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Abstract. The aim of this paper is to describe a tool used for the detection of mid­

infrared images of faint sources from the ISOCAM camera on-board ISO. This tool 

is based on a wavelet analysis which allows to discriminate sources from cosmic ray 

impacts at the very limit of the instrument, four orders of magnitudes below IRAS. The 

results obtained with this method, called PRETI, for Pattern REcognition Technique for 

ISOCAM data, will be detailed in separated papers, except for one case, the Hubble Deep 

Field, that we used as an example for testing this tool. We have built a set of simulated 

data in order to define the sensitivity and completeness limits of the observations as well 

as the rate of false detections due to cosmic ray impacts as a function of the detection 

threshold used, which was not possible at the time of the release of our first paper (Aussel 

et al. 1999). Forthcoming papers are in preparation which will all refer to the technique 

described in this paper with the common aim of understanding galaxy evolution through 

their rest.-frame near t.o mid-infrared emission, i.e. surveys of different depths and sizes 

on empty fields and galaxy clusters, as well as on fields surrounding distant quasars. 

1. Introduction 

Following the detection of ultra-luminous infrared galaxies (ULIRG's) by the IRAS satel­

lite (Sanders & Mirabel 1997), dominating the integrated light emitted by galaxies below 

z=O.2, t.he question was raised to know whether such objects, which are very bright but 

not. numerous in t.he nearby universe, could be representative of a more common phase 

in the evolution of normal galaxies. In other words, could we expect the lack of detection 

of primeval galaxies (Djorgovski) to be due to dust extinction in systems emitting more 

than gO % of their light in the infrared, as in local ULIRG's. 

Several programs were devoted to this search using ISOCAM, one of the four 111­

strument.s on board of the ISO (Infrared Space Observatory) spacecraft which ended its 

Send offprint requests to: jstarck@ceaJr 



2 J.L.Starck et al.: Faint source detection 

life on May 1998. Operating in the range 2.5-18 pm, with a sensitivity four orders of 

magnitude better than IRAS and a sixty times better spatial resolution, this camera was 

perfectly suited for the search of dust emission in the PAH (Polycyclic Aromatic Hydro­

carbon, from 6.2 to 12.7 pm) and VSG (Very Small Grains, above typically 10 pm) part 

of the spectrum of galaxies of redshifts typically below 1 to 1.5. 

However, because the 32 X 32 pixels of the camera had to be both thick and cold, it 

had the respective consequences that they were both very sensitive to the presence of 

cosmic rays and slow to react to changes in fluxes. This was the main problem of faint 

source detection with ISOCAM which implied to discriminate non-Gaussian fluctuations 

of the signal from Gaussian ones, and then separate cosmic rays, i.e. glitches, from real 

sources. The general idea that we used for this purpose rely on the fact that all these 

signal components measured by a given pixel show different signatures in its temporal 

evolution, and can be identified using a wavelet transform, i.e. by separating several 

frequencies in the signal. Once the "bad" components (i.e. glitches) are identified, they 

can be extracted from the temporal signal. The glitch-free signal can then used to build 

the final image. The detection of faint sources is then performed on this final image using 

again a wavelet transform of the signal but this time spatially instead of temporally. We 

call this tool PRETI, for Pattern REcognition Technique for Isocam data, first because 

we use a temporal signature to recognize each signal component, which appear as a 

pattern in the wavelet space, but also because we were happy to finally see pretty nice 

images of what were previously empty fields. 

In a first part, we will describe the Pattern REcognition Technique for Isocam data. 

Then, we will focus on the the validation of this technique using Monte-Carlo simula­

tions. These simulations were performed on a dataset empty of real sources in which ~e 

introduced fake sources with all fluxes and positions, in order to estimate the following 

characteristics of an observation: 

1. 	 the sensitivity limit: the flux of the faintest detected source. 

2. 	 the photometric accuracy. 

3. the completeness limit: the faintest flux for which all sources are detected or at least 

a well-known fraction of the total number of sources. 

4. 	 the rate of false detections: the number of fake sources due to glitches wrongly inter­

preted as sources. 

A first set of simulations was already used in Aussel et al. (1999), based on the same 

technique, but the dataset was not empty of real sources so that the third point above 

could not be addressed. 
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2. A brief discussion of tbe problem 

A standard way for data analysis would consist in: 

1. 	 calibrating the data: 

(a) extraction of the cosmic rays (glitches) by comparing successive readouts 

(b) subt.raction of the signal due to dark currents 

(c) flat-fielding by dividing the data with a library flat-field 

(d) normalizing the camera units into real Jansky fluxes 

2. 	 using a standard source detection algorithm that would consist in estimating the 

background and the noise level, and fitting the Point Spread Function (PSF) in pixels 

showing a flux level higher than n times the noise standard deviation (rms). 

This method is successful when applied to bright objects (down to a few percent of 

the background level) but is inefficient when applied to faint source detection (below 1 %). 

