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Abstract 

A foundation is set forth for use of the wavelet transform as a spatial analysis tool for 

modelling the geographic representation of economic and financial measures used in agriculture. 

This provides a framework from which to estimate a smooth nonparametric function which 
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1 INTRODUCTION 2 

describes complex, multivariate relationships embedded in spatial data, with the resulting maps 

conveying large amounts of information in a familiar format. We illustrate this approach for 

tasks which include the graphical presentation of information, density estimation and wavelet­

based nonparametric regression. A redundant wavelet transform is used, and we detail the 

properties which make it particularly appropriate for these objectives. 

Keywords: nonparametric regression, wavelets, multiresolution, spatial analysis 

1 Introduction 

This paper explores the use of the wavelet transform as a spatial analysis tool for modelling the 

geographic representation of economic and financial measures used in agriculture. The principles 

of wavelet theory go back a number of decades (Haar developed what is now known as the Haar 

transform in the early years of this century, and Gabor amended the Fourier transform in the 1940s, 

applying it locally instead of globally). Numerous articles and books extending both theoretical 

aspects of wavelets and potential applications have been published since the late 1980s. This rapid 

pace of advancement is particularly reflected in signal processing, image processing, and in the fields 

of mathematics and statistics. Wavelet analysis has been shown to provide competitive and in some 

cases superior non parametric density estimation when compared with traditional methods (Donoho 

et al. 1995). The appeal of wavelet methods stems from their ability to process noisy data with local 

structures and represent discontinuities such as jumps or peaks in a function. This is an import.ant 

consideration for estimating geographically-referenced multivariate surfaces based upon economic or 

financial data where a high degree of spatial inhomogeneity is expeded. 

Two points are of particular importance here. First, that in contrast to other types of GIS studies 

which use physical data that have a more direct connection, the focus here is on economic or finan­

cial data which is noisy and has no direct expectations regarding geographic dependence. Second, 

many of the alternative statistical procedures can not handle data problems of significant size and 
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complexity nor do they adequately deal with the problems of identifying local structures and peaks 

and jumps in the data at the same time. The further benefits of this procedure are illuminated in 

the presentation and discussion of the results. 

The next two sections present a brief overview of wavelet analysis with emphasis on application 

to non parametric function estimation. This is followed by a discussion of the data source and 

application of a geographic information system. The fifth section provides an empirical framework 

for analysis and the underlying methodology. In the sixth section, spatial distribution problems 

for two agricultural financial indicators are used to illustrate nonparametric regression smoothing 

using wavelet methods. The first involves identifying specific areas of the U.S. where farms are most 

dependent on wheat as a source of income. The second problem is to determine the location of farm 

businesses experiencing the most extreme debt repayment problems. Concluding remarks focus on 

the potential of these techniques for public policy decision making and areas for further research 

and application. 

2 Wavelets and Wavelet Regression 

Wavelets are irregularly shaped functions that are specified to satisfy certain mathematical condi­

tions. Wavelet analysis can be viewed as an alternative to Fourier analysis. The latter describes 

a function in terms of its frequency components. A wavelet basis instead describes the function in 

terms of a limited set of frequencies, and simultaneously in terms of a scale component which can be 

space-related (for spatial data) or time-related (for time series). Wavelet bases are therefore quite 

desirable in that they allow for localization in space and frequency. They are considered as being 

very useful analysis tools for investigation of localized phenomena, i.e. phenomena which are limited 

in extent relative to space or to time. 

The wavelet transform involves initial choice of a wavelet function. Such a function satisfies different. 

degrees of smoothness, compact support, and in some cases orthogonality. Perhaps most important 
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is their ability to provide very useful resolution views for data manifesting an extremely wide range 

of structures (Hall and Patil 1996). A more rigorous theoretical development of wavelet analysis 

is reported elsewhere (see for example, Daubechies 1988, Mallat 1989, and Chui 1992). Wavelets 

have found their way into a variety of applied fields including astronomy, music, image processing, 

nuclear engineering, signal analysis, magnetic resonance imaging, speech discrimination, earthquake­

prediction, and many others. For purposes of this study, the discussion of wavelets will be confined 

to the statistical problem of non parametric function estimation. 

