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Abstract. PACS. PACS-key discribing text of that key - PACS-key discribing text of that key 

1 Introduction from primary beam and fission products with the gas-filled 
recoil separator RITU [4]. They were implanted into the 

Knowledge of the structure of very heavy elements is es­ DSSD's (2x60x40 strips) of the GREAT detector system 
sential for the testing and development of mean field theo­ [5J which has a MWPC placed upstream allowing discrimi­
ries describing the properties of the heaviest nuclei. Impor­ nation between recoils and decay products. Selecting those 
tant input comes from the study of transfermium nuclei, gamma-rays detected at the target position in coincidence 
the heaviest systems for which high-spin data is experi­ with an implanted recoil led to effective suppression of 
mentally accessible. An important isotope in this region the fission background. The detector signals were handled 
is 254No, the ground-state band of which has been studied by the new TDR (Total Data Readout) data-acquisition 
previously [1]. system [6]. This is a triggerless system, providing a time­

Recent developments in spectrometer and data acqui­ ordered stream of data timestamped with a precision of 
sition techniques at the Accelerator Laboratory of the Uni­ 10 ns. Event-building is done in software and for both on­
versity of Jyviiskyla (JYFL) have made the study of these line and offline analysis the software-package Grain [7] was 
transfermium nuclei possible. A new in-beam gamma-ray used. 
spectroscopic study of 254No has been performed in an 
attempt to improve upon previously obtained results. 

3 Results and discussion 

2 Experimental details 
A recoil-gated gamma-ray spectrum is shown in Fig. 1. 


The fusion-evaporation reaction 208Pb(48Ca,2n)254No was The absence of competing evaporation channels together 

with the selective recoil-tagging technique allowed the i­
employed. Prompt gamma-rays were detected at the tar­
rays of interest to be unambiguously assigned to 254No.get position with the JUROGAM Ge-array consisting of 

43 Compton-suppressed HPGe-detectors. The members of the ground-state rotational band are 
To select the gamma-rays of interest from the high clearly visible and marked with spin assignments. Study­

fission background the recoil-tagging technique was em­ ing ii-coincidences and assuming E2-multipolarity, the 
ployed [2,3]. Fusion-evaporation residues were separated band previously established [1] could be confirmed up to 

spin 20 and extended up to spin 22. Energies of the ground­
a Conference presenter state band transitions are listed in Table 1. The lowest two 

b Present address:lnstitute of Physical Research, University transitions were not observed, which was attributed to 


of Paisley, UK strong internal conversion, but can be extrapolated from 

C Present address: VITO, IMS, Mol, Belgium a Harris fit to the band. The energy of the 4+ to 2+ tran­
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Fig. 3. Yrast plot of ground-state band with suggested posi­
tioning of high energy lines. The assumed feeding pattern of 
the high-lying low-spin state is shown in dashed lines. 

ture can be seen at higher energy (see Fig. 1 and inset 
therein) where two relatively intense peaks are observed 
at 842(1) keY and 943(1) keY. The energy difference of 
these prominent high energy lines matches the 4+ to 2+ 
ground-state band transition energy of 101(1) keY. We 
therefore tentatively place a high-lying low-spin state as 
in Fig. 3, decaying into the ground-state band via the two 
high energy transitions mentioned above. This assump­
tion is supported by the absence of clear coincidences with 
ground-state band transitions. The feeding of this level is 
assumed to go via highly converted transitions. 

Similar high-lying low-spin states can be found in neigh­
bouring nuclei. In particular, a level at similar excitation 
energy (906 keY) is found in the isotone 250Cf [9] where 
it is a 3- state and a member of a K = 2 octupole vibra­
tional band. The absence of evidence in the 254No spec­
trum of other states belonging to the octupole vibrational 
band can however not be explained at present. In par­
ticular the 2- -+ 2+ transition is expected to be intense 
but can not be distinguished in the spectra of 254No. The 
interpretation of the possible high-lying low-spin state in 
254No therefore remains an open question. 

With the setup used, previous results have been con­
firmed and some new transitions added. To significantly 
improve the knowledge of 254No, a combination of in­
beam conversion electron and gamma-ray spectroscopy is 
required. 
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sitions. 

Transition Energy [keV] 
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2+ ---t 0+ 44(1) 
4+ 2+ 102(1)---t 

6+ ---t 4+ 159.5(2) 
S+ 6+ 214.1(1)---t 

10+ ---t S+ 267.3(1) 
12+ ---t 10+ 318.1(2) 

Transition Energy [keV] 

14+ ---t 12+ 366.6(2) 
16+ ---t 14+ 412.7(2) 
lS+ ---t 16+ 456.0(3) 
20+ ---t lS+ 498(1) 
22+ 20+ 536(1)---t 
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Fig. 1. Recoil-gated gamma-ray spectrum of 254No with the 
rotational ground-state band transitions labeled with spin as­
signments. The inset shows an enlarged part of the spectrum 
with the two prominent non-yrast high energy lines. 

Table 1. Energies and intensities of ground-state band tran­

Rotational frequency [MeV IhbarJ 

Fig. 2. Dynamical moment of inertia of the transfermium nu­
clei 254No (diamonds),250Fm (triangles), 252No (squares) and 
251 Md (circles). 

sition (101(1) keY) was recently confirmed in a conversion 
electron spectroscopy measurement [SJ. 

The dynamical moment of inertia for the ground-state 
band is plotted in Fig. 2 and compared with neighbouring 
nuclei. In contrast to 252No, the :1(2) behaviour of 254No 
is very smooth and no upbend is observed. 

Between the main peaks non-yrast transitions are visi­
ble but the lack of statistics prevented placement into the 
level scheme. More prominent signs of non-yrast struc­