At. a first order, this can be improved by modeling the flat-field, instead of using the 

library flat-field. Indeed, the position of the lens of ISOCAM is not exactly reproducible 

and the optical flat-field varies as a function of the lens position of 2 to 20 % from the 

center to the border of the array. In the case of empty fields (and more generally when 

most of the map covers an empty field), a simple median of the cube of data gives a 

very good flat-field, which allows to reach a detection level of a few ten percent of the 

background level (Starck et ai. 1998). 

However, at a second order, one encounters the main difficulty in dealing with 

ISOCAM faint source detection: the combination of the cosmic ray impacts (glitches) 

a.nd the transient behavior of the detectors. Indeed, for glitches producing single fast 

increase and decrease of the signal (about 20 % of the total number of readouts 

of an observation is thrown away because of glitches lasting only one readout), a 

simple median filtering allows a fairly good deglitching, while for the remaining 

glitches (affecting from 5 to 20 % of the total number of readouts as a function of the 

st.rength of the selection criterion), memory effects can produce false detections. Conse­

quently, the major source of error here is not the detection limit of the instrument, which 

is quite low, but the large number of false detections, which increases with the sensitivity. 

Three types of glitches can be isolated as they create: 

1. 	 a positive strong and short feature (lasting one readout only). 

2. 	 a posit.ive t.ail (fader, lasting a few readouts). 

3. 	 a negative tail (deepe1', lasting a several tens of readouts). 
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In the following, we will call the second type of glitches faders, and the third type 

deepers. Figure 1 is a plot of the camera units (ADU, for Analog to Digital Units) 

measured by a single pixel as a function of the number of readouts, i.e. time, which 

shows these three types of glitches. On top (a), three sharp type" 1" glitches are clearly 

visible. On the middle plot (b), another pixel history shows a "fader" (at about 80 

readouts and lasting about 20 readouts). On the bottom plot (c), a "deeper" is present 

at the readout 230, which lasts about 150 readouts. 

Finally, the signal measured by a single pixel as a function of time is the combination 

of memory effects, cosmic ray impacts and real sources: memory effects begin with 

the first readouts, since the detector faces a flux variation from an offset position to 

the target position (stabilization), then appear with long-lasting glitches and following 

real sources. One needs to clearly separate all these constituents of the signal in each 

pixel before building a final raster map and to keep the information of the associated 

noise before applying a source detection algorithm. Indeed, since the glitches do not 

follow a Gaussian statistics, it is clear that an analysis of the final raster map, without 

its associated noise map, would lead to poor results, for the standard detection crite­

rion (detection above N times the standard deviation of the noise) would no more be valid. 

In a first section, we will show that a concept of pattern recognition using a multi­

resolution algorithm leads to an efficient calibration procedure, free of the major problems 

described above. Simulations and real data analysis will be presented in a second section. 

3. "Pattern recognition": a multi-scale approach 

3.1. The "temporal detection technique" and its limitations 

Looking at the figure 1, one can see a faint source on the bottom plot (c) at a position of 

about 120 readouts and lasting about 30 readouts. The duration of this bump corresponds 

to the time spent by the satellite when pointing on the same sky position where a source is 

visible. One can use this information in order to seek for real sources, since false detections 

induced by glitches will rarely happen at the precise moment when the satellite points 

toward a given direction and last exactly the number of readouts spent on this position. 

Moreover, by pointing twice at the same position, for example by moving of half an 

array per mosaic step, the probability that this happens twice should be even lower, and 

again lower when pointing N times at the same sky position. Figure 7 shows the case 

where the same source is seen by four different pixels during an observation. The dotted 

line separates the different mosaic positions, i.e. between two dotted lines, the same sky 
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position is observed. In the second and third plots, the source can easily be detected by 

the eye while in the two others, the signal is too noisy. 

We tested an automatic "temporal detection technique" as described above and found 

nice results but with the following limitations: 

1. 	 low signal to noise ratio (SjN): in a mosaic, several pixels will point toward the same 

given sky position which should increase the SIN if they were co-added, which is not 

possible in this technique. 

2. 	 poor photometry: because of the previous point and also due to the difficulty to esti­

mate the background level. 

3. 	 sotf.rces a1'e splitted: the signal of weak sources extended over several pixels (either 

because they are intrinsically extended or because of the Point Spread Function, 

PSF) is splitted, resulting again in a decrease of the SIN of the source. 

4. 	 false detections: one still get false detections even after a redundancy of 10 or more, 

when searching after extremely faint objects, due to the large number of cosmic ray 

impads. 

In order to solve these difficulties, one needs to find the glitches with memory effects 

(faders and deepers) and extract them from the data, if possible without loosing the as­

sociated information. Then co-addition will become possible and standard spatial source 

detection algorithm with the difference that noise is not homogeneously distributed on 

the map. This is exactly what PRETI allows to do. In terms of noise, in the temporal 

technique the noise standard deviation is divided by V'lf; (where Nr is the number of 

readouts per raster position), while it is divided by V'lf; * VFld (where Nd is the num­

ber of redundancies inside the raster, i.e. the number of pixels which see the same sky 

posi tion) for co-added data. 

