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Magnet Classification

® Four types of superconducting magnet systems

are presently found in large particle accelerators
— Bending and focusing magnets
(arcs of circular accelerators)
— Insertion and final focusing magnets
(to control beam optics near targets or collision points)
— Corrector magnets
(e.g., to correct field distortions produced by persistent
magnetization currents in arc magnets)
— Detector magnets

(embedded in detector arrays surrounding targets or
collision points)



Bending and Focusing Magnets

¢ Bending and focusing magnets are distributed

in a regular lattice of cells around the arcs of
large circular accelerators
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MQ: Lattice Quadrupole MBA: Dipole magnet Type A
MO: Landau Octupole MBB: Dipole magnet Type B
MQT: Tuning Quadrupole MCS: Local Sextupole corrector

MQS: Skew Quadrupole MCDO: Local combined decapole and octupole corrector
MSCB: Combined Lattice Sextupole (MS) or skew sextupole (MSS) and Orbit Corrector (MCB)
BPM: Beam position monitor

Cell of the proposed magnet lattice for the LHC
arcs (LHC counts 8 arcs made up of 23 such cells)



Bending and Focusing Magnets
(Cont.)

® These magnets are in large number (e.g.,
1232 dipole magnets and 386 quadrupole
magnets in LHC),

® They must be mass-produced in industry,

® They are the most expensive components of
the machine.

—> any new circular machine beyond LHC will

require significant value-engineering efforts to
improve magnet performance and limit costs



Insertion and Final Focusing
Magnets

® Circular and linear accelerators usually require sets of

special magnets to transport and strongly focus the
beam(s) near the target or collision points
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Proposed magnet lattice for the right-hand side
of the #2 interaction point of LHC



Insertion and Final Focusing
Magnets (Cont.)

® These magnets are in limited number

® They must be customized to their crowded
environment

® The requirements for the final focusing

quadrupole magnets can be very stringent
(high field gradient in large aperture, good
field quality, and/or high heat load from beam
losses)

—> can be used as a test bench for more
innovative designs
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Magnet Design

e Most dipole and quadrupole magnets
built up to now (Tevatron, HERA, SSC,
LHC...) rely on similar design concepts
e These concepts were pioneered in the
late 70’s for the Tevatron at Fermilab

e Improvements in superconductor and

magnet fabrication have led to more than
double the field over the last 20 years
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Magnetic Design

® Field is produced by saddle-shape coils, which;

in their long straight sections approximate cosé or
cos2 ¢ conductor distributions

1

vacuum pipe

-
X
Saddle-shape coil assembly Cosd conductor distribution in a
for a dipole magnet dipole coil assembly quadrant

(Courtesy R. Gupta)



Rutherford-Type Cable

e Coils are wound from flat, two-layer Rutherford-
pe cable, made up of NbTi multifilamentary
composite strands

Rutherford-type cable NbTi strand for accelerator

(Courtesy T. Ogitsu) magnet application
(Courtesy Alstom/MSA/Fil)



echanical Design

Collared-coil assembly section
of LHC arc quadrupole magnet
developed at CEA/Saclay

® Coils are restraine
mechanically by
means of laminated
collars, locked
together by keys or
tie rods



Iron Yoke

Twin-aperture, LHC arc
quadrupole magnet design
developed at CEA/Saclay

® Collared-coil(s) is(are)
surrounded by an iron
yoke providing a return
path for the magnetic
flux

¢ In some designs, the
yoke contributes to the
mechanical support



Tevatron

* The Tevatron dipole magnets rely on a warm iron yoke
and are operated reliably since 1983 atafield of 4 T
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® Starting with HERA, the
iron yoke is included in the
cold mass

¢ HERA was commissioned in

1990 and the dipole magnets
are operated at4.7 T
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NbTi wires



° LH'wi‘Il I ntwm aperture magnets operated in
superfluid helium
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LHC (Cont.)

¢ The LHC magnet R&D program shows that the limit of NbTi
at 1.9 K could be between9and 10T
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State of the Art in Nb3;Sn Magnets

¢ At the beginning of the 90’s, Twente University
(in the Netherlands) and LBNL (in the USA) have
carried out R&D programs aimed at building Nb;Sn
dipole magnet models

e Both magnets were single aperture (50 mm) and
relied on design concepts similar to those
previously described

* Both models were assembled according to the
“wind, react & impregnate” technique and were
quite successful
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Program at Twente University

* The Twente University dipole magnet model was
tested at CERN in the Summer of 1995

e It reached 11.03 T
on its first quench at
4.4 K

Aluminium collars

Copper wedges

Stainless steel
Inserts

Stainless steel
cilinder

Yoke clamps

(Courtesy H.H.]. ten Kate)
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Program at LBNL
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* The LBNL dipole magnet model was tested in
1997 and after ~40 quenches at 4.2 Kand 1.8 K
reached a record field of 13.5Tat1.8K
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Program for LHC Upgrade
at INFN Milan (LASA)

e In the mid-1990’s, INFN Milan (LASA)
has investigated various designs of large-
aperture, high-field-gradient quadrupole
magnets for a possible upgrade of the LHC
final focusing quadrupole magnets |
e and has collaborated with Europa Metalli
to develop high-J-: Nb;Sn wires

* The program was put on hold because of
lack of funding
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Program for LHC Upgrade
at INFN Milan (Cont.)