The use of wavelets in statistics is a relatively recent phenomenon that is rapidly developing. Several 

analysts have advanced wavelet theory in the context of nonparametric function estimation (Donoho 

1993, Donoho and Johnstone 1992, Walter 1992, DeVore and Lucier 1992, Kerkyacharian and Picard 

1992, and Kerkyacharian and Picard 1993). They have offered alternative approaches to traditional 

smoothing methods based on selective wavelet reconstruction or wavelet shrinkage. The idea is as 

follows. By design, a wavelet transform is invertible, i.e. from the wavelet transform we can exactly 

reconstruct our input data. Therefore we can pass from so-called direct space to transform space and 

back again. Carrying out some modification to the data in wavelet space is often found to ,work very 

well. By this we mean retaining wavelet levels such that more high-frequency components in the 

data are deleted. Alternatively, an effective denoising strategy is to assess all wavelet coefficients for 

their informativeness, whether they are really signal or noise. Thus we see that we are recombining 

the data, based on modified wavelet coefficients. We have thereby made use of a linear or a nonlinear 

combination of wavelet functions to represent the data. 

We can advance two reasons why it is effective to work on tasks such as denoising or, in general 

filtering, in wavelet transform space. Firstly, the wavelet transform is often found to be relatively 

very sparse. Many wavelet coefficients are zero or are small in value. Secondly, a wavelet transform 

provides us with a multi resolution decomposition of our data. If we are thereby accessing basic scale­

related components in our data, then clearly it is good to base our filtering on these components. 

The statistical application of wavelets is similar to parametric regression in the sense t.hat. the 
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underlying function is written in terms of some building-block functions, with projections onto 

these building-block functions being determined from the data. These building block functions are 

represented by what are known as the mother and father wavelets. The mother wavelet is good at 

representing the detail components of a function, while the father wavelet (also known as the scaling 

function) is noted for its ability to represent the smooth aspects of a function. 

The general wavelet regression procedure is as follows. We use three primary steps: (1) applying the 

Discrete Wavelet Transform (DWT) to the data, (2) removing noise from the estimated coefficients, 

and (3) conducting diagnostics and applying the Inverse Wavelet Transform (IWT) to the modified 

coefficients to obtain the denoised data. 

Suppose we want to model a random variable Y as a function of the variable X. These varI­

ables could represent any agricultural or economic dependencies. Given n independent observations 

{(Xi, Yi)}i:l the standard nonparametric regression model involving an unknown function m is 

represented as 

(1) 

where the residuals fi are assumed independent and identically distributed (i.i.d.) with mean zero 

and variance (f2. The goal is to estimate the unknown mean response function m(x) for the data 

points Xi. Later, below, we will relax the i. i. d. requirement. We will consider all i so that the 

vector m(X) = {m(Xi) I i} and likewise the vector f = {fi Ii}. 

The orthonormal DWT can be represented in matrix notation by 

w = Wm(X) + {Vf, (2) 

where {V represents an n x n orthogonal matrix of wavelet filter coefficients associated with the 

selected wavelet system. The result of this procedure is a set of wavelet coefficients w, some of which 

contain significant signal and others which are mostly noise. Given an appropriate W which defines 
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the orthonormal DWT, we can write w as follows. 

CJ 

(3)w= 

The coefficients CJ generally represent the underlying smooth behaviour of the data at the coarse 

scale 2J. They are created by the father wavelet, referred to above. The detail coefficients dJ, due 

to the mother wavelet, correspond to deviations from smooth behaviour at the coarse scale, while 

dJ _ b ... d1 represent successively finer corrections to the smooth trend. 

Many alternative methods have been offered to select what we may justifiably term a regression 

smoothing parameter given by the index J (Walter 1994, Pinheiro and Vidakovic 1995, Vannucci 

and Vidakovic 1996, and Hall and Nason 1996). The choice of J is an important consideration since 

increasing J tends to decrease the amount of smoothing in a manner that is analogous to ~sing a 

smaller bandwidth in kernel estimation. 