The calibration of ISOCAM survey data can be considered under a new angle. New 

methods based on wavelet transforms have recently been developed for source extraction 

in an image (Bijaoui & Rue, 1995), and successfully adapted for spectral analysis (Starck, 

Siebenmorgen & Gredel, 1997). Using such an approach, a temporal signal can be decom­

posed in its different components, selected from their frequency. From this decomposition, 

a new calibrat.ion method can be derived, resolving main problems. 

8.2. The A1viti-Scale Vision Model 

In the Multi-Scale Vision Model (Bijaoui & Rue, 1995), an object in a signal is defined as 

a set of structures detected in the wavelet space. The wavelet transform algorithm used 

for such a decomposition is the so-called "it trous" algorithm, which allows to represent. 

a signal D(t} by a simple sum of its wavelet coefficients Wj and a smoothed version of 
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the signal cp 

D(t) = cp(t) + L
p 

Wj(t) (1) 
j=l 

In the case of an image of the sky, the algorithm would produce N images of the same 

size, each one containing only information at a given frequency band. In such images, 

we define a "structure" as a group of connected significant (above a given threshold) 

wavelet coefficients. A complete description of how to estimate if a wavelet coefficient 

is significant, depending on the nature of the noise, can be found in Starck, Murtagh 

& Bijaoui (1995) and Starck, Murtagh & Bijaoui (1998). An object is described as a 

hierarchical set of structures. The law will allows us to connect two structures into a single 

object is called "interscale-relation". Figure 3 shows how several structures in different 

scales are linked together, and form objects. We have now to define the interscale-relation: 

let us consider two structures at two successive scales, SJ and S;+I' Each structure is 

located on one of the individual images of the decomposition and corresponds to a region 

in this image where the signal is significant. Noting Pm the pixel position of the maximum 

wavelet coefficient value of SJ, SJ is said to be connected to S;+1 if S;+1 contains the 

pixel position Pm (i.e. the maximum position of the structure SJ must also be contained in 

the structure S;+1)' Several structures appearing on successive wavelet coefficient images 

can be connected in such a way, which we call an object in the interscale connectivity 

graph. 

Once an object is detected in the wavelet space, it can be isolated by searching for 

the simplest function which presents the same signal in the wavelet space .. The problem 

of reconstruction (Bijaoui and Rue, 1995) consists then in searching a signal V such that 

its wavelet coefficients are the same than those of the detected structure. By noting T 

the wavelet transform operator, and Pb the projection operator in the subspace of the 

detected coefficients (i.e. set to zero all coefficients at scales and positions where nothing 

was detected), the solution can be found by minimizing the following expression: 

J(V) =\1 W - (Pb 0 T)V II (2) 

where W represents the detected wavelet coefficients of the signal. A complete description 

of algorithms for minimization of such a functional can be found in Bijaoui & Rue (1995). 

In ISOCAM images, cosmic rays with memory effects are the typical objects as pre­

viously described, but instead of working on the spatial signal of an image, one needs to 

work on the time sequence of the signal to find them. Indeed, the signal associated to 

a fader or a deeper is significant at several frequencies: a strong and rapid peak make 

them significant in the highest frequency wavelet coefficients decomposition of the initial 

signal while the memory effect make them significant in the lower frequency wavelet coef­

ficients. Hence, the multi-scale approach is an ideal tool to discriminate glitches from real 
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signal and we will call pattern recognition, the action of searching for objects showing 

properties typical of those expected for faders and deepers. 

3.3. Pattern REcognition Technique for lsocam 

The idea developed here is to use the multi-scale vision modeling for a decomposition of 

a signal into its principal components. In practice, a simple object reconstruction from 

the detected structured in the wavelet space, as proposed in Bijaoui & Rue (1995), would 

produce poor results because of the strong confusion between the numerous objects that 

can be found in the data. Moreover, wavelet transforms present a drawback: the wings of 

the wavelet function are negative (so that integral of the function is zero) which implies 

that when a positive signal falls onto one wing of the wavelet function it produces a 

negative signal in the wavelet transform. The quality of the object reconstruction is 

good only when additional constraints are introduced (positivity constraint for positive 

objects, and negativity constraint for negative objects). An object is defined as positive 

(respectively negative) when the wavelet coefficient of the object which has the maximum 

absolute value is positive (respectively negative). 

The problem of confusion between numerous objects can be solved when including a 

selection crit.erion in the detection of these objects. Using the knowledge we have about 

the objects, here glitches, the problem of unknown objects reconstruction is reduced to 

a patt.ern recognition problem, where the pattern is the glitch itself. We only search for 

objects which satisfy a given set of conditions in the Multi-Scale Vision Model (MVM). 

