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Abstract 

The idea to morphologically decompose a signal into its building blocks is an im­
portant problem in signal and image processing. Successful separation of a signal 
content has a key role in the ability to effectively manipulate it. Various approaches 
have been proposed in recent years to tackle this problem. In this paper we describe 
a novel decomposition method - Morphological Component Analysis (MCA) - based 
on sparse representation of signals. This method relies on the assumption that for 
every signal atomic behavior to be separated, there exists a dictionary that enables 
its construction using a sparse representation. Also, it is assumed that the different 
dictionaries are highly inefficient in representing the other behaviors in the mixture. 
If such dictionaries are identified, the use of a Pursuit algorithm searching for the 
sparsest representation leads to the desired separation. 

Our discussion in this paper includes a theoretical justification for the separation 
success, several application results on image content, and discussion on efficient nu­
merical algorithms to facilitate the proposed algorithm. Also, this paper contains 
a broad overview of redundant multiscale transforms such as the un-decimated 
Wavelet Transform, the Ridgelet and the Curvelet transforms, and more. This 
wide survey supplies the. background material that leads to and support the MCA 
method, and provides an extensive list of possible dictionaries to be used within the 
MCA. 

Key words: Wavelet, Ridgelet, Curvelet, Sparse Representation, Over-Complete 
Dictionary, Basis Pursuit, matching Pursuit, Signal Separation, Atomic 
Decomposition. 
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1 Introduction 

1.1 Sparsity and Redundancy in Signal Representation 

Alternative representation of signals via transforms are appealing due to the 
simplicity and efficiency they induce in various applications. In the quest for 
a proper transform, the wavelet family of tools attracted a lot of research 
attention due to the natural way the multi-resolution aspect of the signals 
is taken into consideration, and the efficiency gained because of this. Various 
variants of the core wavelet method were proposed in recent years, all in the 
constant interest to find a better representation for the signals in mind. As an 
example, the Ridgelet and the Curvelet algorithms were developed as an an­
swer to the weakness of the separable Wavelet in representing lines and curves 
in 2D signals (images). This weakness is exhibited by the many coefficients 
required in representing what appears to be a simple atomic behavior in an 
image (Candes, 1998; Donoho and Duncan, 2000; Candes and Donoho, 1999a; 
Starck et al., 2002). 

In this evolution of transforms, sparsity of the representation was recognized 
as a promising guideline in seeking simplifying operation. This is especially 
true for over-complete redundant representations as commonly employed in 
many of the wavelet methods. The basic idea here is a construction of the sig­
nal as a linear combination of atoms from a dictionary, where the number of 
atoms in the dictionary is (much) bigger than the signal dimension, thus intro­
ducing redundancy. Due to this over-completeness, there are numerous ways 
to represent the signal, and among those, preference is made towards the one 
with the fewest non-zero entries (sparsest) as being the simplest. Clearly, while 
linear in the construction of the signal from its representation, this transform 
is non-linear in converting the signal to the representation coefficients. Two 
well-known algorithms to implement this non-linear forward transform are the 
Matching Pursuit (MP) (Mallat and Zhang, 1993) and the Basis Pursuit (BP) 
(Chen et al., 1998), both imposing sparsity. 

In this paper we record the above-described development-track of the wavelet 
transform and its redundant extensions designed for images. We also study the 
notion of sparsity and the algorithms that facilitate it. All this is presented 
as the background material to the main theme of this paper being signal 
decomposition. 
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1.2 The Morphological Component Analysis 

The ida to morphologically decompose a signal into its building blocks is an 
important problem in signal and image processing. Successful separation of a 
signal content has a key role in the ability to effectively analyze it, enhance it, 
compress it, synthesize it, and more. Various approaches have been proposed 
to tackle this problem. The vast literature on Blind-Source Separation (BSS) 
and Independent Component Analysis (ICA) is a convincing testimony both 
to the importance and the complexity of the signal separation problem - see 
(Hyvarinen et al., 2001; Haykin, 2001; Cichocki and Amari, 2002) for represen­
tative survey works. Interestingly, sparsity was also recognized as a possible 
feature to rely on in signal separation, and the relation between sparsity and 
independence has been vaguely understood (Kreutz-Delgado and Rao, 1999; 
Kisilevet al., 2001; Zibulevsky and Pearlmutter, 2001). 

