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ABSTRACT 

The design and successful fielding of sensors and detectors vital for homeland security can benefit greatly by the 
use of advanced signal and image processing techniques. The intent is to extract as much reliable information 
as possible despite noisy and hostile environments where the signals and images are gathered. In addition, the 
ability to perform fast arialysis and response necessitate significant compression of the raw data so that they may 
be efficiently transmitted, remotely accumulated from different sources, and processed; Proper decompositions 
into compact representations allow fast pattern detection and pattern matching in real time, in situ or otherwise. 
Wavelets for signals and curvelets for images or hyperspectral data promise to be of paramount utility in the 
implementation of these goals. Together with statistical modeling and iterative thresholding techniques, wavelets, 
curvelets and multiresolution analysis can alleviate the severity of the requirements which today's hardware 
designs can not meet in order to measure trace levels of toxins and hazardous substances. Photonic or electro­
optic sensor and detector designs of the future, for example, must take into account the end game strategies 
made available by advanced signal and image processing techniques. The promise is the successful operation at 
lower signal to noise ratios, with less data mass and with deeper statistical inferences made possible than with 
boxcar or running averaging techniques (low pass filtering) much too commonly used to deal with noisy data at 
present. SPREE diagrams (spectroscopic peak reconstruction error estimation) are introduced in this paper to 
facilitate the decision of which wavelet filter and which denoising scheme to use with a given noisy data set. 

Keywords: wavelets, curvelets, multiresolution analysis, noise modeling, denoising, pattern detection, undeci­
mated iterative wavelet transforms, SPREE diagrams 

1. INTRODUCTION 

For the better part of the past fifteen years, multi resolution analysis, which is the simultaneous study of signals on 
successively finer scales and on a sequence of time intervals, found one of its most fruitful realizations in discrete 
wavelet transforms. Following the pioneering work of Mallat, Meyer, Daubeschies, Coifman, Wickerhauser, ~ 

Vetterli, Donoho and many others,I-8 a veritable explosion of publications and applications came to the fore 
extending all the way from the currently used JPEG 2000 standard in image coding and compression, to the 
next generation video compression standard, MPEG-4, to the FBI's finger print file storage and compression,' 
to biomedical signal and image processing, all the way to the efficient mathematical characterization of fractals, 
fractional Brownian motion, and Fourier integral operators and their microlocal asymptotics. An early popular 
exposition with references to the early history of the field can be found in the IEEE Signal Processing Magazine.9 

An interesting and peculiar feature of this field is that rigorous mathematics adopted from the fields of nonlinear 
approximation theory and harmonic analysis has flourished, drawn inspiration from and suggested improvements 
in very applied fields such as signal or image processing and digital filter design. In fact, it is possible to imagine 
and invent new filters, new functions, new algorithms and new phase space tiling techniques1o-16 starting from 
very many seemingly different directions and ending up with remarkably similar results. Neither a physicist's 
intuitive methods, nor a mathematician's rigorous approach, nor a practical engineer's tool bag alone seem to give 
anyone the edge. In fact, mt:.ch has been repeatedly reinvented even in this relatively short span of time where 
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the concepts of wavelets, vaguelettes, Coifiets, Duablets, ridgelets, edgelets, bandlets, contouriets, beamlets, 
wedgelets, chirplets, curvelets and all the rest were proposed, justified, spun, used and respun in very many 
directions such as statistical estimation,11-20 denoising,21-23 pattern detection24-27 and data compression,28-3o 
to name a few. 

Some biases do seem to persist, however, among the various constituents of this field which are mutually 
incompatible. For instance, it is maintained, usually by those who pursue asymptotic results in the large number 
of wavelet coefficients kept limit, that one wavelet family is as good as another. Or, it is held that orthogonal 
decompositions can do as good a job as anything else so why bother with undecimated (translationaly invariant) 
or overcomplete, redundant representations. It is not difficult to show that these are not correct views. One 
size does not fit all, and ,various requirements depending on the goals of the particular exercise (denoising, 
data compression, pattern detection, etc.) are often mutually incompatible and thus best served by different 
filters and different procedures or algorithms, altogether. A counter position to this has been to advocate that 
ever expanding libraries of filters and functions should be amassed with which to obtain multiple redundant 
decompositions and, adopting a criterion such as best basis or matching pursuit or basis pursuit or minimum 
entropy or total variation diminishing,S,7 to isolate and choose the optimum (hopefully small) set of coefficients 
from within the elements of this library of libraries in order to adapt ideally to a given signal. This may well be 
prone to inefficiencies in implementation or stalled convergence or be unstable and ha,:,e unpredictable behavior. 
The truth may lie somewhere in between these two extreme positions and require 'splid statistical theoretical 
backing31-37 before it filters down and becomes convincing to the enthusiastic yet unsuspecting users of the 
bewildering variety of tools and methods that are in circulation today. 