For example, finding glitches of the first type is equivalent to find objects which are 

positive, st.rong, and with a duration lower than those of the sources. The method that we 

use for the decomposition of the signal of a given ISOCAM pixel, D(to ..tn ), is summarized 

below: 

1. 	 detection of the glitches of the first type in the wavelet space: the corresponding 

signal, C't (to ..i n ), is then subtracted to the initial data, D: DI = D - C I . This is the 

first. step of deglitching. 

2. 	 detection of the negative components due to deepers: the multi-scale vision model 

is applied t.o D I , hence negative objects are detected and the reconstructed signal, 

C2 (to .. t n ), is then subtracted t.o the output of the previous step: D2 = Dl - C2 . This 

is the second step of deglitching where troughs following glitches are corrected. 

3. detection 	of t.he posit.ive components due to faders and deepers: this step must be 

done carefully, since sources also produce positive components in the signal, but only 

positive object lasting much more or much less than the time spent on a given position 

of t.he mosaic on the sky, i.e. the duration of a real source, are automatically considered 
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as glitches. The output signal, C3 (t O••tn ), is then subtracted again to the previous 

signal: D3 =D2 - C3 . 

4. 	detection of very strong positive signal at scales where sources are expected. This 

step is done in preparation of the baseline subtraction (the final source detection is 

not done at this stage). The multiscale vision model is applied to D3 and strong 

positive objects with a correct temporal size are reconstructed: we get C4 (t O••t ), andn 

we calculate D4 =D3 - C4. 

5. 	subtraction of the baseline: the signal D4 contains only noise and temporally un­

detectable faint sources. The baseline is easily obtained by convolving D4 by a low 

frequency pass band filter. We get CS(to ..tn ). 

6. The residual noise is obtained by C6 = D4 - Cs, its mean value is zero. 

Finally, the set (C1 , C2 , C3 , C4 , Cs, C6 ), represents the decomposition of the signal 

into its principal components. Note also that the input signal D is equal to the sum of 

all components: 

6 

D=L::Ci 	 (3) 
i=l 

A complete deglitching (all types of glitches) is obtained by: 

(4) 

For the faint source detection, we use the signal Db = C4 + C6, which is background, 

dark, and glitch free. The background has been subtracted, and glitches with their long 

duration effects have been suppressed. Applying the pattern recognition method to all 

detector pixels, we obtain a cube Db(X, y, t). All other component are kept in the cubes 

Ci . The baseline suppression presents several advantages: firstly, the final raster map will 

be dark-corrected without the need of a library dark, since we end up with a mean zero 

level for each pixel. This is particularly important when the library dark is not good 

enough, and visual artifacts often remain (see Siebenmorgen et al. 1996). Secondly, the 

calibration is less affected by the flat-field accuracy, which only affects the photometry 

of the sources but not the background level, which is extracted in the baseline. 

3.4. Example 

Figure 4 (bottom) presents the result after applying such a treatment. The decomposition 

of the original signal (figure 4 top) into its principal components is shown on Figure 5: (a), 

(b), and (d) are features subtracted from the original signal (a: short glitches, b: trough 

of a deeper, d: baseline), which present no direct interest for faint source detection, and 

only (c) and (e) (c: bright sources and e: noise plus faint sources) are kept for building the 

final image. The noise must also be kept because faint sources could be undetectable in a 
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single temporal signal, but detectable after co-addition of the data. The simple sum of the 

fives components is exactly equal to the original data (see figure 4 top). The calibrated 

background free data (see figure 4 bottom) are then obtained by addition of (c) and (e). 

:3.5. Down ward tmnsient correction 

Three kinds of transients must be distinguished: 

1. 	 a long term transient at the beginning of the observation. It can be either a downward 

or an upward transient due to the fact that the detector was illuminated by another 

flux before the observation began" which can be lower or higher than the present flux. 

If the difference between the present background level (which dominates the signal in 

observations looking after faint sources) and the previous background level is high, 

then the transient effect can affect several hundred of frames. Long term transients 

have no effect for source detection when using the multi-resolution approach, because 

they are eliminated with the baseline. 

2. 	 an upward transient each time a pixel points in the direction of a sources. There 

is presently no physical model which describes the ISOCAM upward transient. This 

kind of transient affects mainly the photometry. Objects with a flux at the theoretical 

detection limit will not be detected because the signal measured is only a fraction 

(typically 60 %) of the signal after stabilization (too long to be waited for). 

3. 	 a downward transient after each source, which can produce ghosts when following 

bright sources, since the downward transient may remain above the noise even after 

the change of position in the mosaic. 

For an automatic source detection, the last kind of transient must be corrected for. 

Physical models do exist for downward transients and several methods may be used (see 

Siebenmorgen et at. 1996, Abergel et al. 1996 for a description of these methods). In our 

case, a very trivial approach can also be used, which consists in treating the reconstructed 

temporal objects. Indeed, we can assume that the part of the object which appears after 

the displacement in the mosaic is the transient, and it can be eliminated by a simple 

thresholding. 