In this paper we propose a general view to the signal separation arena from the 
sparsity point of view, and propose a methodology for the separation based 
on redundant transforms. We argue that if proper dictionaries are chosen 
for the various signal contents, separation can be driven by sparsity, leading 
to appealing results. The presented method relies on the assumption that 
for every signal atomic behavior to be separated, there exists a dictionary 
that enables its construction using a sparse representation. Furthermore, it is 
assumed that the different dictionaries are highly inefficient in representing 
the other behaviors. Assuming that such dictionaries are identified, the use of 
the Basis Pursuit (BP) or the Matching Pursuit (MP) algorithms lead to the 
desired separation. We demonstrate this on several applications and suggest 
a rigorous analysis to explain the reasons to its success. 

The numerical separation method proposed in this paper, coined M orpholog­
ical Component Analysis (MCA), could be regarded as a hybridization of the 
Basis Pursuit and the Matching Pursuit methods, and as such, as a general 
signal transform that is capable of creating representations containing as a 
by-produ<;t a decoupling of the signal content. 

1.3 Paper Organization 

In Sections 2 and 3 we give the background for this work, surveying the current 
state-of-the-art in the fields of Wavelets and its extensions to transforms on 
images (Ridgelets and Curvelets). All these are described as candidate dictio­
naries to be used later on by the MeA method. The remaining of this paper 
does not rely strongly on these two sections, and so they can be skipped by 
the readers interested in the separation topic alone. 
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Section 4 provides a discussion on the migration from linear to non-linear 
transforms, advocating sparsity based on the Basis Pursuit and Matching 
Pursuit algorithms. This section constructs the theoretical and practical foun­
dations for the MCA separation mechanism to be described next. 

In Section 5 we present the Morphological Component Analysis (MCA) method­
ology, starting from its intuitive backbone, through a theoretical justification, 
and finally applications employing this idea. We also discuss numerical con­
siderations which are vital for the success of this method in practice. 

2 background - Part I - Wavelet 

2.1 The Wavelet transform 

Multiscale methods have become very popular, esspecially with the develop­
ment of the wavelets in the last decade. Background texts on the wavelet 
transform include (Daubechies, 1992; Strang and Nguyen, 1996; Mallat, 1998; 
Starck et al., 1998; Cohen, 2003). The most used wavelet transform algorithm 
is certainly the decimated bi-orthogonal wavelet transform (OWT). Using the 
OWT, a signal 2 can be decomposed by 

J 

Sl = I: CJ,k4>J,l(k) + I: L'l/lj,l(k)Wi,k, (1) 
k k j=l 

jwith 4>i,I(X) = 2-i 4>(2- x - l) and 'ljJj,I(X) = 2-i 'ljJ(2-i x l), where 4> and 'ljJ 

are respectively the scaling and the wavelet functions. J is the number of 
resolutions used in the decomposition, Wi the wavelet (or details) coefficients 
at scale j, CJ is a coarse or smooth version of the original signal 2, and l stands 
for the sample number. Thus, the algorithm outputs J + 1 sub-band arrays. 
The indexing is such that, here, j = 1 corresponds to the finest scale (high 
frequencies). The coefficients Cj,k and Wj,k are obtained by means of the filters 
hand g, through 

Ci+l,l = I: hk- 2ICi,k (h *Ci hi 

k 


Wi+l,l = I: gk-2ICi,k = (9 *Ci hi. (2) 
k 

The notation (hi stands for the decimation (Le. only even pixels are kept), 
h(l) = h(-l), and hand 9 filters satisfy . 
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(3) 


The smooth coefficients Cj+l,l and the wavelet coefficients Wj+l,l are calculated 
by convolving Cj,l with the filters 1i and 9 respectively, and decimating the 
results. £0 corresponds to the input data (Le. £0 = ~). Handling boundaries is 
typically done by the mirror assumption Cj,k+N = Cj,N-k (N being the number 
of samples), but other methods can be used, such as periodicity (Cj,k+N = Cj,k), 

or continuity (Cj,k+N = Cj,N). 

