitly assumes: 

1. All strands carry identical currents 
2. All strands are subjected to the satne field 



channel 

Figure 1. ITER type conductor cross-section (ITER TFMC conductor) 

In a coil under DC operation, the current distribution among strands along a unit 
length of the winding is purely driven by the two connections located at both ends. As an 
example, doubly unconnected strands (i.e. at both ends) will not carry any current. In case 
of non-insulated strands, this statement is valid only at low operating current, because 
current redistribution occurs as soon as strand currents approach their critical values. Thus 
hypothesis No.1 assumes either that the distribution of strand connecting resistance is 
homogeneous in the joints, or that interstrand resistance are low enough. In case of an EU­
ITER connection, a detailed connection modelling and a destructive analysis of a 
connection have been performed to check this hypothesis. 

Thanks to a newly developed geometrical model, the actual strand trajectories in the 
cable have been estimated. Thus it has been possible to calculate the voltage drop along the 
cable by integrating the local electric field, taking into account the actual field experienced 
by every strand for a given transport current. The critical current calculation then becomes 
free from the second hypothesis. This law has finally been inserted into a conductor model 
(electrical network) taking into account the uneven distribution of strand connecting 
resistances inside the joints as well as the interstrand resistances. 

Eventually, the predictions given by the model have been cross-checked with critical 
current measurements performed on the first European Full Size Joint Sample for ITER (the 
so-called SS-FSJS). 

ACTUAL CABLING MODELLING 

ITER conductors are multi strand cables embedded in a structural jacket (see Figure 1). 
The cabling pattern for the cable shown in Figure 1 is 3x3x5x4x6 with respective twist 
pitches of 50-70-120-180-450 mm. Our goal is to find a geometrical model giving the 
actual trajectories of the strands along the conductor length. A first assulnption is that all 
the main sub-cables (so-called petals) are identical, so the trajectories of "only" 3x3x5x4 
strands have to be found. 

Ideal strand trajectory 

A first step is to aSSUlne that any strand trajectory is only dependent on the twist pitch 
pattern and on the radii of the different cabling stages, which means the trajectory is only a 
combination of helical curves. Each cabling stage radius is calculated knowing the sub­
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Figure 2. Ideal cross-section (a) is fitted into a mesh (b) to give the "actual" cross-section (c) 

stage radius and the number of included sub-stage. For instance, the radius of a triplet of 

strands of diameter d is Jjd . This method is not limited to a round conductor, indeed it is 
possible to use a helix with a square or an ellipsoidal basis instead ofa circular one. 

Figure 2.a shows the cross-section of an EU connection for ITER (see also Figure 3.b) 
with the "ideal" strand trajectory. This connection has already been described elsewhere1

• 

For our purpose, it has to be noticed that the outer frame of the strand area is roughly an 
ellipse and the inner frame is a circle. Thus the last but one stage follows a helix with an 
ellipsoidal basis. It is clear that the "ideal" geometrical area of the petal does not fit into the 
available space in a real connection (in which the cable void fraction is about 25%). 

Cross-section meshing 

A new arrangement of strands into the section, taking into account the twisted pattern 
and the available space, has to be found. The basic idea is to use a finite meshing of the 
space available for strands (in our case a "trapezoidal" shape for a petal). The mesh is 
triangular so that the triplet is naturally formed (see Figure 2.b). The location of a strand 

(a) 

Figure 3. "Actual" strand trajectory (a), and Actual connection cross-section (b) 



Table 1. Contact statistic for the modelled and real connection 
Contact Numbers per strand 0 1 2 3 4 5 
Measured 60 60 47 11 1.5 0 
Modelled 60 58 37 17 6 2 

into the mesh is the nearest free spot in the mesh. The initial location is calculated with the 
ideal trajectory (Figure 2.a). Figure 2.c gives the results of such a calculation. It is clear that 
all strands fit now into the available connection space. 

Checking of the model with a real connection 

However, the weak point of our model is that it does not really impose the continuity 
of the strands along the cable axis direction, since each cross-section is arranged separately. 
Nevertheless, Figure 3.a shows that trajectories calculated for strands are not broken by 
unexpected jumps provided length step is small enough. 

Secondly, a connection has been especially manufactured in order to check the validity 
of our model. The connection box has been manufactured by ANSALDO (Italy), the 
sample prepared by CEA and the final compaction performed by ANSALDO. This 
connection was fully impregnated, and then dismantled. It was then possible to count the 
number of contact points between the copper sole of the connection (see Figure 3.b) and 
every strand. These measurements are summed up in Table 1. The model is in rather good 
agreement with measurements except for 4 and 5 contact point strand, which are 
overestimated by the model. 