Figure 6 shows the result after such a treatment: (top) a signal containing a source. 

The downward transient is relatively strong in this case, and three successive positions 

on t.he mosaic are affected by the transient, inducing ghosts in the final image if they are 

not removed. The signal after deglitching and baseline subtraction is plotted in figure 6 

(middle), and the result after the downward transient correction is shown in figure 6 

(bot.tom). The shape of the source is due to the upward transient correction which will 

correct using the technique developed by Abergel et ai. (1996). 
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3.6. Conclusion 

This solution produces good results but requires a long computation time. A similar but 

faster method, producing as good results too and avoiding the delicate problem of the 

negative wings of wavelet functions, is to use the Multi-Resolution Median Transform 

(MMT) (see Starck et al. 1996, for a description of the algorithm) instead of the wavelet 

transform. No confusion between positive and negative objects is possible because this 

multi-resolution transform does not present the ringing drawback. Furthermore, the ob­

ject reconstruction is straightforward, because no iteration is needed to get a good quality 

reconstruction. Once the calibration is done, the raster map can be normally created, 

with flat field correction, and all data co-added. The associated rms map can now be 

used for the detection, which was impossible before due to the strong effect of residual 

glitches. Since the background was removed, a simple source detection can be done just 

by comparing the flux in the raster map to the rms map. 

4. Object Detection 

Once all data have been calibrated, the final raster map R(x, y) and its associated rms 

map Rcr(x, y) can be created. If several rasters of the same field are available, they can be 

co-added in order to improve the signal to noise ratio. The noise in R(x, y) (i.e. Rcr(x, y)) 

is non homogeneously distributed over the map, firstly because some pixels have been 

masked (short glitches) and secondly because some areas of the field (particularly the 

border of the mosaic) present less redundancy (less readouts per sky position). Assuming 

the simple hypothesis of a Gaussian and uniform noise would lead to a large amount of 

false detections on the border. The only solution is to use the Rcr(x, y) map. In order to 

detect faint sources on the final image, the multi-scale vision model (Bijaoui & Rue 1995) 

described in section 3.2 can again be used (but spatially this time), but the correct noise 

model must be considered. For each wavelet coefficient Wj(x, y) of R, the exact standard 

deviation o'j(x, y) have to be calculated from the root mean square map Rcr(x, y). 

A wavelet coefficient Wj(x, y) is obtained by the correlation product between the 

image R and a function gj: 

Wj(X, y) =L L R(x, y)gj(x + k, y + I) (5) 
k 

then we have: 

o}(X,y) = LLR;(x,y)gj(x+k,y+l) (6) 
k l 

In the case of the a trous algorithm, the coefficients gj (x, y) are not known exactly, but 

they can easily be computed by taking the wavelet transform of a Dirac wo. The map o} 
is calculated by correlating the square of the wavelet scale j of WO by R;(x, y). 
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A wavelet coefficient is significant if: 

(7) 

NO' is a parameter fixing the level of confidence (generally taken equal to 3). Once this step 

is performed, the objects selection and their reconstructions can be done as described in 

Bijaoui & Rue (1995). One can therefore produce a map containing only the reconstructed 

objects, i.e. t.he sources (galaxies, stars) that we were looking for. This fits image ca:n be 

used for comparison to other wavelengths. 

Finally, the outputs of PRETI are numerous and contain all information at all scales 

divided int.o several cubes of data and fits images, but the most commonly used outputs 

are the following: 

1. the final fits image and its rms image associated. 

2. the fits image of the reconstructed objects 

3. 	 the list of objects with their position, flux and flux error (assuming no transient error)) 

the sigma level of the detection and the scale at which the object was detected (size 

of the object). 

The confidence level associated to the faint sources detected with PRETI cannot be 

directly understood as an usual signal-to-noise ratio typical of a Gaussian noise. Indeed, 

due to the presence of remnant glitches, the detection level is not fixed by the overall rms 

but by the level at which false detections begin to appear. One way to check the robustness 

of the source detection consists in keeping only sources much above the detection limit, 

in order t.o avoid introducing false detections and when overlaid on optical images one 

can clearly check that the list of sources that he selected corresponds to real objects on 

t.he sky. However, if one wants to get the faintest objects possible and still be sure to 

avoid introducing false detections, the only solution is to introduce fake sources in real 

ISOCAM data and analyses a set of simulated data for different flux levels and sources 

densities. Such simulations were performed to allow the determination of number counts 

plot.s. They are described hereafter. 