ST. STEEL COLLAR
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(G. Ambrosio, 1996)

® Example of conceptual
design for a 70-mm-aperture,
300 T/m quadrupole magnet

® The operating current is
17.9 kA and the peakfield is
11.5T

® It requires a high-
performance Nb;Sn wire, with
a Jo(non-Cu) of 1800 A/mm?
at4.2 Kand 12 T (to be

operated at 1.8 K)



Program for LHC Upgrade
at Twente University

¢ Twente University has signed in 1998 a 3-

year contract with CERN and NIKEF to build a
large aperture (88 mm) dipole magnet model
with an operating field of 10 T and an
operating temperature of 4.4 K

¢ Such a magnet could be used for an upgrade
of the low-field (2.74 T and 3.8 T), beam-
separation dipole magnets, localized near the
crowded LHC interaction points



Program for LHC Upgrade
at Twente University (Cont.)

®* The design is completed and practice coils

are now being wound. The magnet model
should be tested at CERN in June 2001.
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(Courtesy A. den Ouden)



Program for LHC Upgrade
t Twente University (End)

(Courtesy A. den Ouden)

® The Twente magnet will use a
Rutherford-type cable made up of
Nb;Sn wires produced according
to the “"Powder-in-Tube” (PIT)
process by ShapeMetal
Innovation (SMI)

® SMI has recently achieved a
record Jc(non-Cu) of 2300 A/mm?2
at 4.2 Ket 12 T with an effective
filament size of 50 um (50 kg
billet)
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Origins of VLHC

® 1994: Drell panel suggests that “it may be technically

feasible to build a proton collider with beam energies up
to 10 times those of the LHC with technology that could
be developed during the next decade”.

® 1996: Snowmas workshop where various proposals of

hadron colliders with 100 TeV center-of-mass energy are
examined.

® 1997: Gilmann panel recommends “... an expanded
program of R&D on cost reduction strategies, enabling
technologies, and accelerator physics issues for a VLHC".
—> In response, the Directors of BNL, Fermilab, LBNL,
Cornell University and, more recently, SLAC, have

appointed a VLHC steering committee to coordinate the
R&D efforts.



VLHC Activities in the USA

¢ National materials R&D program in
industry to improve the performance and
decrease the cost of Nb;Sn wires

¢ Vigorous magnet R&D programs at
BNL, Fermilab, LBNL and Texas A&M

¢ Investigations of tunneling techniques
and geological studies on Fermilab site



VLHC Design Options

e Two design options are presently
considered for VLHC

— a low-field option (2 T), relying on low-cost,
superferric magnets (G.W. Foster, et al.)
(Fermilab)

— a high-field option (>11 T), relying on Nb3Sn
or HTS magnets
(BNL, Fermilab, LBNL and Texas A&M)
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Low-Field Option
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w-Field Option (Cont.)

Conduit) DESIGN

— Perforated ™, Soical W _ Copper
Invar = opiral Wrap FE lid T
Former Superconducting 12P€ — Z’i‘g Iin;dr
Cables (SSC Outer) Yop1p

e Surplus SSC wires and cables can be
used to produce a 30-km-long line



Low-Field Option (End)

® A 17-m-long
demonstration loop has
been built at Fermilab

and has been excited up
to 100 kA

¢ The plan is to build,
within 2 years, a 60-m-
long magnet section
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High-FieId Option

e Four different high-field magnet designs
are being investigated

— Conventional 2-in-1, cosd design, extending

SSC and LHC technology to NbsSn
(Fermilab)
— Innovative “common coil” design proposed
by R. Gupta
(BNL, Fermilab, LBNL)
— Sophisticated “stress management” design
proposed by P. McIntyre
(Texas A&M)



Cosd Design at FNAL

® Fermilab has started in 1998 an ambitious high field

magnet program

(Courtesy S. Zlobin)

® The plan is to build four

Nb;Sn dipole magnet models
(11 Tin a 43.5 mm aperture)

® First single-aperture
version to be tested in
September 2000

® First twin-aperture
version to be tested in
September 2001




¢ In 1996, R. Gupta has proposed an innovative

twin-aperture dipole magnet design based on
pairs of racetrack-type coils

(Courtesy R. Gupta)



“Common Coil” Design at LBNL

® LBNL has tested in 1998 a “proof of principal” model

made up of one pair of Nb;Sn coils separated by 40 mm,
which reached 5.9 T on its first quench at 4.2 K
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“Common Coil” Design at LBNL
(Cont.)