Conclusion 

Our geometrical model gives a rather simple method to get the actual strand trajectory 
of every strand in a CIC. This model has been tested on an ED connection with success. 
This model, as well as the measurements, shows that strands are not fully transposed inside 
the conductor. Besides, it is shown that the contact distribution in a connection is uneven, 
which means that in DC operation a current unbalanced among strands must be expected. 

CRITICAL CURRENT OF A CIC 

A model has been developed to calculate the cable critical current taking into account 
the actual magnetic field experienced by strands, the unbalanced distribution of strand 
connecting resistances, as well as the interstrand resistances. 

Effect of the actual strand trajectory on strand voltage drop 

Theoretical basis 

The electric field, E, along a superconducting strand carrying a current density J under 
a magnetic field B is given by the usual formula (1) where Eco and n are constant. 

II 

J
EB =E (-- (1)
() cO J (B) 

c J 
In this case, Jc is only dependent on B, as the temperature Top is kept constant. The 

relation between Jc and B is usually described using the pinning law: 



(2) 


Fp is the so-called pinning force. Fp can be written in the following way, wherefis a 
function independent of b. 

(2') 


This law shows the effect of the field orientation on the critical current density Jc• 

However, it has to be noted that previous experiments2 have shown that the expression 
given here is only a first order approximation for Nb3Sn strands, indeed the pinning force is 
also dependent on the field orientation. 

The average electric field, Ej' over a length L of conductor for strand i with trajectory 
Ci inside the cable is given by (3). 

Ei = 1/L fE(B)ds (3) 
Cj 

During a conductor critical current measurement, in DC condition, the electric field 
measured corresponds, in a first approximation, to the average electric field over all the 

strands, (E i ) . 

Application ofthe real strand trajectory model 

Knowing the "'actual" strand trajectory, it is possible to calculate <Ei>. However, for a 
cable composed of hundreds of strands such a calculation is rather long and a simplified 
formulation is needed for a use as a subroutine in an electric network. 

Usually, for a sample critical current measurement, an external field Bext is applied to 
the conductor. The local magnetic field on strand i at curvilinear abscissa Si is thus given by 
(4), where a is a vector dependent on the strand trajectory and / is the transport current 
through the conductor sample. 

(4) 


Note that the current distribution is assumed to be uniform among strand for 
calculating a. We restrict our study to the case when Bext is predominant (i.e. Bexr>al), 
which is the usual case when testing high field conductors. Then the magnetic field 
direction is constant and is given by the direction of Bext; thus (4) can be projected on this 
direction leading to (4'). 

B(Sj) = Bext + r(s;)/ (4') 

Now, using (2) and (2'), it is possible to write (5). 

1
J c(Sj) = . F(Top)G(b) (5)

sln(f3(si » 

where F is equal to f (Top) / Bc2 (Top)' and G is equal to g(b)/ b. Introducing (5) into (1) 
leads to (6), where ~ is the current density in strand i. 

(6) 


Then developing Q-O(b) by a MacLaurin series in the vicinity of bext (=Bex/Bc2) (see 
Equation 4'), one gets the following series expansion according to 1. 



(7) 

where J d is the strand critical current density under a perpendicular field of amplitude 
Bext. 
Equation (7) shows that the coefficients of the series expansion are constant. They depend 
on the external field (Bext), on the operating temperature (Top) and on the strand trajectory 

(y). For a given strand i, E; is then calculated using (3), last (E;) can be calculated by 

averaging E; over all the strands, which leads to (8). 

(E;) = Eco( J )"[f Aq(b",:)rq r] (8) 
Jc.l (Bext ) q=O Bc2 

Note that r q, which is the sum of the terms containing si, is only dependent on the 
strand trajectories, and that J is the current density assuming a uniform current distribution. 
Thus, for a given conductor configuration and a given hext' the electrical field along the 
conductor is given by the same development in power expansion of /. It has to be noted that 
our model simulates an average strand carrying a current density J. I is the transport current 
inside the cable, and the expansion is in fact a global corrective factor due to the self field 
effect (for q~l) and the strand trajectories (for q~O). 

In order to check the validity of this development, the coefficients of the series in (8) 
have been calculated numerically using a direct calculation performed with equation (3) 
without approximation for different values of Bext and of operating temperature leading to 
the same hext (see Equation (2». The agreement between the series expansion values and the 
direct calculation has confirmed the validity of our calculations, but note that for practical 
applications (8) must be expanded up to q equal to II. 