5. Sinlulatiolls 

The behavior of the noise in ISOCAM data is not Gaussian because of the presence of 

glitches which modify the response of the detectors over several tens of readouts and adds 

to the standard Gaussian noise produced by the readout noise and the photon noise. In 

order to check t.he robustness of the source detection, we preferred to use real ISOCAM 

dat.a for the simulation of a mosaic with given fake sources instead of trying to build a set 

of simulat.ed data from scrat.ch with the uncertainty linked to the lack of understanding 

http:scrat.ch
http:simulat.ed
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of the effect of glitches on the detectors. The main objectives of these simulations are 

summarized below: 

1. 	 the sensitivity limit: the flux of the faintest detected source. Sources detected down 

to this flux level cannot be used for number counts, since only a fraction of these 

sources will be detected. 

2. 	 the photometric accuracy: detectors generally do not stabilize when pointing towards 

faint sources because it would be too much time consuming. Hence the uncertainty 

on the photometry depends on the quality of the algorithm for transient correction 

(Abergel et el. 1996, a new version of this code is being tested at the present time, 

which appear to give impressive results and may reduce the photometric uncertainty 

down to a few percent even for faint sources). This uncertainty can be quantified 

using simulations including sources with a well-known flux and a simulated transient 

behavior. 

3. 	 the completeness limit: the faintest flux for which all sources are detected. Monte­

Carlo simulations will be useful to give constraints on the number counts at a given 

flux level below the completeness limit by quantifying the fraction of galaxies that 

may have been missed down to this flux. 

4. 	 the rate of false detections: the number of false detections due to glitches wrongly 

interpreted as sources. 

5.1. Simulation of fake sources 

An ideal source is a step function, i.e. the signal of a pixel increases when observing 

the source and after decreases down to the background level. The presence of transients 

modifies this behavior. We used the Abergel et al. (1996) transient model to simulate the 

sources as seen by ISOCAM. To take into account the PSF effect, i.e. the distribution 

of the flux of a point source among the nearby pixels, we adopted the Okumura (1997) 

model. In this way we are able to simulate a source once its position on the detector is 

known. An observation is therefore composed by a set of sources which positions follow 

a uniform probability density function. 

To study the completeness limit and the photometric accuracy, one can generate a list 

of sources all of which have the same flux. Several lists have to be generated in order to 

avoid that peculiar source positions (e.g. a pixel affected by a lot of glitches) could affect 

the result. Fake observation data are then created for several flux levels. This method 

was applied in the study of the ISOCAM image of the Hubble Deep Field (Aussel et al.. 

1998) but no direct check of the rate of false detections was possible at that time (we 

used the real dataset with real sources in it), while we will present below as an example 

a study on a dataset empty of real sources: a staring observation was performed over 
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a long time and then analyzed as if it was a mosaic, hence real sources could easily be 

ext.racted when subtracting the baseline of the signal in each pixel, since a real source 

would last all along the staring observation. 

To test if from an observation we can recover the number counts (log N - log S 

or dN/ dS) expected for the population observed in the field, we can analyze simulated 

observat.ions which contain random lists of fake sources whose fluxes follow the theoretical 

log N -log S. We will apply this method to the case of the Hubble Deep Field (see below). 

5.2. Noise and cosmic rays simulation 

Inst.rumental noise and cosmic ray effects have to be added to each pixel signal. Due to 

our ignorance about the effects on the detector of cosmic rays, we are compelled to use 

real ISOCAM data. A first possibility is to add fake sources to the real observation: this 

allows t.o test and calibrate the photometry and verify the completeness at a given flux 

by comparing the number of new detections with the number of fake sources introduced. 

However I this technique does not allow to measure the false detection rate and to test the 

possibility to recover a log N - log S if this relation is sensitive to the confusion. This is 

possible only if we use an observation without sources in it, where the only sources are the 

fake sources intentionally added to the dataset. An observation of this kind is obtained 

by using the data of a unique very long pointed observation ("staring" observation) and 

cutting it to create a fake "raster" observation (i.e. a mosaic observation). In this way, 

if a pixel sees a source, its flux will be a bit higher than the background along all the 

observation, which has no effect on the source detection algorithm since the low frequency 

signal is subtracted. 

The "st.aring" observation has to be at least as long as the mosaic to simulate. More­

over, the rate of cosmic rays has to be compatible with that of the observation and the 

int,egrat.ion time has to be the same, since the behavior of the detectors depends on this 

t.ime. Finally, t.he high frequency photon noise of the two observations has to be com­

patible. Such long staring observations have been performed just before the end of the 

mission using the calibration t.ime, in the two main ISOCAM filters (LW2 and LW3) 

which we used as base of simulation. 

5.3. Specificity of a simulation 

Ideally, if one wants to reach the very limit of the instrument, a new set of simulations 

should be produced and analyzed per observation, since the results depend on the pa­

ramet.ers of the observations as well as on the background level and glitch rate. However, 

t.ypical cases can be analyzed and used as templat.es for other observations. We have 

performed detailed simulations (one hundred simulations per observation) for two tem­

http:templat.es
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Table 1. Comparison of the noise level and rate of cosmic rays between the ISO-HDF observation 

and a staring observation used for building a simulation of the same ISO-HDF mosaic in the 

LW3 band (12-18 p.m). 