Other regression smoothing parameters are also of importance, related to where and how we modify 

wavelet coefficient values. After wavelet coefficients have been determined, a procedure referred to as 

(soft or hard) thresholding can be applied to separate coefficients which contribute significant signal 

from those that represent noise. Obviously, the treatment of coefficients has a substantial impact on 

the relative smoothness and mean square error performance of the estimated function. The choice 

of threshold and specific thresholding policy have undergone considerable study in recent years. The 

various methods that have been offered can be grouped into two categories. The first, known as 

global thresholding, involves applying a single-value threshold to all empirical wavelet coefficients. 

The second group involves some type of level-dependent thresholding where a different threshold 

value can be chosen for each wavelet level (Donoho and Johnstone 1994). There also are methods of 
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selecting level-dependent thresholds which can be described as data dependent. These alternative 

procedures are summarized by Nason 1995 with emphasis on cross-validation, while a host of others 

are summarized in Ogden 1997. After thresholding is completed, the estimated regression curve 

1'h(x) is obtained through the inverse transform of remaining or adjusted wavelet coefficients. 

3 A Wavelet Transform for Geographic Data Analysis 

Wavelets are inherently tied to the concept of multiresolution analysis. Using wavelets, a function 

can be depicted as a coarse overall shape, plus details that range from broad to narrow. This ability 

to zoom in or zoom out that is characteristic of multiresolution analysis permits an image to be 

interpreted as a sum of details which appear at different resolutions. Furthermore, each scale of 

resolution may pick up different types of structure in the image. 

The a trous DWT (Shensa 1992, Holschneider 1989, Starck, Murtagh, and Bijaoui 1998) differs 

from the DWT methods considered so far in that decimation or subsampling is not carried out 

at successive resolution levels, in spite of the fact that the information carried by these resolution 

levels decreases. We have not dealt on this aspect of the orthonormal DWT, namely that it is usual 

practice to subsample coefficient values, taking one value from every two, at successive resolution 

levels. This procedure is automatically catered for, when the matrix W used in the previous section 

is appropriately defined. In the a trous DWT, the usual practice is for detail coefficients to remain 

as numerous as the input data, at the successive resolution levels. This has great benefits for 

cartographic representation, as we will see below. This sort of redundancy also aids enormously 

in feature detection and exploration in the succession of resolution views of the data, which a.re 

provided by the detail coefficients. For given data x, and using the notation used for equations (2) 

and (3), the a trous DWT gives us the following additive decomposition: 

(4) 
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Each term here is a vector of length p, or an image of dimensions n x p, or even a data cube. The 

sum is simply carried out element-wise, or pixel-wise. The additive decomposition is one where the 

components are the succession of detail coefficients which are dependent on the resolution level, plus 

the underlying smooth version of the data which is given by CJ. 

Dilated (i.e., expanded in scale, but keeping the same overall shape; furthermore the scale expansion 

is usually, in practice, a two-fold one) versions of a wavelet function are used to produce d l , d2 , 

etc. A scaling function is used to produce CJ. These are, respectively, the mother and father 

wavelet function referred to earlier. The scaling function has the effect of smoothing the data. 

These functions are the mother and father wavelet functions referred to earlier. The a trous DWT 

has the nice property that dilated versions of a smoothing function are used to produce a set of 

successively smoothed versions of the input data, Cl, C2, ..'., CJ and then the wavelet coefficients can 

be defined straight away from these just by subtraction: dl = X'-:"'Cl, d2 =Cl-C2,.·., dJ =CJ-l-CJ. 

The scaling function used in this work is like a Gaussian function, but with limited support (i.e. 

no wings extending to infinity). It is in fact a Ba spline (Strang and Nguyen 1996), known for its 

good interpolation properties which extend to irregularly sampled data. (In passing we note that 

the data which we are studying are irregularly sampled: the discrete convolution with the scaling 

function - whose shape and support determine the scale-related resolution - provide mappings of 

our data onto a regular grid.) 

Data dependent noise modeling may be based on the noise model posed for the input data, such 

as (in the additive noise model case) x = {Xi + Edr:l where Eneed not be i.i.d. Based Oll such a 

noise model, significance levels can be determined at successive resolution levels using the classical 

hypothesis testing approach. In figures 7 and 8 below, we assume a simple (and approximate) 

stationary Gaussian model for €. For function estimation, or wavelet regression, in figures 9 and 

10, we relax entirely this assumption of homoscedasticity. We take the noise as not necessarily 

stationary, and of unknown distribution, modeling it as locally Gaussian, only, independently at the 

varying resolution levels. 
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The MRII multiresolution image and data analysis package (MR/I 1998, Starck, Murtagh, and 

Bijaoui 1998) was used in this work. This package handles (raster) image and point pattern data. 