Effect of the uneven current distribution among strands and "interstrand" resistance: 
discrete electrical network 

The preceding electrical field calculation takes into account the strand trajectory 
sublnitted to a uniform field. It gives the electrical field along an "average strand" but it 
does not take into account an unbalanced current distribution. 

Model presentation 

A main hypothesis is that all strand contact point resistances have the same value. It 
means that strands with two contacts will carry twice the current of strands with only one 
contact. It is then possible to group strands according to the contact distribution given in 
Table 1. The cable is then modelled with only a few groups of strands. Each group is 
considered as a unique "big" strand. The electrical field of the group is calculated using the 
expansion calculated in the preceding section. The number of groups is a compromise 
between accuracy and conlputing time (in our case N=8 is a good optimum). 

The cable can thus be modelled as a resistive network with 8 conductor groups (see 
Figure 4). The groups are connected at both ends to a power supply by resistance Rjoinl 

calculated according to Table I and to the resistance of the connection. Rjoint are different 
for each group and at each end of conductor. The voltage drop along a group for a given 
current is calculated using Equation (8). 

In order to take into account the current transfer from one group to the other 
(intergroup resistance), resistances, Rtrans, between conductor groups are inserted. R trans are 
different in the joint area, RI-joint, and in the conductor area, Rt-cond (see Figure 1 and Figure 



Supercond group 

Figure 4. Schematic view ofa 2-groups electrical network 

3:b) ~ainly due to the different void fraction " 
gIven In Table 1 and with the total r . ta . ~omt values are calculated with the statistic 

It has to be noted that a fi ledsls nficle measured on the joint. 
. . e pro e along the cd.1 Ica cu ate cntlCal values. This model h b full . on uctor can be Introduced to 

as een y descnbed elsewhere by D. Ciazynski3. 

Conclusion 

A model has been developed takin . 
conductor. This model has been ins~ ~nt? ~~count the a~tual fi~ld gradient inside a 
conductor length connected at both end e t InSI e an electrical resIstive network of a 
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t · th· . gIven con uc or an
connec lon, e Input free parameters of this model are: 

1. The transverse resistances, Rt-ioint and Rt-eond. 

2. The strand critical current characteristics. 

The Summers's law gives the strand critical current4
. Parameters of this law have been 

fully investigated for ITER strands 5 
• The only free parameter is the strain, c, in Nb Sn

3
filaments inside strands. This value is different in the joint, Ej, and in the conductor, c • e 
From experimental results on sub-size joints6

, Ej is taken equal to -0.72% and Rt-joint equal 
to 6 Rt-eond. Then only two free parameters remain: 8e and Rt-joint. 

APPLICATION TO EXPERIMENTAL RESULTS 

Our model can be now cross-checked with critical current measurements performed on 
the first European Sample for ITER (the so-called SS-FSJS) in the SULTAN test facility. 

ITER Full-Size-Joint-Sample description 

A sample is composed of two straight conductor bars connected at one end (the sample 
is tested in vertical position) by an ITER joint and at the other end to the facility 
superconducting transformer. The maximum applied field in SULTAN is 11 T 
perpendicular to the conductor bars. For current critical measurements, the voltage drop 
along 440mm of the bars (the last stage twist pitch length) is measured. The tests performed 
on this sample have been presented elsewhere7

• In this paper, a particular critical current 
test is analysed: Bext is equal to 11 T, Top is equal to 7.7 K. 
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Modelling results 

As explained in the fonner section, two parameters are a~justed (Ec :md Pt-jOinl) using 
the experimental V(J) curves. Results of such fit are shown in Flgu~ 5. Ec IS found equal to 
_ 0.594%) and PI-joint equal to 30 ).lO.m leading a good agreement wIth measurements. 

Two other calculations have been performed to point out the effect of the transverse 
resistivity inside the joint. The lower is the transverse resistance, the bett~~ is the current 
distribution, and then no current redistribution voltage occurs near the tranSItIon. In the V(l) 
curve calculated for Pt-joint= 1).lO.m the current distribution is almost uniform. 

CONCLUSION 

A model has been developed to calculate voltage drop along CIC conductors taking 
into account the detailed strand trajectory and the resistive network at ends and inside the 
cable. This model has been partly checked on an ITER joint mock-up and used to analyze a 
critical current test performed on an ITER FSJS sample. The analysis of this test have led to 
estimate a quite high interstrand resistivity inside the joint (and thus also inside the cable). 
It means that current distribution must be unbalanced up to quite high IIIe ratio. It can then 
be expected that at the operating current the current distribution inside CIC conductor is 
still strongly unbalanced, which could lead to an unexpected lower stability margin. Other 
tests have still to be analysed to check if the same optimisation can be done for different 
Bex! and I. 
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