Observation ISO-HDF Simulation 

Noise level (ADD /G/s) 0.229 0.232 

Masked pixels 19.4 % 19.1 % 

Corrected pixels: 19.3 % 18.9 % 

Faders 5.2 % 5.5 % 

Dippers 14.1 % 13.4 % 

plate cases: the "ISO-HDF", on one hand (see below), which corresponds to what we call 

ultra-deep observations with a very large redundancy, and the "Deep Survey", on the 

other hand (in a forthcoming paper, see also Elbaz et al. 1998), for shallower observation 

with less redundancy and spatial resolution. 

6. The case of the Hubble Deep Field 

This work completes a previous paper on the ISO-HDF (Aussel et al. 1998) by new 

simulations on an ideal dataset at 15 p.m (filter LW3, 12-18 p.m, see Figures 7,8,9). In 

order to check if the conditions were similar for both observations (the staring observation 

and the real mosaic on the HDF field), we performed a first analysis of the staring 

observation in order to get the percentage of readouts lost because of glitches of type 1 

(short glitches inducing a one readout peak that will be masked out), and types 2 and 

3 (faders and deepers). In the case of the ISO-HDF (see Table 1), the percentage of 

data corrected because of faders and deepers makes a total of about 20 %, close to the 

fraction of pixels masked because of glitches of type 1. In the case of Deep Survey-like 

observations, for comparison, the redundancy per sky position being much lower (about 

3-6, instead of 64), one cannot set such strong criteria for the correction of glitches with 

memory effects and the typical fraction of corrected pixels is of the order of 5 % (the 

fraction of masked pixels, however remains identical). Finally, we also checked that the 

mean Gaussian plus readout noise, making the Gaussian part of the noise is comparable 

in both observations, which is indeed the case when considering the same integration 

time as shown in Table 1. 

In order to quantify the effect of incompleteness plus photometric uncertainty on the 

number counts, we built several ISO-HDF simulated images including fake sources which 

flux distribution followed the one described in Franceschini et al. (1997). We would like 

to stress here that this does not influence the output number counts as if we had put in 
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entrance what we were looking for in output, but on the contrary it allowed us to check if 

aft.er applying PRETI the slope of the number counts was close to the one we had used. 

The main uncertainty here comes from the accuracy reached in the photometry of the 

sources, which will redistribute the sources in each flux bin. 

We used a lower limit of Sf =O.lpJy, which is much lower than the sensitivity of our 

observations, and an upper limit Su = 1mJy, for the fluxes of the fake sources. We then 

simulated several fake mosaics with a distribution of fluxes following the distribution 

described above. Fluxes in Jy were converted into ISOCAM units (ADU/gain/second) 

following the standard conversion table from the ISO cookbook (ISO Team, 1994: 1 

ADU/g/s = 1.96 mJy with LW3). 

We projected each source on the detector for each pointing of the camera by tak­

ing into account the field distortion and the point spread function (using the model of 

Okumura 1997). This allowed us to build a cube of images, i.e. an image of 32x32 pixels 

for each pointing of the satellite, that we multiplied by the flat-field computed from the 

original data without fake sources. Finally, we added to this cube the mean background 

level of the staring in order to model the transient behavior of the sources, which depends 

on t.he t.otal flux level of each detector, using the model of Abergel et al. (1996). Finally, 

we subtracted again the mean background level to this cube of fake sources in order to 

add it t.o the real dataset of the staring observation, which contains the real background 

with noise and cosmic rays. 

Figure 7 shows the fraction of false detections as a function of the flux limit using 

a detection threshold of 7Tw and 5Tw , where Tw is the noise level in the wavelet space 

(we preferred to use this term instead of No- in order to avoid confusion due to the 

complexity of the noise). For each simulation, we have built a main and a supplementary 

list of sources as mentioned in the paper and found that in both cases the rate of false 

detection down to the completeness limit is only 2 %. 

Hence in the main list of sources extracted from the ISO-HDF (21 sources), which 

was built using the 7Tw threshold, the completeness limit is 200 pJy while the sensitivity 

limit is 50 p,.Jy with a rate of false detection close to 2%. But in the supplementary list (a 

total of 46 sources including the previous list), which goes down to 5Tw , the completeness 

limit is 100 pJy with about the same rate of false detection of 2 %, which we could not 

measure previously. Hence, we can now merge these two source lists into one single list 

of 46 sources which completeness limit is 100 pJy instead of twice more, which contains 

st.atistica.Ily one single false source (2% of 46 sources) with a confidence level of 95%. At 

fainter fluxes, t.he number of false detections increases very rapidly in the supplementary 

list. For a limit of 20 pJy it varies between 5 and 30% according to the simulations. On 

a list. of one hundred sources this means 10 false detections between 20 and 80 pJy. 
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7. Conclusion 