The reconstruction of the signal is performed by 

Cj,l = L hk+2ICj+l,k + 9k+2IW j+l,k = h *Cj+l +9*Wj+l (4) 
k 

where Cj+l,l is equal to Cj+l,p is 1 2p (Le. l is even) a~d °otherwise (for 
example, Qj = (Cj,O, 0, Cj,!' 0, Cj,2, 0, Cj,3, 0,·· . )). The filters h and 9 must verify 
the conditions of de-aliasing and exact reconstruction, 

A 1 ~ 1 A 

h(v + 2)h(v) + [}(v + 2)9(v) = ° 
h(v)h + [}(V)9(V) 1. (5) 

We should note that the above description of the OWT construction, while 
quite brief, is far from trivial. The innocent reader should not expect to get 
the complete picture about the wavelet transform from it. Most of the above 
relations are difficult due to the bi-orthonormality imposed, implying that a 
structured and very simple method exists to invert the transform. The main 
features we would like to draw the reader's attention to are (i) the linearity 
of the transform; (ii) its simple computation via filtering and decimation; and 
(iii) its natural multi-scale nature. 

The two-dimensional algorithm is based on separate variables leading to pri­
oritizing of horizontal, vertical and diagonal directions. The detail signal is 
obtained from three wavelets: 

• vertical wavelet: 'ljJl(X, y) = </J(x)1/J(y), 
• horizontal wavelet: 'ljJ2(X, y) = 'ljJ(x)</J(y), 
• diagonal wavelet: 'ljJ3(X, y) = 'ljJ(x)'ljJ(y), 

which leads to three wavelet sub-images at each resolution level. The scaling 
function is defined by </J(x, y) = </J(x)</J(y), and the passage from one resolution 
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to the next is achieved by 

Cj+l,k,l = (fiji * Cj hk,21 

Wj+l,l,k,l = (gJi * Cj hk,2l 

Wj+l,2,k,l = (Jig * Cj hk,21 

Wj+l,3,k,1 = (gg * Cjhk,21, (6) 

where C * hg is the convolution of C by the separable filter hg (i.e convolution 
first along the columns per h and then convolution along the rows per g). The 
reconstruction is obtained by 

(7) 

in a similar way to the one-dimensional case, and with the proper generaliza­
tion to 2D. 

Figure 1 shows the image Einstein (top right), the schematic separation of 
the wavelet decomposition bands (top left), and the actual OWT coefficients 
(bottom left), using the 7-9 filters (Antonini et al., 1992). 

The application of the OWT to image compression, using the 7-9 filters (An­
tonini et al., 1992) leads to impressive results, compared to previous methods 
like JPEG. The recent inclusion of the wavelet transform in JPEG-2000, the 
new still-picture compression standard, testifies to this lasting and significant 
impact. Figure 1 bottom right shows the decompressed image for a compres­
sion ratio of 4, and as can be seen, the result is near-perfect. 

2.2 The Undecimated Wavelet Transform (UWT) 

While the bi-orthogonal wavelet transform led to a successful implementation 
in image compression, results were far from optimal for other applications such 
as filtering, deconvolution, detection, or more generally, analysis of data. This 
is mainly due to' the lose- of. the translation-invariance property in the OWT, 
leading to a large number of artifacts when an image is reconstructed after 
modification of its wavelet coefficients. 

For this reason, some physicians and astronomers have preferred to continue 
working with the continuous wavelet transform (Antoine and Murenzi, 1994; 
Arneodo et al., 1995), even if the price to pay were (i) a huge amount of redun­
dancy in the transformation (Le. there are much more pixels in the transformed 
data than in the input image) and (ii) there is no reconstruction operator (Le. 
an image cannot be reconstructed from its coefficients). For some applications 
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Fig. 1. The image Einstein (top right), its OWT wavelet decomposition (schematic 
- top left, and coefficients - bottom left). The bottom right image is the result of the 
compression-decompression JPEG-2000 algorithm, employing the 7-9 bi-orthogonal 
OWT, using a compression ratio of 40. 

like fractal analysis, these drawbacks has no impact because there is no need 
to apply a reconstruction and the computers caD. support the redundancy. For 
other applications were a reconstruction is needed, some researchers have cho­
sen an intermediate approach, keeping the filter bank construction giving a 
fast and dyadic algorithms, but eliminating the decimation step in the orthog­
onal wavelet transform (Dutilleux, 1987; Holschneider et al., 1989): Cl = Ii *eo 
and Wl = g*eo. By separating even an odd pixels in Cl and Wl, we get (cf, wf) 
and (c?, w?), and both part obviously allows us to reconstruct perfectly co. 
The reconstruction can be obtained by 

(8) 
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For the passage to the next resolution, both cf and cf are decomposed, leading 
after the splitting into even an odd pixels to four coarse arrays associated to 
~. All of the four data set can again be decomposed in order to obtain the 
third decomposition level, and so on. 

