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Abstract 

Multiscale entropy is based on the wavelet transform and noise modeling. It is a means of 

measuring information in a data set. It has been recently developed and has been applied 

successfully to signal and image filtering. We describe in this paper how it can be used for 

deconvolution, background fluctuation analysis, and astronomical image content analysis. 

A range of examples illustrates the results. 

Index Terms 

Wavelet transform, filtering, deconvolution, image restoration, Bayesian estimation, en

tropy 
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1 Introduction 

The idea behind multiscale entropy is that the information contained in an image, or 

more generally in a data set, is the addition of the information contained at different 

scales. One consequence is that the correlation between pixels is now taken into account 

when measuring the information. This was not the case with previous entropy definitions 

generally used in image restoration. The main entropy definitions to date are: 

• Burg [3]: Hb(X) = - L:pixels In(X) 

• Frieden [11]: Hj(X) = - Lpixels X In(X) 

• Gull and Skilling [13]: Hg(X) = L:pixels X - M - X In(XIM) 

Each of these entropies correspond to different probability distributions that one can asso

ciate with an image [23]. The pixel distribution (correlation between pixels) is absolutely 

not considered and the above definitions imply that two images having the same intensity 

histogram have the same entropy. Fig. 1 illustates this perfectly. The second image is 

obtained by distributing randomly the Lena image pixel values, and the standard entropy 

definitions produce the same information measurement for both images. The concept of 

information becomes really subjective, or at least it depends on the applicQ.>tion domain. 

Indeed, for someone who is not involved in image processing, the second image contains 

less information than the first one. For someone working on image transmission, it is clear 

that the second image will require more bits for lossless transmission, and from this point 

of view, he/she will consider that the second image contains more information. Finally, 

for data restoration, all fluctuations due to noise are not of interest, and do not contain 

relevant information. From this physical point of view, the standard definition of entropy 

seems badly adapted to information measurement in signal restoration. 

A discussion was raised in [30] about what should be a good entropy measurement for 

signal restoration, and we proposed that the following criteria should be verified: 

1. The information in a flat signal is zero. 
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2. 	 The amount of information in a signal is independent of the background. 

3. The amount of information is dependent on the noise. A given signal Y (Y =X + 

Noise) doesn't furnish the same information if the noise is high or small. 

4. 	 The entropy must work in the same way for a pixel which has a value B + € (B being 

the background), and for a pixel which has a value B - f. 

5. 	 The amount of information is dependent on the correlation in the signal. If a signal S 

presents large features above the noise, it contains a lot of information. By generating 

a new set of data from S, by randomly taking the pixel values in S, the large features 

will evidently disappear, and this new signal will contain less information. But the 

pixel values will be the same as in S. 

It is clear that among all entropy functions proposed in the past, it is the Shannon one [25] 

which best respects these criteria. Indeed, if we assume that the histogram bin is defined 

as a function of the standard deviation of the noise, the first four points are verified, while 

none of these criteria are verified with other entropy functions (and only one point is 

verified for the Gull and Skilling entropy by taking the model equal to the background). 

We review in the second section the principle of multiscale entropy and its application 

to filtering. Sections 3, 4 and 5 present, respectively, how it can be used for image 

deconvolution, background fluctuation analysis, and astronomical image content analysis. 

2 M ultiscale Entropy 

2.1 Definition 

Following on from these criteria, a possibility is to consider that the entropy of a signal is 

the sum of the information at each scale of its wavelet transform [30], and the information 

of a wavelet coefficient is related to the probability of it being due to noise. Denoting h 
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the information relative to a single wavelet coefficient, we have 

I Nj 
(1)H(X) = LLh(Wj,k) 

j=lk=l 

with h(Wj,k) = -lnp(wj,k)' I is the number of scales, and Nj is the number of samples in 

the band j (Nj = N for the a trous algorithm). For Gaussian noise, we get 

2W'khew> k) = _3_, (2) 
3, 20"~ 

3 

where O"j is the noise at scale j. We see that the information is proportional to the energy 

of the wavelet coefficients. The higher a wavelet coefficient, then the lower will be the 

probability, and the higher will be the information furnished by this wavelet coefficient. 