We have developed a tool for faint sources detection in ISOCAM data, which proved to 

be particularly well adapted for the detection of sources at the few tens pJy level in the 

presence of glitches with memory effects. We created simulated datasets in order to test 

the robustness of the technique and found a quantitative way to estimate the quality of 

source lists extracted from deep surveys, while the signal-to-noise ratio alone would be 

misleading. We applied this technique to a simulation of the ISO-HDF and found that 

the completeness limit at 15 pm is 100 pJy with 2 % of false detections due to remnant 

glitches. New results already obtained with PRETI will follow this paper in the near 

future. 
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Fig. 1. Those three plots show the detector response in Analog to Digital Units (ADU) as a 

function of time, expressed here in number of readouts. Three types of cosmic rays (or glitches) 

can be found here: (a) top: the most common glitches, lasting only one readout. (b) middle: a 

"fader", around readout 80. This glitch presents a slowly decreasing tail. It has been truncated 

above 40 ADUs, but its original intensity is 2700 ADUs. (c) bottom: a "deeper", around readout 

240. This glitch is followed by a trough lasting about 100 readouts. In these observations, the 

camera draws a mosaic on the sky, hence as long as an object, like a star or a galaxy, is in 

t.he line of sight. of a given pixel, the measured signal increases. One can clearly see a bump in 

the signal of the middle plot (b) around the readout. 180, which results from the presence of an 

ext.ended source seen on 2 adjacent positions of the mosaic (first position: from readout 180 to 

readout 220; second position: from readout 220 to readout 260) and then followed by a transient 

signal due to memory effect up to the readout 300. This bump is produced by a galaxy extended 

over 2 positions of t.he mosaic. A fainter galaxy is visible on the bott.om plot (c) around readout 

120, lasting only one mosaic position. 
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Fig. 2. Four pixel histories (top left pixel (4,12), top right pixel (12,12), bottom left pixel (20,12), 

and bottom right pixel (27,12)). The ADU is plotted versus the readout number. The dotted line 

indicate when the satellite moved (i.e. between two dotted lines, the observed flux is the same). 

The same source is seen by the four pixels respectively at position 2,3,4,5. It can be relatively 

easily detected in pixel (12,12) and (20,12), while it is more difficult to see it in pixels (4,12) 

and (27,12). 
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Fig. 3. The Multiscale Vision Model: contiguous significant wavelet coefficients form a structure, 

and following an interscale relation, a set of structures form an object. Two structures Sj, Sj+l 

at. t.wo successive scales belongs to the same object if the position pixel of the maximum wavelet 

coefficient value of Sj is included in 5;+1. 
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Fig. 4. These two plots show the signal of a single pixel as a function of time before calibration 


(top, flux in ADD) and after calibration (bottom, flux in ADD/gain/second). The trough follow­


ing the second glitch (deeper) has disappeared and the remaining signal contains only Gaussian 


noise (photon noise + readout noise) plus sources (one relatively bright source is located ~t 


readout 120, fainter sources will only appear after co-addition of all pixels having seen the same 


sky position on the final map). 
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Fig.5. Decomposition of the signal into its principal components: (a) short glitch, (b) trough 


of a deeper, (c) bright source) (d) baseline, (e) noise plus faint sources. The simple sum of the 


fives components is exactly equal to the original data (see figure 2). The calibrated background 


free data are obtained by addition of signals (c) and (e). Plot (c) shows the reconstruction of 


a source approximated as a Gaussian, but sources are kept in the signal and their shape differ 


from one source to the other 
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Fig. 6. Examples of transient correction. (top) signal containing a strong source. Dashed line 

shows the configuration limits. (middle) deglitched Signal without any baseline. (bottom) 

deglitched Signal without any baseline, and after transient correction. 
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Fig. 7. simulation of the ISO-HDF mosaic (I): (left) this image contains only simulated photon 

noise plus readout noise, i.e. gaussian noise, (right) image of the ISO-HDF mosaic without any 

noise and with a distribution of sources following the no evolution model of Franceschini et al. 

1997 (sources with a flux ranging from O.l/_lly to ImJy). 

Fig.8. simulation of the ISO-HDF mosaic (II): (left) sum of the two previous images, i.e. 

simulat.ed sources plus readout and photon noise, (right) image of the ISO-HDF mosaic simulated 

from a staring observat.ion, i.e. all sources of noise are present but no source at all (this image 

can be used to estimate the number of false detections due to glitches, since it does not contain 

any real source). 

http:simulat.ed
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Fig.9. ISO-HDF mosaic: (left) full simulated ISO-HDF image using the staring observation 

plus a distribution of fake sources following the no-evolution model of Franceschini et al. 1997, 

i.e. sum of fig.8(right) plus fig.7(right), (right) real image of the ISO-HDF. We find more sources 

in the real image than in the simulated image, indicating strong evolution. 
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Fig. 10. Fraction of false detections as function of the limit flux of the sample, for a detection 

. threshold of 7 Tw (lower) and 5 Tw (upper). 