~= 
~= ~= 
~= l ~= 

~= 
Fig. 2. ID undecimated wavelet transform. 

=~D~ 

=~0-1 =~D-

- -Llj­=~D -u--J

=~-J- =~-
Fig. 3. lD undecimated wavelet reconstruction. 

Figure 2 shows the ID undecimated wavelet transform (UWT) decomposition. 
The decimation step is not applied and both WI and CI have the same size 
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as Co. CI is then splitted into cf (even pixels) and c? (odd pixels), and the 
same decomposition is then applied to both cf and c? cf produces C2,1 and 
W2,1, while c? produces C2,2 and W2,2· W2 = {W2,b W2,1} contains the wavelet 
coefficients at the second scale, and is also of the same size as Co. Figure 3 
shows the 1D UWT reconstruction. 

It is clear that this approach is much more complicated than the decimated 
bi-orthogonal wavelet transform. There exists, however, a very efficient way 
to implement it, called the "a trous" algorithm ("a trous" is a French word 
which means with holes). This method considers the filter hU) instead of h 

where hP) = hi if l/2j is an integer and °otherwise. For example, we have 
h(l) = (... ,h-2' 0, h_l, 0, ho, 0, hI, 0, h2' .•• ). Then Cj+l,l and Wj+I,1 can be 
expressed as . 

, Cj+l,l = (Ji(j) *Cj)l = L h k cj,I+2j k 

k 


Wj+l,l = (g(j) *Cj)l = LgkCj,L+2j k, (9) 
k 

and the reconstruction is obtained by 

Cj = ~(iiU) * Cj+1 + gU)Wj+I)' (10) 

The a trous algorithm can be extended to 2D, by 

Cj+l,k,l = (Ji(j)Ji(j) * Cj)k,l 

W-+II k l = (g-(j)Ji(j) * C-)k IJ ", J , 

Wj+I,2,k,l = (Ji(j)g(j) *Cj)k,l 

Wj+I,3,k,l = (g(j)g(j) * Cj)k,l. (11) 

Figure 4 shows the passage from one resolution to the next one by the atrous 
algorithm. Figure 5 shows the undecimated wavelet transform of the Einstein 
image using five resolution levels. Figures 5 1 v,lh,ld correspond respectively 
the vertical, horizontal and diagonal coefficients of the first resolution level. 
This transformation contains 16 bands, each one being of the same size as the 
original image. The redundancy factor is therefore equals to 16. 

2. {3 Denoising experiments 

One of the main applications of the redundant approach is denoising. There 
are numerous methods for the removal of additive noise form an image, and the 
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Fig. 4. Passage from CO to Cl, and from Cl to C2 with the UWT a trollS algorithm. 

Fig. 5. Undecimated wavelet transform of the Einstein image. 

wavelet-based method draw special interest because of their theoretical back­
bone, their success in practice, and their fast implementation. Hard threshold­
ing consists of setting to 0 all wavelet coefficients having a near-zero value, this 
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way removing non-significant wavelet coefficients (Starck and Bijaoui, 1994; 
Donoho and Johnstone, 1995). At scale j this operation is done by 

W'kl if 1W'kl I> T·A{ -. T.) - ], , ],' - ]u W],k,l, ] - (12)
{ o otherwise 

Wj,k,l is the wavelet coefficient at scale j and at spatial position (k, l). In the 
case of Gaussian noise, 11 can be directly derived from the noise standard 
deviation, 11 = KO'j (Starck and Bijaoui, 1994; Starck et al., 1998), where O'j 

is the noise standard deviation at the scale j, and K is a constant generally 
chosen between 3 and 5. The 30'j value corresponds to 0.27 % false detection. 
For a L2 normalization (Le. El hr = 1), we have O'j = 0'[ for all j, where 0'[ is 
the noise standard deviation in the image, while for a L1 normalization (Le. 
El hi = 1), we have O'j = 0'[/2

j 
• 

Noting WT and W R the wavelet transform and the reconstruction operators 
(we have WR = Wi 1 for an orthogonal transform), the filtering of an image 
I is obtained by: 

(13) 

.where 6 corresponds to the non-linear hard thresholding operator. Hence, 
wavelet filtering based on hard thresholding consists of taking the wavelet 
transform of the signal, setting to 0 non-significant wavelet coefficients, and 
applying the inverse wavelet transform. We shall return to this topic in Section 
4, when we discuss approximations with sparsity. 