We can see easily that this entropy fulfills all our requirements. As for the Shannon 

entropy, the information increases with the entropy, and using such an entropy leads, for 

optimization purposes, to a Minimum Entropy Method. 

Since the data is composed of an original signal and noise, our information measure 

is corrupted by noise, and we decompose our information measure into two components, 

one (Hs) corresponding to the non-corrupted part, and the other (HN) to the corrupted 

part. We have [30] 

H(X) = Hs(X) + HN(X) (3) 

We will define in the following H s as the signal information, and HN as the noise in

formation. It must be clear that noise does not contain any information, and what we 

call "noise information" is a quantity which is measured as information by the multiscale 

entropy, and whkh is probably not informative to us. 

If a wavelet coefficient is small, its value can be due to noise, and the information 

h relative to this single wavelet coefficient should be assigned to HN. If the wavelet 

coefficient is high, compared to the noise standard deviation, its value cannot be due to 

the noise, and h should be assigned to H s. h can be distributed as H N or H s based 

on the probability Pn(Wj,k) that the wavelet coefficient is due to noise, or the probability 
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Ps (Wj,k) that it is due to signal. We have Ps (Wj,k) = 1- Pn (Wj,k). For the Gaussian noise 

case, we estimate Pn(Wj,k) that a wavelet coefficient is due to the noise by 

For each wavelet coefficient Wj,k, we have to estimate now the fractions hn and hs of h 

which should be assigned to Hn and Hs. Hence signal information and noise information 

are defined by 

l Nj 

LLhs(wj,k) 
j=lk=l 

l Ni 

Hn(X) = LLhn(wj,k) (5) 
j=lk=l 

The idea for deriving hs and hn is the following: we imagine that the information h 

relative to a wavelet coefficient is a sum of small information components dh, each of them 

having a probability to be noise information, or signal information. Hence, hn and hn are 

calculated by: 

(6) 

is the noise information relative to a single wavelet coefficient, and 

l \Wj,k\ (8h(X))
hs(Wj,k) = Pstl

r 

Wj,k I-u) -8- du (7) 
o x x=u 

is the signal information relative to a single wavelet coefficient. For Gaussian noise, we 

have 

~ {Iwj,kl u erfc (I Wj,k I-u) du 
o} Jo y'2crj 

~ {Iwj,lel u erf ( ___I W--"i-,-:::'k:::-,-I_-_U) (8)
crJ Jo ~(jj 

2.2 Filtering 

The problem of filtering or restoring data D can be expressed by the following: We search 

for a solution iJ such that the difference between D and iJ minimizes the information due 
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to the signal, and such that jj minimizes the information due to the noise. 

(9) 


Furthermore, the smoothness of the solution can be controlled by adding a parameter: 

(10) 


In practice [4], we minimize for each wavelet coefficient Wj,k: 

(11) 

The solution is found by first computing the gradient \7(J(Wj,k)) (see Appendix): 

V'(j(w;,.)) = l"""-w", p.(u)du + a(w;,. -lw". p,(u)du) (12) 

which gives for the Gaussian case (see Appendix): 

(13) 

The solution of the equation \7(j(Wj,k)) = 0 can be obtained by any minimization routine. 

In our examples, we have used a simple dichotomy. 

Fig. 2 shows the result when minimizing the functional j with different a values, and 

a noise standard deviation equal to 1. The corrected wavelet coefficient is plotted versus 

the wavelet coefficient. From the top curve to the bottom one, a is respectively equal to 0, 

0.1, 0.5, 1, 2, 5, 10. The higher the value of a, the more the corrected wavelet coefficient 

is reduced. When a is equal to 0, there is no regularization and the data are unchanged. 