® LBNL is now building at 14 T model made up of
two pairs of NbsSn coils with a spacing of 40 mm

Wire Wrap

® The outer pair was
tested in March 2000
(with a 10 mm spacing)

Iron
Yoke

> Side Rl and has reached 11.5T

o ® The plan is to test the
tron Tnserts full assembly in

= September 2000

(K.P. Chow, 1998)



“Common Coil” Design at Fermilab

(Courtesy G. Ambrosio)

® Fermilab is developing a
lower field variant (11 T)
relying on two pairs of coils
with
—a Nb;Sn outer pair built
according to the “react &
wind” technique
— a NbTi inner pair

® The plan is to build a short

model magnet by the
Summer of 2001



“Common Coil” Design at BNL

® BNL has built a 1-m-long magnet model relying on NbTi
coils designed to produce a 6-to-7 T background field to
test racetrack-shaped insert coils
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(A.K. Ghosh, 1999)

® A first set of insert coils

wound from pre-reacted Nb;Sn
tapes was tested in 1999

® The plan is to use this
facility as a test bench for HTS
tapes



Design at BNL

“Common Coil’

50—

NbTi Outsert

NbsSn Insert



“Stress Management” Design

® Texas A&M University has
developed a 16 T dual-dipole
magnet design, where the
conductors are divided into
blocks to limit the stresses to
less than 100 MPa

® A single-aperture, NbTi
model is under construction

- e - 63 ¢m — -

(Courtesy P. McIntyre)
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Final Focusing of TESLA

R(m) A\ dodecagonal shape  TESLA Detector Magnetic Configuration
YB 11 CEA/Saclay
e DAPNIA/STCM
e 16/03/2000
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Final Focusing of TESLA (Cont.)

® The 4 final focusing quadrupole magnets are
modeled after the LHC arc quadrupole magnets
(with a single aperture of 56 mm and a field
gradient of 250 T/m),

¢ but two of the magnets are positioned within

the detector solenoid and must sustaina4T
axial field.

¢ The presence of the background field

precludes the use of NbTi and calls for the use
of NbsSn.




Nbs;Sn Program at CEA/Saclay

® CEA/DSM/DAPNIA/STCM has started in 1996
a collaboration with Alstom to develop high
performance Nb;Sn wire and cable and to build
a short quadrupole magnet model

® The program has been slow moving at CEA
because of lack of manpower, but Alstom has
completed its share of the R&D work and is
ready to start the production of the final cable
lengths (5 x 60 m)



Results of Alstom Program

4

® The collaboration has enabled
Alstom to produce
— a NbsSn wire with a J.(non-
Cu) of 750 A/mm2 at 4.2 K
and 12 T and an effective
filament size of 18 um
— a Rutherford-type cable
with a 25-um-thick stainless
steel (annealed 316L) core




Status of Saclay Program

(Courtesy J. Thinel)

® The detailed design of
quadrupole magnet model is
presently underway

® It relies extensively on the
design of the LHC arc
quadrupole magnets (with a
single aperture and no iron
yoke)

® The plan is to test the model
in March 2003

® The model is expected to
achieve 223 T/m at 4.2 K



New Collaboration Program

¢ Discussions are underway with Alstom
for a new collaboration to develop a wire

with a J.(non-Cu) of 2000 A/mm2 at
4.2 Kand 12 T and no specifications on
effective filament diameter (except that
the wire should be stable against flux
jump)

¢ Such wire could be used to build a
second quadrupole magnet model that
would be suitable for TESLA



e Magnet Types
e Brief History and State of the Art

¢ Review of R&D Programs
— LHC Upgrade
— VLHC
— TESLA

e Muon Collider
e Conclusion



€9~

Why Muons?

. //P\‘\\ VLEHC 100 Te¥ pp ® MI.IOI'lS are spin'1/2,
’/FNAL 3 o (L1 17 TeVy . . .
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T particles, with a mass
/ RERES ~207 that of an
| - electron
— NLC e*e” [0.5—1 TeV} -
= Hhiggs u'p” (0.1 TeV) - ::> They radlate far
\ © wium eaTe) _ less, enabling higher
Tita (3 TeV) - 0 .
\ © ) / Is)  energies to be reached
1 km - ~ 7 M
B = and smaller collider

G ren o rings to be used
(C.M. Ankenbrandt, 1999)
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7 x 2 TeV Muon Collider Schematic
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Pion Production and Capture
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Muon Collider Ring

® Conceptual design for a Iow-cdst, 5-T, NbTi
dipole magnet with a large opening at the
midplane to clear decay products

Pole
|

Warm Yoke /e

%4
Coil //

\/

Ring Center
4 —

Beam Tub/

Decay Products

f
Muon Beam

(Courtesy R. Gupta)
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Conclusion

e LHC magnet R&D program shows
that the limit for NbTi at 1.9 K could be
between9and 10T

e Encouraging results have been
obtained on a few NbsSn magnet
models, opening the 10 to 15 T range

¢ Given that LHC will have taken nearly
25 years to build, it is already time to
think of the future