An extensive range of wavelet and other multiscale transforms are supported (a trous, Mallat, 

Feauveau, Haar, and others, in various pyramidal and non-pyramidal versions; Laplacian, median 

and morphological transforms are also available). Data dependent noise models include Gaussian 

and Poisson, additive and multiplicative, stationary and non-stationary. Supported are such tasks 

as visualization, filtering, deconvolution, compression, feature and structure finding, and many other 

operations. 

4 Data Source 

Analysis of the spatial distribution of economic and financial indicators for agriculture is based on 

financial statements prepared from USDA's (United States Department of Agriculture) Agricultural 

Resource Management Study (ARMS). These data are the only information gathered nationally 

which provide a comprehensive perspective on the financial performance of farm businesses. The 

ARMS is a personally enumerated survey, conducted since 1984 by the National Agricultural Statis­

tics Service (NASS) and the Economic Research Service (ERS) of the U.S. Department of Agricul­

ture. The ARMS is a probability-based multi frame, stratified survey that uses multiple questionnaire 

versions to collect information on farm production expenses, capital purchases, income, production 

practices, and other farm operating characteristics. 

Local geographic references for sample points are often omitted from surveys designed to collect 

economic and financial information. In this instance, some form of data integration is required to 

associate these attributes with geographic references that are more specific than the usual political 

boundaries such as State or County. The simplest form of data integration involves attaching 

geographic references to sample points from survey data. The most common geographic reference 

is the longitude/latitude coordinate system. For this study, geographic references were obtained for 
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each of the 3,100 county population centroids. The projection applied was the Albers-Equal-Area 

(AEA). 

An additional component of data preparation for this study involved binning. Binning methods 

originated with development of the histogram as a means to graphically display univariate data. 

More recently, binning has been used to reduce computational difficulties associated with applying 

nonparametric regression techniques for smoothing large data sets (Scott 1992, HardIe and Scott 

1992, and Wand and Jones 1994). In this context, binning involves reducing the original data to a 

relatively small number of estimates at equally spaced intervals. This treatment of sample data has 

been used to support various kernel-type estimators such as the Average Shifted Histogram (Scott 

and Whittaker 1996), bivariate local linear regression (Werthenbach and Herrmann 1998), and Fast 

Fourier Transform (FFT) computation methods (Fan and Marron 1994). Donoho et al. 1995 provide 

examples for density estimation based on wavelet thresholding, while Antoniadis and Pham 1995 

incorporated binning directly into a nonparametric wavelet regression estimator. 

In addition to computational efficiencies, binning offers other important benefits to practical prob­

lems associated with spatial modeling of complex survey data. First, the binning algorithm developed 

by Scott allows the complex, probability-based sample characteristics to be incorporated in the anal­

ysis (Scott and Whittaker 1996). The second advantage of this approach is that the selection of bin 

width or grid spacing allows the practitioner some flexibility in controlling the degree of resolution 

given the statistical reliability constraints of the sample data. Results by Hall and Wand 1996 for 

kernel density estimation suggested that the accuracy of binning and the choice of grid size are de­

pendent on the relative smoothness of the underlying density and sample size. Finally, as noted by 

Antoniadis and Pham 1995, binning can be used to compensate for several restrictions that pertain 

to widely used wavelet estimators (section 2) such as fixed equidistant design, homoscedasticity, and 

sample sizes that are a power of two. 

In the context of the it trous DWT introduced in section 3, binning arises naturally as the discret.e 

convolution of a scaling function with the given input data. We use, below, a heteroscedastic noise 
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model with this wavelet transform. 

5 Model Specification and Methodology 

Having established a spatial data structure from which to examine multivariate relationships, the 

next step involves implementation of the wavelet transform in a two-dimensional setting. The major 

goal of this process is to produce a sequence of versions of the binned approximation of the original 

data at more and more coarse resolutions separating noise from salient features in the data. 