Simulations have shown [28] that the MEF method produces a better result than the 

standard soft or hard thresholding, from both the visual aspect and PSNR (peak signal-

to-noise ratio). Figs. 3 and 4 show the filtering respectively on simulated noisy blocks and 

on a real spectrum. 
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Fig. 5 shows a simulation. The four sub-images present respectively the simulated 

noisy image, the hard and soft thresholded images, and the MEF filtered one. 

A robust way to constrain Q' is to use the fact that we expect a residual with a given 

standard deviation at each scale j equal to the noise standard deviation O'j at the same 

scale. Then rather than a single Q' we have an Q'j per scale. A full description of the MEF 

algorithm can be found in [28]. 

3 Deconvolution 

3.1 Introduction 

Consider an image characterized by its intensity distribution (the "data") I, corresponding 

to the observation of a "real image" 0 through an optical system. If the imaging system 

is linear and shift-invariant, the relation between the data and the image in the same 

coordinate frame is a convolution: 

(14) 

P is the point spread function (PSF) of the imaging system, and N is additive noise. In 

practice 0 * P is subject to non-stationary noise which one can tackle by simultaneous 

object estimation and restoration [15]. The issue of more extensive statistical modeling 

will not be further addressed here (see [16, 17, 21]), beyond noting that multiresolution 

frequently represents a useful framework, allowing the user to introduce a priori knowledge 

of objects of interest. 

We want to determine O(x, y) knowing I and P. This inverse problem has led to a 

large amount of work, the main difficulties being the existence of: (i) a cut-off frequency 

of the point spread function, and (ii) the additive noise (see for example [7]). 

Eqn. 14 is usually in practice an ill-posed problem. This means that there is not a 

unique solution. 
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3.2 The principle 

The most realistic solution is that which minimizes the amount of information, but remains 

compatible with the data. By the MEM method, minimizing the information is equivalent 

to maximizing the entropy and the functional to minimize is 

J(O) =t (h - t;:; 0).)2 - aH(O) (15) 
k=l [ 

where H is either the Frieden or the Gull and Skilling entropy. 

Similarly, usi~g the multiscale entropy, minimizing the information is equivalent to 

minimizing the entropy and the functional to minimize is 

J(O) =~ (h - (P; 0)k)2 + aH(O) (16)
L...i 20"[ 
k=l 

We have seen that in the case of Gaussian noise, H is given by the energy of the wavelet 

coefficients. We have 

w2N (1 (P 0))2 I Nj
J(O)=" k- * k +a""~ (17)

L...i 20"2 L...i L...i 20"? 
k=l [ j=l k=l j 

where O"j is the noise at scale j, Nj the number of pixels at the scale j, 0"[ the noise 

standard deviation in the data, and 1 the number of scales. 

Rather than minimizing the amount of information in the solution, we may prefer to 

minimize the amount of information which can be due to the noise. The function is now: 

(18) 


and for Gaussian noise, Hn has been defined by 

IWj

Hn(X) =t f:!' l 'k' u erf (_IW-=.j-,-='k:--I_-_U) (19) 
j=l k=l O"j 0 V2O"j 

The solution is found by computing the gradient 'V (J(0)) and performing the following 

iterative schema: 

(20) 

We consider an aj per scale, and introduce thereby a kind of adaptive regularization 

which depends on the signal-to-noise ratio of the input data wavelet coefficients. 
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3.3 The parameters 

In order to introduce flexibility in the way we restore the data, we introduce two parame

ters (3j,k and Qj,k which allow us to weight, respectively, the two terms of the equation to 

be minimized: 

where R =1- P *0, and R =Lj Lk wj,k(R)'l/Jj,k (wj,k(R) are the wavelet coefficients 

of R, and Wj,k(O) are the wavelet coefficients of 0). 