The events since 9-11 have caused a sea change in the efforts and concentration that are being devoted to 
the detection, interception and neutralization of harmful substances in public settings. Whether it is the needs 
of the military in hot zones or large crowds of civilians potentially targeted by terrorists, the objective of quickly 
identifying chemical, biological or radiological compounds in trace amounts has become of vital importance.38-42 
The needle in a haystack quality of these tasks encourages the pursuit of technologies that can enhance the 
signal to noise ratio of a given measurement, can detect patterns with high probability, of success with controlled 
incidences of false positive readings,36,37 can be a platform for efficient multiple sensor information fusion, and 
where automatic target recognition and rapid data transmission can be implemented. Sensors and detectors that 
have such advanced front end dedicated signal processing elements are necessary for the success of the massive 
endeavors being undertaken to protect ports, large urban congregation centers, sensitive public installations 
and the military. Especially useful in this regard are remote sensing techniques which rely on electromagnetic 
radiation (from gamma rays to radio waves). Coherent laser based techniques seem very promising in this arena 
as well.43-45 The need then is to denoise typical spectra that arise from measuremeqts such as the absorption 
spectra of air borne chemicals in the presence of much larger concentration levels of water vapor, nitrogen, 
methane and other common gases. Denoising spectra that arise from analytical chemistry or astrophysical data 
using wavelets has been tried in the past.46.47 The systematic study of denoising schemes involving iterative 
algorithms which preserve all large peaks, the seamless extension to GC (gas chromatography) and GCMS or 
LCMS (gas or liquid chromatography mass spectrometry) data48-sO and the incorporation of a set of statistical .. 
methods and mulitresolution tools deploying wavelets and curvelets51- S4 which can treat signals, images and 
hyperspectral data for specific sensor adapted performance optimization is an endeavor which we hope will bear 
fruit. 

In this paper we show the relative merits of denoising synthetic infrared spectroscopic data made up of 
Toluene, methyl ethyl key tone (MEK), isoprepylacetate (IPA), formaldehyde (H2CO) and water (H20), in the 
wavelength range 2910 nm to 3050nm, to which Gaussian noise with a mean of zero and standard deviations 
corresponding to signal to noise ratios of 9 and 6. We chose these u values because they correspond to the rule 
3u = N% x Apea.k, where Apeak 0.4 below and N 33 and 50. We compared four different wavelet filters 
(Haar, Daubechies 4,2.7,8 Antonini 7/9 biorthogonal28 and the translationally invariant or the undecimated, 
highly redundant version of same (see the article by Donoho and Coifman17 for details on cycle spinning and the 
it trous algorithm8,23 which is a fast implementation of the same idea). We also compared the effects of different 
noise estimates assuming that the signal and noise are separated at the 3u to the 50' level in wavelet coefficient 
space. When we added the Van Cittert iteration scheme,S in order to preserve the energy in the largest features, 
we found very good fidelity in the reconstruction of the spectroscopic peak heights. 
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We will also show the relative merits of these same biorthogonal wavelet filters and iterative denoising schemes 
in 2D and compare their performance with that of curvelets with proper noise modeling (comparing 30- to 50-) 
including two cases where intentional incorrect assumptions are made concerning the type of noise. This image is 
not synthetic, however, and the noise is not Gaussian, nor of any other well known variety. It comes from x-ray 
imaging on film of laser driven cylindrical hydrodynamical mixing experiments conducted by Los Alamos. 55,56 

This particular image was chosen to compare denoising techniques since it has very many edges in various stages 
of deformation and merging embedded in noisy inner and outer disks. It is the determination of the actual sizes 
and shapes of these "petals" that is of vital interest in order to assess the hydrodynamic mixing processes. 

2. DENOISING SPECTROSCOPIC DATA 

We can demonstrate the reh=l.tive merits and pitfalls of various wavelet filters and hard thresholding as a means 
to denoise a signal by looking at theoretical or clean spectra of a number of hazardous chemicals to which 
significant levels (33% and 50%) of noise are added. This is shown in Fig. 1 where the clean and noisy signals are 
plotted as well as the denoising that is achieved using the undecimated wavelet transform using the Antonini 7/9 
biorthogonal filter with a 40- noise level estimator and a Van Cittert largest peak preserving iterative scheme.s 

This is necessary when using redundant transforms which would not conserve energy otherwise. Figure 2 shows 
the same with the decimated version of the previous figure as well as by the use of the orthogonal transforms 
Haar and Daub4. Clearly, the undecimated case is superior. This is explored further by showing 9 successive 
spectral band decompositions in Figures 3 and 4. These figures show blow ups of our best denoised vs clean 
signal plots for 33% and 50% Gaussian additive white noise. Almost all the peaks are very well reproduced with 
some small ones missed and mistaken for noise. To better gauge the performance of various filters and compare 
various options, we propose a new diagnostic for spectroscopic data called Spectroscopic Peak Reconstruction 
Error Evaluation (SPREE) diagrams, which are plotted in the next two figures. SPREE diagrams allow one to 
ascertain quickly to what extent peak heights in a spiky signal (IR, UV, X ray, GC, GCMS, etc.) are faithfully 
reproduced by some denoising scheme, how many false positives are generated and how many false negatives. 
It is a way to compare two l;lifferent reconstructions, or in the case of synthetic data, the original clean signal 
to reconstructions of its noisy versions. The advantage of SPREE is that it shows just how well peaks are 
being reproduced (by plotting the relative amplitude of the reconstruction of the original) without any regard 
to location in wavelength. lGstead the issue of reconstruction fidelity is mapped onto the question of proximity 
to the 45 degree line in a SPREE diagram. Also, false positives of a certain size are countable on the right edge 
of the plot while false negatives, again distinguished by the sizes of peaks missed, are displayed on the top of 
the plot. The former correspond to zeros in "the signal (plotted from 1 to 0) and the latter correspond to zeros 
in the reconstructed signal (also plotted from 1 to 0). The descending order in .the axes makes sure that the 
false detections and misses are not plotted on the x and y axes but on the opposite edges of the plots for clarity. 
Clearly, the analysis of SPREE diagrams can be automated and criteria imposed such as the adoption of the 
most successful candidate in a search through noise modeling algorithms (which have adjustable parameters) 
and different filter families. 