Extension of the non parametric regression principles for wavelet analysis to two dimensions is based 

on estimating the unknown mean response function: 

m(x, y) = E(ZIX = x, Y = y), (5) 

where (x, y) represents the centre of one of the geographically referenced bins and Z represents the 

variable of interest. The preconditioned Z matrix is constructed by calculating the weighted average 

value within each of the bins as 

(6) 


where n is the number of Z/s in Bj ,1l,12 and Wi represents the corresponding sampling weights for 

each observation. The indexes j, 11, 12 used here serve to remind us of the weighting relative to the 

variable, which are referred to as the sampling weights in a statistical survey, and in addition the 

mapping into the discrete bin indexed by 11,/2. In many cases, the estimate will be mathematically 

undefined or zero. The first situation occurs when there are no sample observations in the bin, while 

the latter reflects no positive response for the variable of interest. 

The redundant. a trous method has a range of useful properties for the handling of sparse spatial 

data. Compared to other wavelet transforms, we may note the following: 



6 RESULTS 12 

Boundary treatment The handling of data boundaries in the DWT always requires attention. 

Implementations of DWT methods which use decimation usually require that the input data 

dimensions be integer powers of two; or else that the input data be padded to be of such 

pre-specified dimensions. In the case of the redundant a trous method, we do not have such 

a constraint. In practice, we usually use reflection in the boundary (the "virtual" value at 

position n + 1 is taken as the known value at n, position n + 2 is given by n - 1, and so on), 

which makes the convolutions with the scaling function well-defined at all stages. 

Stationary transform The redundancy involved in the succession of applications of the scaling 

function, yielding Cl, C2, •.• , means that we ought not take each translated value into account 

when constructing the following resolution level: in fact, a sampling scheme based on gaps of 

{2i}f;Ol unused values between values used in the convolution does the job admirably. Such a 

sampling scheme is compatible with what would have been the case, had we decimated. (Note 

that decimation can be carried out with the a trous wavelet transform, if so desired.) This 

works well all the more so since we are using a scaling function with excellent interpolation 

properties. It is for this reason that the atrous ("with holes" or gaps) method bears this name. 

Computational efficiency The a trous DWT is of linear computational complexity, i.e. O( n) for 

n input values (and is thus more efficient than, e.g. the FFT). 

Due to redundancy, the a trous transform provides intuitively understandable visualization. The 

noise, or other, filtering of sub-sampled data can be entirely avoided. And as noted in section 3, we 

have at our disposal a wide range of powerful data dependent noise models. 

6 Results 

Even though wheat is produced in nearly every state, production is geographically concent.rat.ed. 

In 1995, Kansas, Montana, North Dakota, and Washington accounted for 43 percent of t.ot.a.l U.S. 

production (NASS, Crop Production 1996). Perhaps a logical extension of this information vvould 

http:concent.rat.ed
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be to assert that these are areas of the country where farm business and farm household incomes are 

most affected by changes in the price of wheat. As a test of this supposition, the first application 

explores the spatial distribution of the economic dependence on wheat. Table I shows the estimated 

average income statement for all farms that produced wheat in 1995 and for three categories of 

wheat dependence. As a group, wheat producers were not very dependent on wheat. Wheat was 

the primary commodity for one in five wheat producers and represented at least 60 percent of the 

t.otal value of production. The income of these farms would be extremely sensitive to changes in the 

price of wheat. 

Insert Table 1 about here. 

Debt repayment capacity utilization is computed as the ratio of actual debt to maximum debt 

repayment capacity, and measures the extent of farm businesses or operators' use of their potential 

credit repayment ability. Debt repayment capacity, measuring the amount of debt that the maximum 

loan payment could support, is a function of the loan payment, the interest rate, and the term of 

the loan. Construction of the debt capacity utilization ratio (DCUR) assumed an average interest 

rate of 7.5% and a IO-year loan term. 

The DCUR provides a framework to identify farm businesses that are experiencing financial dif­

ficulties based on the inability of current income to support farm business debt. In 1995, it was 

est.imated that 14 percent of all commercial farms faced extreme repayment problems having debt 

that exceeded their feasible debt by more than 2.5 times (table 2). These farms had average debt 

of $309,000, but their current income could only support payments associated with debt of $49,000. 

A logical extension of estimating and summarizing this measure is to determine where the most 

extreme debt repayment problems occurred in 1995. 