We consider three approaches for estimating {3j,k 

1. 	 No weighting; {3j,k =1 

2. Soft weighting: 	(3j,k =Ps(Wj,k(I)) 

In this case, {3j,k is equal to the probability that the input data wavelet coefficient 

is due to signal (and not to noise). 

3. 	 Hard weighting: (3j,k = Oor 1 depending onpn(Wj,k(I)) (Pn(Wj,k(I)) = I-Ps(wj,k(I))). 

This corresponds to using only significant input data wavelet coefficients. 

aj,k is the product of two values: Qj,k = Qu{3j,k' 

• 	 au is a user parameter (defaulted to 1) which allows us to control the smoothness 

of the solution. Increasing au produces a smoother solution . 

• 	{3j,k depends on the input data and can take the following value: 

1. 	 No regularization (!3j,k =0): only the first term of the functional is minimized. 

2. 	 No protection from regularization (!3j,k = 1): the regularization is applied at all 

positions and at all the scales. 

3. Soft protection ({3j,k = Pn(Wj,k(I))): the regularization becomes adaptive, de

pending on the probability that the input wavelet coefficient is due to noise. 

4. 	Hard protection ({3j,k = 0 or 1 depending on Pn(Wj,k(I))). 
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5. Soft + hard protection: (f3j,k =0 or Pn(Wj,k(I)) depending on Pn(Wj,k(I))). 

We easily see that choosing a hard weighting and no regularization leads to deconvo

lution from the multiresolution support [27, 29]. 

3.4 The choice of the wavelet transform algorithm 

There are many 2D WT algorithms [29]. The most well-known are perhaps the orthog

onal wavelet transform proposed by Mallat [20], and its bi-orthogonal version [6]. These 

methods are based on the principle of reducing the redundancy of the information in the 

transformed data. Other WT algorithms exist, such as the Feauveau algorithm [10] (which 

is an orthogonal transform, but using an isotropic wavelet), the a trous algorithm which 

is non-orthogonal and furnishes a very redundant data set [14], or the Dyadic Wavelet 

Transform (DWT) [19J which is even more redundant than the a trous algorithm. All 

these methods have advantages and drawbacks. Non-decimated methods take more com

putational time and memory space, but produce better solutions. This can be explained 

by the fact that decimation violates the sampling theorem. Indeed, the decimation is done 

by first filtering the data, and then taking one pixel out of two. But the filtering step does 

not reduce strictly the frequency band by two. If the coefficients are modified, artifacts 

become clearly visible. For good quality signal or image restoration, a non-decimated 

method should always be preferred. The choice between the a trous algorithm and the 

DWT depends on the data. For images with contours, the DWT is better. For images 

containing mainly isotropic features such as astronomical images, or some types of medical 

imagery, the a trous algorithm is well adapted. The multiscale entropy method can be 

combined with any WT algorithm. 

3.5 Examples 

Fig. 6 shows a simulation. Upper left, the Lena image has been convolved by a Gaussian 

with a full width at half maximum (FWHM) equal to 5, and Gaussian noise has been 
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added. The noise standard deviation is equal to 5. Fig. 6 upper right shows the decon

volved image. The dyadic wavelet transform has been used. Fig. 6 bottom left and right 

shows a zoom of a part of the upper left and right figures. The PSNR of the blurred image 

is equal to 27.74 dB, and PSNR of the restored image is 30.70 dB. 

Fig. 7 shows another simulation. The original image (panel (a)) contains stars and 

galaxies. Fig. 7b shows the data (blurred image + Gaussian noise), Fig. 7c shows the 

deconvolved image, and Fig. 7d the residual image (i.e. data minus solution reconvolved 

by the PSF). The blurred image SNR is 12dB, and the deconvolved image SNR is 23.11 

dB. 