3. DENOISING IMAGES WITH PRONOUNCED CURVED EDGES 

The cylmix x ray image was denoised using decimated and un decimated versions of the 7/9 filter with iterative 
hard thresholding with two ways of estimating the noise level as being unspecified but stationary. These can 
be seen in the first two rows of Fig. 7. The next row contains curvelet analysis with the proper model for the 
noise while the last row shows results from intentional misguided assumptions for the noise to show just how 
sensitive the mechanism of denoising is to having a good noise model. This simply allows us to restate that 
the proper noise model and good filters can do very impressive denoising together as the third row in Fig. 7 
shows clearly. The iterative technique which preserves the large peaks in the image is necessary for all redundant 
representations, or else overall energy conservation will be lost. 

Our next step will be to incorporate stronger false positive detection rejection methods by incorporating 
37adaptive thresholding on various levels of the multiresolution analysis.34- These false detection rate (FDR) 

reduction techniques can further enhance the rather impressive performance of 7/9 Antonini undecimated iter­
ative multiresolution based qenoising we deployed in this paper on a noisy spectroscopic signal and an image of 



hydrodynamic mixing. We will also look at more systematic scans of synthetic as well as laboratory data and 
marry these tools with supervised machine learning algorithms such as neural networl{s.26,57
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Figure 1. The spectroscopic signal and the signal plus 33% and 50% white Gaussian noise are shown in the first row. 
The second row shows our best denoising results using undecimated wavelet transforms implemented with the a trous 
algorithm and a Van Cittert large peak preserving iterative scheme and 40" hard threshold. The third row shows denoising 
without the iterative scheme. 
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apparent. 
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Figure 4. The performance of the undecimated Antonini wavelet system with Van Cittert iterative denoising on the 
spectroscopic data plus 50% Gaussian white noise is shown in 9 successive wavelength partitions. The (rare) false 
positives, (numerous) false negatives and detected peak height (slight) under and over shoots are apparent. 
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Figure 5. The degree to which the spectroscopic peaks are reproduced by Haar, Daub4 or decimated Antonini biorthog- ~ 

onal 7/9 wavelet filters with a 40' noise threshold is captured by these SPREE diagrams. False positives are vertically 
against the right edge while false negatives are horizontal along the top edge of the figure. The first row shows denoising 
using 3 filters with 33% noise added to the signal. The second row shows SPREE plots for additive 50% noise data. 
Perfect reconstruction would have placed all the points along the 45° diagonal with no clustering of points along the top 
and right edges of the plot area. 
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Figure 6. The degree to which the spectroscopic peaks are reproduced by decimated and then undecimated biorthogonal ! 

filtering with or without Van Cittert iteration to preserve significant peak heights is shown in these SPREE diagrams 
for 33% and 50% Gaussian white additive noise cases. Our best results were achieved by the use of the iterative scheme 
and undecimated wavelets (last column) where there are very few false positives, and the adherence to the 45° fidelity 
diagonal is remarkable. The false negatives are largely at small values which are not a detriment to the usefulness of the 
most effective denoising technique proposed in this paper. 
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Figure 7. Denoising a cylindrical mix: x-ray image from LANL. Decimated (first row) and undecimated (second row) 
Antonini 7/9 biorthogonal wavelets as well as curvelets (third and fourth rows) are used. The noise is estimated starting 
at 30' and 50' respectively in the second and third columns of the first three rows and assumed to be of an unspecified 
stationary variety. In the last row MAD (median absolute deviation) and white Gaussian noise models (respectively) are 
used to show the effects of wrong noise model adoption with an otherwise good choice of filt'Cll'. The first column contains 
the raw noisy image (four times). The hard thresholding has been done with an iterative approach which attempts to 
preserve the energy in the image for the redundant transforms (in the second, third and fourth rows). Our goal here is 
to identify the extent to which the fingers or petals are distorted, merging and deforming in a series of time lapse images 
of which this is one. Curvelets aHow this assessment far better than all wavelet based denois!ng we have tried. But with 
a wrong noise model (row four), even hard thresholding with curvelets produces artifacts and distortions which are not 
desirable. 