Insert Table 2 about here. 
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One ofthe unique features of wavelet analysis is that no matter what the function of interest a number 

of alternative views that represent detail in the data are presented graphically. Visualization of the 

wavelet transform provides knowledge about the structure of the data and presents a convenient 

forum for conducting wavelet-based diagnostics prior to reconstruction. The multi resolution aspect 

of the transform also permits the detection and parsing of objects within an image. 

Figures 1 and 2 show perspective plots of the wheat dependence and debt data as spatially mapped 

over the surface of the continental United States, from a due south direction. These provide wheat 

and debt "topographies" at varying resolution scale. Our original data, in both cases, is the sum of 

the 4 scales shown. The last scale is the most smoothed version retained of the data. The detail 

or wavelet coefficients are shown in figures 3 and 4, with positive values only being represented in 

these figures. 

Insert Figures 1, 2, 3, 4 about here. 

Regression smoothing, or nonparametric function estimation, is necessary for interpretation of the 

spatially represented data under consideration here. A family of smoothing methods avoids undue 

dependence on just one estimate (Marron and Chung 1998). Such a family of smooths provides 

not just a set of alternative smoothing possibilities, but the transition from one smooth to the next 

may be important for change point detection and picking out scale-related features in the data. A 

condition for this is that the analyst can "visually connect" (Marron and Chung 1998) successive 

members of the family. This possibility immediately follows from the it trous wavelet transform. 

Figures 5 and 6 show such a family of fits to the wheat and debt functions under consideration. 

Insert Figures 5, 6 about here. 

Simple visualizations of the data based on a stationary Gaussian model are portrayed in figures 

7 and 8. There are various ways to analyze empirical wavelet coefficients that enhance statist.ical 
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applications such as nonparametric estimation. Graphic displays of wavelet coefficients provide 

good diagnostics for data analysis since the data or function of interest is completely captured in the 

wavelet coefficients. Time-scale (scaleogram) and time-frequency plots (spectogram) are useful for 

studying the tradeoff between time and scale localization (Bruce and Gao 1996). Image querying, 

multiresolution editing, and multiresolution plots provide alternative means of visually exploring 

complex relationships in the data. Other standard methods of graphical data analysis such as box 

plots and Q-Q plots can also be applied to wavelet coefficients. We now turn our attention to more 

detailed noise modeling, aiming at a definitive regression surface of our data. 

Insert Figures 7, 8 about here. 

Figures 9 and ~O show the results of wavelet regression based on a model of heteroscedastic noise, of 

the wheat dependence and DCUR data. We empirically investigated a range of noise models for this 

data. Our initial considerations were of a Poisson distribution, given especially the sparsity of the 

data. However the complex preprocessing of this data argues strongly against this model. Wavelet 

coefficients are necessarily of zero mean, and we therefore used histograms at different scales to 

check whether a Gaussian distribution looked reasonable, which did not prove to be the case. This 

led us to base our noise filtering on a local, scale-dependent noise model. Denoising of the last 

smoot.h version of the data was not carried out, since this provides a background continuum. Some 

"spottiness" in the resulting filtered view of the data was removed with minimal consequences by 

removing isolated pixel values in the detected signal versus noise support image, built up at each 

resolution level. Only significant positive structure was detected. The last-mentioned property of 

the processing has an effect on the values of the noise-filtered data. The wheat dependence original 

and de noised data had maximum, minimum and totalled values of, respectively, 100.4,0.0,14775.7, 

and 99.0, 0.0, 20124.0 The DCUR original and denoised data had maximum, minimum and totalled 

va.lues of, respectively, 12.0, 0.0, 2661.5, and 11.8, 0.0, 3597.6. 1 

1 The increase in totalled values of the data was due to removing negative values in the estimation process. 
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Insert Figures 9, 10 about here. 

It is easy to see that economic dependence on wheat is invariant to state boundaries. The dependent 

variable is defined as the share of the total value of production represented by wheat. The peaks of 

the estimated regression surface, which indicate where farm business and farm household incomes 

are most affected by changes in the price of wheat, are most notable in Kansas and North Dakota 

Even in these states, however, economic dependence on wheat is confined to specific areas within 

the state. In contrast, there were relatively small portions of Montana and Washington estimated to 

contain farms that were economically dependent on wheat. Areas of high dependence were identified 

in other states which contributed much less to total U.S. production, such as Oklahoma, Colorado, 

Nebraska, Oregon, and Arkansas. 

