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ABSTRACT 

Gamma-ray imaging is widely used in many fields such as medical imaging, non-destructive 
control and astronomy. However the image quality is considerably affected by the Compton
scatter effect. In this paper, we propose an original new imaging principle using the scattered 
radiation, its modelling and simulation. 

In modelling the Compton diffusion [1] we have introduced the so-colled conical Radon trans
form (CRT), which is considered as a generalization of the classical Radon transform (integral 
transform defined on straight lines or plans). The invertibility of the CRT demonstrates the 
feasibility of reconstruction of an tri-dimensional (3D) object from a series of images indexed by 
the angle of scattering (or equivalently by the outgoing energy) [2]. 

In this work, we have simulated a medical phantom, its series of images indexed by energy 
(Fig. 2) and its reconstruction from this sequence of images. The latter used the a-dimensional 
Fourier transform and a Hankel transform for which the computation is far from being trivial. 
In our simulation the object under study (an organ) is a tri-dimensional cube with two nodules 
inside (hot and cold nodules) , the gamma source is the r.adiopharmaceutical 99mTc, the gamma 
camera is of type SPECT (Single Photon Emission c.omputer Tomography), the different angles 
of scattering () are between 0.40 and 1710 (0.40 < () < 1710). The result of simulation for the 
series of images parameterized by () is presented in Fig. 2. 

The quality of the reconstructed object shows the relevance of the CRT in modelling the 
scattered radiation and the efficience of the reconstruction algorithm. 

The new imaging principle leads .to a great improvement of the signal-to-noise (SNR) in 
the images and to the possibility to perform the 3D-reconstruction without having to move the 
detector around the object. 
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1 Nomenclature 

fey) : object activity density function. 
g(D, e) or g(D, t) : image density function. 
ne : electron density in medium. 
p(D, tlV) : Point Spread Function. 
t : tane. 
yes) : Heaviside unit step function. 
e : Compton scattering angle" 
V: : a source point. 
M: : Compton collision site. 

2 Imagerie principle 

Let V denote an object voxel of coordinates (Ev, 7]v, (v) and fey) be the object activity density 
function, defined as fey) f(Ev,7]v,(v). This is also the number of photons emitted per unit 
time and per unit object (or source) volume, uniformly distributed in space at site V. Thus, we 
have the number of photons receved at M equals to : 

1 
(1)411" MV2 f(V)dV. 

If there is a Compton collision at site M with the electron density in medium ne , the number 
of photons reaching a unit detector surface at D per unit time is the flux density recorded by 
the detector at site D: 

f(V)dV r; 1 
(2)411" MV2 ne dM"2 pee) MD2' 

where re is the classical radius of the electron and pee) the so-called Klein-Nishina probability 
for deflection by an angle e. The absorption is neglected here. 

Consequently, the number of photons recorded per l!nit time and unit detector area at site 
D = (ED,7]D), g(D,e), is due to all emitting point ~ources V situated on a cone with opening 
angle e, axis parallel to O( and with apex the scattering site on the vertical line M D: 

g(D, £!) = Jdi;Md'lM dfJ: a(~D --' ~M)a('1D - '1M )ne 

Jr(V)dV 8(Cone) r: pee) (3)
411" MV2 2 ' 

where o(Cone) restricts the integration over V to the circular cone. If one use,s the local spherical 
coordinates centered at M in Fig. 1, we have dV = r 2dr sin o:dad¢ then 8(Cone) = ~8((} 0:). 

We can rewrite this transformation in a more suggestive form using t = tane, k(e) =K(t) 
and g(D, e) = g(D, t), as : 

g(D, t) = dV p(D, tlV) feY). (4)J 
where p(D, tlV)' stands for the kernel of the transformation, which will be called T from now 
on. 

Physically this kernel is also called the Point Spread Function (PSF), or image of a point 
source at site V. = (E, 7], (). The mathematical computation of the PSF kernel [4] leads to the 
following expression: 

2 Y(t«(-l)-p)
p(D, tlV) = Y(t)t K(t) 2( ( )2

P t - P 
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Figure 1. Coordinate system for the calculation of T 

2 1 
+Y(-t)t K(t) p2(lt l( + p)2' (5) 

valid in the whole range of t values. Y( ... ) is the Heaviside unit step function, and 

n r2 
k(O) -=-~P(O) sinO (6)

471" 2 

We have shown that the transformation T is invertible [3]. This is the foundation of the new 
tree demensional object reconstruction. . 

F(u,v,w) = JlL~w) Jdze2'''ZW[-:lzlv'u2 +v2
] e""lw 

r;o (I I . / 2 2){ () a G(u, v, t) Y( ) a G(u, v, -t)} (7)Jo t dtJ1 271" z tv u + v. Y z at K(t) + -z at K( -t) 

The tree-dimensional Fourier transform of f : F is expressed as a transform of the bidimen
sional Fourier transform of g : G, where J1(.) is the first order Bessel functipn and 

e2·l:1rlw e2~7rLw 

.J/(w) = - -L- + 2't7l"w (Explntegral(2't7l"Lw) Explntegral(2't7l"lw)] (8) 

Finally the object activity density f(V) may be recovered by inverse· 3D Fourier transform 
from (7). 