Multiscale Entropy applied to Background Fluctua

tion Analysis 

The mean entropy vector 

The multiscale entropy has been defined by: 

I N 

H(X) = EEh(wj) (21) 
j=lk=l 

with h(wj = In(p(wj(k)))). In order to study the behavior of the information at a given 

scale, we prefer to calculate the mean entropy vector E defined by: 

1 N 
E(j) = N Lh(wj) (22) 

k=l 

E(j) gives the mean entropy at the scale j. From the mean entropy vector, we have 

statistical information on each scale separately. Having a noise model, we are able to 

calculate (generally from simulations) the mean entropy vector E(noise)(j) resulting from 

pure noise. Then we define the normalized mean entropy vector by 

E (.) _ E(j) (23)n J - E(noise)(j) 

Fig. 8 shows the result of a simulation. Five simulated images were created by adding 

n sources to a 1024 x 1024 image containing Gaussian noise of standard deviation equal 
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to 1. The n sources are identical, with a maximum equal to 1, and standard deviation 

equal to 2. Defining the signal-to-noise ratio (SNR) as the ratio between the standard 

deviation in the smallest box which contains at least 90% of the flux of the source, and the 

noise standard deviation, we have a SNR equal to 0.25. The sources are not detectable in 

the simulated image, nor in its wavelet transform. Fig. 9 shows a region which contains a 

source at the center. It is clear there is no way to find this kind of noisy signal. The five 

images were created using a number of sources respectively equal to 0, 50, 100, 200 and 

400, and the simulation was repeated ten times with different noise maps in order to have 

an error bar on each entropy measurement. For the image which contains 400 sources, the 

number of pixels affected by a source is less than 2.5%. 

When the number of sources increases, the difference beteen the multiscale entropy 

curves increases. Even if the sources are very faint, the presence of signal can be clearly 

detected using the mean entropy vector. But it is obvious that the positions of these 

sources remain unknown. 

Multiscale Entropy as a Measure of Relevant Infor

mation in an Image 

Since the multiscale entropy extracts the information from the signal only, it was a chal

lenge to see if the astronomical content of an image was related to its multiscale entropy. 

For this purpose, we studied the astronomical content of 200 images of 1024 x 1024 

pixels extracted from scans of 8 different plates carried out by the MAMA facility (Paris, 

France) [12J and stored at CDS (Strasbourg, France) in the Aladin archive [2J. We esti

mated the content of these images in three different ways: 

1. 	 By counting the number of objects in an astronomical catalog (USNO A2.0 cata

log) within the image. The USNO (United States Naval Observatory) catalog was 

obtained by source extraction from the same survey plates as we used in our study. 
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2. 	 By counting the number of objects estimated in the image by the Sextractor object 

detection package [1]. As in the case of USNO these detections are mainly point 

sources (stars, as opposed to spatially extended objects like galaxies). 

3. 	 By counting the number of structures detected at several scales using the MR/1 

multiresolution analysis package [22]. 

Figs. 10 show the results of plotting these numbers for each image against the multiscale 

signal entropy of the image. The best results are obtained using the MR/l package, 

followed by Sextractor and then by the number of sources extracted from USNO. Of 

course the latter two basically miss the content at large scales, which is taken into account 

by MR/l. 

Sextractor and multiresolution methods were also applied to a set of CCD images 

from CFH UH8K, 2MASS and DENIS near infrared surveys. Results obtained were very 

similar to what was obtained above. This seems to point to multiscale entropy as being a 

universal measurement of image content. 

Subsequently we looked for the relation between the multiscale entropy and the optimal 

compression rate of an image which we can obtain by multiresolution techniques [29]. By 

optimal compression rate we mean a compression rate which allows all the sources to 

be preserved, and which does not degrade the astrometry and photometry. Louys et al. 

[18] and Couvidat [8] have estimated this optimal compression rate using the compression 

program of the MR/1 package [22]. 

Fig. 11 shows the relation obtained between the multiscale entropy and the optimal 

compression rate for all the images used in our previous tests including CCD ones. The 

power law relation is obvious thus allowing us to conclude that: 

• 	 The compression rate depends strongly on the astronomical content of the image. 