The nonparametric regression surface for the DCUR data generated using wavelet analysis is pre­

sented in figure 10. Although extreme debt repayment problems were found in many different 

locations, many of the estimated regression surface peaks appear to be concentrated in the area 

from northern Texas through southern Nebraska. The location of farms experiencing debt repay­

ment problems in 1995 reflects either a short-term cash shortfall, which could be associated with 

adverse weather conditions, or a longer-term breakdown in financial management of the business. 

Most farms with short-term debt repayment problems can negotiate with their lender to restructure 

current loan terms or borrow additional funds, sell inventories or other liquid assets, or utilize off­

farm income to mitigate the severity of the problem. The latter group, whose situation is further 

constrained by a relatively high debt load, faces substantial financial and business restructuring 

issues. 

The approach used can handle spatial correlation very well. One of the data sets analyzed, the 

wheat dependence data, shows strong spatial correlation, while the other, the debt repayment. data, 

is spatially dispersed. The approach we used works well on the two kinds of data, while many 

alternative methods are only appropriate for the former, and may actually be misleading in the 
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latter case. 

7 Discussion 

A foundation for the application of wavelets was put forth for the statistical problem of nonparamet­

ric function estimation. This provided a framework from which to estimate a smooth nonparametl'ic 

function which describes complex multivariate relationships embedded in spatial data. The ex­

ploratory data analysis inherent in the wavelet transformation and resulting maps provide a means 

of visually conveying tremendous amounts of information. This portrayal of the complex relationship 

between economic attributes and demographic characteristics could make an important contribution 

to understanding the spatial implications of government policy. 

The spatial analysis developed and demonstrated in this paper could be augmented by further 

integration of demographic characteristics and resource-based attributes. These types of applications 

might include: (1) identifying the proximity of farm businesses that are dependent on off-farm income 

to areas of rural and urban non-agricultural employment, (2) determining the extent to which 

highly leveraged farms are located in disaster prone areas such as flood plains, and (3) examining 

how these geographic dependencies change over time and the extent to which weather and other 

natural occurrences influence these changes. Implementation would involve either extending the 

nonparametric model to accommodate higher dimensions or a more complex post-processing activity 

focused on merging geographic representations. 

In comparing density estimation methods (an adaptive kernel density estimator and the maximum 

penalized likelihood method) and the a trous wavelet transform using extensive one-dimensional 

simulations, Fadda et al. 1998 find that the wavelet transform performs well when there are local gaps 

in the data distribution, and when small substructures are superimposed on larger structures. (They 

also a.rgue for the robustness of kernel methods.) To this we would add the wide range of possibilities 

for exploratory visualization, exemplified in this paper, when using the wavelet transform. Finally, 
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we would stress the importance of a multiscale transform approach whenever our data is taken as a 

set of superimposed or compounded resolution scale-related phenomena. 

In regard to the applications used in this work, we have discussed above in this section how these 

types of results can be combined with other data which mayor may not have some type of geographic 

reference. The two examples do not have any relationship to each other; they were chosen to illus­

trate the methods and address current policy topics in U.S. agriculture. The economic dependence 

on wheat example is a means to provide a quick, visual response to the question if wheat prices 

dramatically decline (as they did during the latter part of 1998) what parts of the country would be 

most impacted? One could further utilize this surface to draw out other interesting relationships. 

Have the areas which have been identified as most sensitive to changes in the price of wheat been 

subject to unusual weather, or do they have access to off-farm job opportunities? These are logical 

extensions that are beyond the scope of this paper. In the same vein, the DRCU analysis can be 

extended to see what the conditions of banks are in those areas of the country where farms are 

having debt repayment difficulties (a study which one of the authors in fact carried out in the past). 