N umerica~ simulations 

Our problem is to carry out the computation of (7), which is continuous and defined on an infinite 
support. Ahvays this same problem appears and specially three times iJ?- the computation of (7) . 

. - ------ ------------
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The image pixels from our computation show the value of gamma rayon their middle. A 
real camera gives the average of gamma-rays on its pixels. So the particular discrete nature of 
our virtual camera leads to strong discontinuities in the calculation of It G~(~,t . To limit this 
effect, 16 points are used in the computation of one pixel. But the problem does not appear 
only in space dOluain. To determine an image for a given value of gamma-ray energy, we use in 
fact four different values of energy. 

The second difficulty comes from the Hankel transform (with the bessel function as the 
kernel). There is no universal way for this calculation. We choose the fast Hankel tranform 
(FHT) method of A.E. Siegman [6]. This algorithm has many attractive advantages: the 
precision and quickness of calculation and its simplicity of carrying out. Unfortunately data 
have to be sampled with an exponential step, witch is inconsistant with the energy scale of the 
detector. To satisfy this two conditions, we need to interpolate data of camera to perform the 
FHT. The result shows also an exponential step and a second interpolation is required to go 
ahead the computation. Those stages occurs for each sampled values of u and v in (7), that 
means we need a great number of images from our virtual detector at various energy (about 32 
times more than a real one). 

The computation ends up with a Fourier transform (on z) and a filtering (':J/(w))' In certain 

cases the filter could bring some aberrant value because of the finite dimension of data. A simple 
and efficient solution is to periodize data. 

Each of the three stage before has its own numerical requirement mutually exclusive with 
the other. The essential is to found for each variables in (7) the sampling method to obtain the 
result having physical meaning. 

Results 

As an illustration of simulating and reconstruction of 3D objects from scattered gamma-rays, we 
present the numerical computations of equation (7) with an inhomogeneous cubes as example. 
The working conditions are the following: 

• 	The gamma detector is a SPECT-camera. It is a discretized square of dimensions N x N 
length units with N = 128. 

• 	 The pixel size is 1 mm2 
. 

• 	 The scattering medium is represented by a cube of dimensions N" x N x N. To avoid 
boundary effects as much as possible, eluission sites with non zero activity density are 
assumed to be localized inside a" cube of size 64 x 64 x 64 of same center as the larger cube 
with size N = 128. 

• 	 The electron density in biological medium is ne = 3.510 x 1023 electro~s/cm3. 

• 	 The radio pharmaceutical employ~d is Technecium 99 with an activity density 2.210 x 10-2 

Ci/cm3. 

• 	The acquisition time per image is about 0.1 sec. 

• 	The 3D original object (cubes with 8 pixels per side) is placed at the center of the "cubical 
scattering medium. In Fig. 2 is represented the original object: an inhomogeneous cube 
with two "hot" nodules and one "cold" nodule. 

• 	 The distance from camera to the upper face of the scattering medium cube is l = 80 units. 



• A series of images corresponding to the object at various scattering angles f) (0.40 < f) < 
1710

) have been simulated as example. They are presented in figures 2 the object. 
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Figure 2. The original object (a cube with two nodules inside) is presented (plane by plane) in the first two lines, the 
series of images labelled by 8 (0.4° < 8 < 1710 ) is on three next lines and the reconstructed objet on the last two lines. 

The reconstructed object is in Fig. 2. In the absence of noise, one can observe a good agree
ment with the original object, in particular the small structures (nodules) are well recovered. 
The root mean square error (RMSE) is for the reconstructed inhomog~neous object equal to 
13%. Thus we observe a good performance of the Compound Conical Radon Transformation 
for modelling the new imaging process based on scattered radiation. 

Since our main objective is to show how to exploit advantageously Compton scattered radi
ation to generate a new imaging principle we present only results on image formation as well as 
object reconstruction from scattered rays. 

In real situations, of course, one must take into account other factors such as absorption 
by the medium, Poisson emission noise and the imperfections of the detector (collimator and 
measuring ~lectronics). 
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Concerning emission noise there are well known methods to deal with it such as the method 
of Maximum Likelihood or the methods of wavelets. They may be used for "denoising" the 
measured data beforehand or jointly with the inversion process. 

As for the imperfections of the detector, the standard way for treating this problem is to 
make use of a response function of the Gaussian type operating with spatial coordinates as well 
as with energy coordinate. These issues are discussed in detail in reference [5]. 

Conclusion 

In this work the feasibility of 3D object reconstruction using Compton-scattered rays in gamma 
emission imaging is derived from a new linear integral transform directly from a Compton
scattering analysis of the image formation [3J. The proposed new imaging principle takes ad
vantage of properties of scattered rays instead of rejecting them as usually done in most actual 
scatter correction methods. It improves the signal-to-noise ratio, and consequently the contrast. 
Moreover on one hand, in this procedure the angle of scattering appears as a free parameter 
and serves to label the collected data, on the other hand the multi-views of the object are ob
tained without the need of moving the detector. This possibility is particularly interesting in 
applications where the number of measurements is very limited, e.g. in non-destructive eval
uation. Several perspectives of the proposed approach are possible: for example extension to 
transmission imaging and to prospective higher order Compton scattering imaging processes. 
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