We can then say that compressibility is also an estimator of the content of the image. 

• 	 The multiscale entropy allows us to predict the optimal compression rate of the 

image. 
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6 Conclusion 

We have seen that information must be measured from the transformed data, and not 

from the data itself. We could have used the Shannon entropy (perhaps generalized, 

cf. [26]) to measure the information at a given scale, and derive the bins of the histogram 

from the standard deviation of the noise, but for several reasons we thought it better 

to directly introduce noise probability into our information measure. Firstly, we have 

seen that this leads, for Gaussian noise, to a very physically meaningful relation between 

the information and the wavelet coefficients: information is proportional to the energy 

of the wavelet coefficients normalized by the standard deviation of the noise. Secondly, 

it can be generalized to many other kinds of noise, even in the case of images with few 

photons/events (the histograms in this case give rise to a bias). We have seen that the 

equations are easy to manipulate. Finally, experiments have confirmed that this approach 

gives good results. 

For filtering, the multiscale entropy has the following advantages: 

• 	 It provides a good trade-off between hard and soft thresholding. 

• 	 No a priori model on the signal itself is needed as with other wavelet based Bayesian 

methods [5, 9, 32, 31]. 

• 	 It can be generalized to many kinds of noise. 

• 	 The regularization parameter a can be easily fixed automatically. Cross-validation 

[24] could be an alternative, but with the limitation to Gaussian noise. 

Replacing the standard entropy measurements by the Multiscale Entropy avoids the main 

problems in the MEM deconvolution method. We have seen also that our new information 

measure allows us to analyze the background fluctuation and to characterize the content 

of an astronomical image. 
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Appendix: Derivative needed for the minimization of 

equations 11 and 18. 

Gaussian case 

We compute the contribution of the wavelet coefficient x to the noise information: 

1 [X (x t)
hn(x) = (7'2 Jo t erfc 0(7' dt (24) 

dhn(x) = 
dx 

= :2 f+dO t erfc ( " +J;"-t) dt - :2 f t erfc ( "0:) dt 

= :2 f [t erfc (" +J;"-t) - t erfc (:;:)] dt + :2 [+dO t erfc (" +J;"-t) dt 

x dx
1 /.X /) erfc (*) 1 l + (x + dx - t)= 2" t /) + 2" t erfc /0 dt

(7' 0 x (7' X y2(7' 
x1 1 /) erfc(~) x 

2" t /) 2(7 dt + 2" erfc(O) (25)
(7' 0 x (7' 


Now, because erfc(O) = 1 we have: 


dhn(x) _ ~ 2- /.X /) erfc(~!) 
- 2+ 2 t /) dt (26)

dx (7' (7' 0 x 


We derive the function erfc: 


(27) 


(28) 

Now we deduce for the derivative of hn : 

dhn(x) xlix f;1 - (z-ct-- = - + - - --te dt (29)dx (7'2 (7'2 0 11" (7' 2... 
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dhn(x) x 1 ~lx -(x_~2 d--=-+- - te 2 ... t (30)dx 0"2 0"3 7r 0 

We create the variable J 

fX (x_I)2 

J =J t e-2,;'r dt (31) 
o 

We create the variable u 

u - t-x--::;r; t = x+uV2o" 

dt = V2O"du (32) 

t=O=>u=--=j#- t=x=>u=O
v20 

The variable J can be written with u 

J = j~. (0: + U V2u)e-U
' V2udu (33) 

7J2a 

(34) 


The first part of J can be rewritten as: 

In f* U 2Jo = y2O"x Jo e- du (35) 

Jo can be expressed with the error function. 

(36) 

Now the second part of J is obvious 

(37) 

or 

We replace 

(38) 

(39) 
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(40) 

Now we can write J 

(41) 

We can write the derivative of hn 

dhn{x) 

dx 


(42) 

In order to minimize the functional (ll), we may want to calculate the derivative of 

hs (y - x), where hs (y - x) measures the amount of information contained in the residual 

(y being the data). 