Clearly the wavelet transform, and more particularly the methodology employed here (the redun­

dant and hence shift-invariant transform, the noise modelling and denoising approach), is of very 

considerable benefit for analyzing such data and for handling such problems. 
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Table 1. Abbreviated income statement for wheat farms, 1995 

Less than 20 to 59 60 percent All 

Item 20 percent percent or higher farms 

N umber of farms 124,974 73,573 52,021 250,568 

Total value of production 214,176 116,887 77,076 157,146 

Value of wheat production 14,471 40,414 63,247 32,215 

Wheat production (bu.) 3,772 10,055 15,313 8,013 

Gross cash income 203,634 123,789 81,206 154,772 

Livestock sales 67,718 19,245 5,763 40,623 

Crop sales (inc!. net CCC loans) 109,399 79,053 56,558 89,518 

Government payments 7,886 7,716 7,587 7,774 

Other farm-related income 18,631 17,775 11,297 16,857 

Less: Cash expenses 160,730 99,464 62,784 122,406 

Variable 124,624 71,482 43,347 92,146 

Fixed 36,106 27,982 19,437 30,260 

Equals: Net cash farm income 42,904 24,325 18,422 32,366 

Less: 

Depreciation 19,485 13,535 9,971 15,763 

Labor, non-cash benefits 666 341 284 491 

Plus: 

Value of inventory change 42 2,559 6,979 2,221 

N onmoney income 4,838 4,115 2,602 4,162 

Equals: Net farm income 27,633 17,124 17,748 22,495 

Source: Agricultural Resource Management Study, USDA. 
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Table 2. Farm business debt capacity utilization, 1995 

Debt capacity utilization ratio 

Item Below 1.0 1.0 to 1.5 1.5 to 2.5 Above 2.5 

N umber of farms 389,663 37,278 36,095 73,204 

Percent of farms 72.7 7.0 6.7 13.7 

Net farm income 68,250 -1,363 -16,077 -70,490 

Plus: Depreciation 21,054 23,601 18,130 23,883 

Plus: Capital interest 5,533 17,294 15,126 16,785 

Plus: Estimated capital lease 2,059 1,405 1,296 3,597 

Equals: Income for debt coverage 96,896 40,937 18,475 -26,225 

Maximum loan payment 77,517 32,750 14,779 0 

Total reported debt 97,504 271,556 239,787 309,103 

Maximum feasible debt 438,822 222,071 131,564 48,858 

Debt capacity utilization ratio 0.22 1.22 1.82 6.33 

Source: Agricultural Resource Management Study, USDA. 
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Figure 1: Perspective plot (from south) of 4-1evel it trous transform, ordered from bottom to top, 
of the 1995 wheat dependence data. The thresholded "capping" is at the 30- level and is used for 
display purposes only. 
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Figure 2: Perspective plot (from south) of 4-level it trous transform, ordered from bottom to top, of 
the 1995 debt capacity utilization ratio, DCUR, data. The thresholded "capping" is at the 30" level 
and is used for display purposes only_ 
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Figure 3: From top to bottom: Wheat dependency data; detail or wavelet coefficients (non-negative 
values shown) at successive resolution levels, d1l d2 , d3 , C3. 
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Figure 4: From top to bottom: Debt capacity utilization ratio, DCUR, data; detail or wavelet 
coefficients (non-negative values shown) at successive resolution levels, d1l d2l d3 , C3. 
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Figure 5: From top to bottom: Wheat dependency data; approximations formed by d2 + d3 + C3, 

d3 +C3 and C3, where the original data has been additivitely decomposed into detail datasets d1 , d2 , 

d3 , together with a smooth background, C3­
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Figure 6: From top to bottom: Debt capacity utilization ratio, DCUR, data; approximations formed 
by d2 + d3 + C3 l d3 + C3 and C3, where the original data has been additivitely decomposed into detail 
datasets d1 ! d21 d31 together with a smooth background, C3. 
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Figure 7: Contour plot of 4-level a trous transform of the wheat dependence data. Contours corre­
spond to 30" levels (stationary Gaussian distribution at each level) . 
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Figure 8: Contour plot of 4-level a trous transform of the debt capacity utilization ratio, DCUR, 
data. Contours correspond to 30" levels (stationary Gaussian distribution at each level). 
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Figure 9: Result of wavelet regression (heteroscedastic noise model) of wheat dependence data. 
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Figure 10: Result of wavelet regression (heteroscedastic noise model) of debt capacity utilizat.ion 
ratio, DCUR, data. 