1 [Y-:C (y-x-t)
hs(Y - x) = (J'2 J t erf V2(J' dt (43) 

o 

Denoting z = y - x, we have 

1 [Z (z-t)
hs(z) = (J'2Jo terf V2(J' dt 

z z 

= -1 l tdt - -1 l t erfc (z--t) dt (44)
(J'2 0 (J'2 0 V2(J' 

and 

dhs{x) = dhs{z) dz 
(45)

dx dz dx 

(46) 

then 

dhs(Y - x) 

dx 


(47) 
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General Case 

The contribution of the wavelet coefficient x to the noise and signal information in the 

general case is 

hn(x) (48) 


Assuming h(x) = ~X2, we have 

rl:r: 1 

hn(x) = io Pn(x - u)udu (49) 

r/:r: 1 

hs(x) = io Ps(x - u)udu 

dhs(x) 1:r: (8Ps (X - U)) d 1 l:r:+d:r: ( ) d -- = 8 u u + -d Ps x - u u u (50)
dx 0 x :r:=u X :r: 


Since Ps (0) =0, the second term tends to zero. 


. ap (:r:-u) ap_(:r:-u) we have
Denotmg -8:r: = au ' 

dhs(x) = _ r:r: 8ps(x - u) udu 
dx io 8u 

= -((uPs (x - u)]o -1:r: Ps(x - u)du) 

= 1:r: Ps(x - u)du 

1." p,(u)du (51) 

and from hn = h - hs we get 

(52) 


and 

1 ydhs(Y - x) -:r: ()d= - Ps u u (53)
dx 0 

It is easy to verify that replacing Ps{x) =erf(x), and Pn{x) =erfc(x) (case of Gaussian 

noise) we find the same equation as in the Gaussian case. 
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Figure 1: Lena image (left) and the same data distributed differently (right). These two 

images have the same entropy, using any of the standard entropy definitions. 
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Figure 2: Corrected wavelet coefficient versus the wavelet coefficient with different a values 

(from the top curve to the bottom one, a is respectively equal to 0,0.1,0.5, 1, 2, 5,10). 
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Figure 3: Top, noisy blocks and filtered blocks overplotted. Bottom, filtered blocks. 
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Figure 4: Top, real spectrum and filtered spectrum overplotted. Bottom, filtered spectrum. 
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Figure 5: Top left, simulated noisy image, top right, hard thresholding, bottom left, soft 

thresholding, and bottom right, MEF. 
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Figure 6: Upper left, Lena image convolved with a Gaussian (FWHM = 5) plus Gaussian 

noise (0- == 5). Upper right, deconvolved image by the Multiscale Entropy Deconvolution 

Method. Bottom left and right, zoom on a part of the previous images. 
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Figure 7: (a) Original image, (b) blurred image + Gaussian noise, (c) deconvolved image, and 

(d) residual image. 
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Figure 8: Mean entropy versus the scale of 5 simulated images containing undetectable sources 

and noise. Each curve corresponds to the multiscale transform of one image. From top to 

bottom, the image contains respectively 400, 200, 100, 50 and 0 sources. 
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Figure 9: Region of a simulated image containing an undetectable source at the center. 

32 




40.0 

30.0 

20.0 

60.0 

40.0 

20.0 

0.0 
10 100 1000 10000 

60.0 ,---~~-~~......--~-~~~~,---~~-~~.,., 

50.0 

40.0 

30.0 

20.0 ... ... 

10.0 
100 1000 10000 100000 

Figure 10: Multiscale entropy versus the number of objects: the number of objects is, respec

tively, obtained from (top) the USNO catalog, (middle) the Sextractor package, and (bottom) 

the MR/l package. 
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Figure 11: Multiscale entropy of astronomical images versus the optimal compression ratio. 

Images which contain a high number of sources have a small ratio and a high multiscale 

entropy value. The relation is almost linear. 
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