To illustrate the denoising idea using wavelet, we have added to the image 
Einstein a white, zero mean Gaussian noise with a standard deviation equals 
to 20. Figure 6 shows the noisy image (upper left), the filtered image using 
the bi-orthogonal decimated wavelet transform (upper right) and the filtered 
image by the bi:·orthogonal undecimated wavelet transform (bottom left).In 
both these examples, K was chosen equal to 4 at the first resolution level and 

. to 3 at other scales. The residual (i.e. difference between the noisy image and 
the filtered image) related to the undecimated transform is shown in at the 
bottom right. 

As it can easily be seen, the undecimated approach leads to much better de­
noised result. Other threshold methods have been proposed, like the universal 
threshold (Donoho and Johnstone, 1994; Donoho, 1993), or the SURE (Stein 
Unbiased Risk Estimate) method (Coifman and Donoho, 1995). Among the 
best wavelet denoising algorithms, we find Bayesian-based methods exploiting 
a statistical model of the wavelet coefficients (Crouse et al., 1998; Simoncelli, 
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Fig. 6. The noisy Einstein image with noise standard deviation 20 (top left), filtered 
image by the bi-orthogonal wavelet transform (top right), filtered image by the 
undecimated bi-orthogonal wavelet transform (bottom left), and the residual (Le. 
difference between the noisy image and the bottom left image (bottom right). 

1999; Portilla et al., 2003). Finally other noise models, such as Poisson noise 
or non-stationary Gaussian noise can similarly be taken into account in the 
wavelet denoising approach (Starck et al., 1998). 

2.4 Partially Decimated Wavelet Transform (PWT) 

The Undecimated wavelet transform (UWT) is highly redundant. The re­
dundancy factor R for images is equal to 3J + 1 where J is the number of 
resolution levels. This means that for a N x N image and using six resolution 
levels, we need to store 19N2 real values in memory. When dealing with very 
large images, this may not be acceptable in some applications for practical 
reasons such computation time constraint or available memory space. Then a 
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compromise can be found by not decimating one or two coarse scales, while 
decimating the others. 

We will note PWT(u) the wavelet transform where the first u are undecimated. 
For u equals to 0, PWT(u) corresponds to the bi-orthogonal OWT. Similarly, 
for u equals to J, PWT(J) corresponds to the UWT. As an example, PWT(l) 
requires a redundancy factor of 4. For the passage from a resolution j to the 
next one, it will require the same operations as for the UWT when j :5 u. 
Noting j' = M]N(j, u), equation (11) becomes 

Cj+1,k,1 = (/l,uTh(j/) *Cj )k,l 

W'+ll k 1= (g-(j/)Ii(j/) *C')k IJ ", '3 , 

Wj+1,2,k,1 = (Ii(j/) g{j/) * Cj )k,l 

W '+1 3 k I = (g_(jl)g_(j/) *C')k I (14)J ", '3 , 

After the uth scale, the number of holes in the filters Ii and 9 remains un­
changed. 

To demonstrate the gain in using PWT over the UWT, we present a denoising 
experiment where PWT is used with varying u. The same image, Einstein, 
and the same noise characteristics, were used. For each filtered image the 
PSNR (peak signal-to-noise) ratio between the original image] and the filtered 
image F was calculated, as presented in table 2.4. The PSNR is defined as 

255 
PSNRd,B = 10log1o NRMSE2 (15) 

where NRMSE is the normalized root mean square error, 

L-pix(] - F)2
NRlvlSE2 (16)

L-pix ]2 

The gain when using the U ndecimated WT (u = 4) instead of the bi-orthogonal 
WT is 2.43 dB. Using a single undecimated scale leads to reduce the error by 
more than IdB, while requiring far less in redundancy. 

PWT(O) PWT(l) PWT(2) PWT(3) PWT(4) 

PSNR (dB) 29.34 30.66 31.35 31.67 31.77 

Table 1. The PSNR versus u in the PWT for the denoising of the image Einstein. 
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2.5 The Complex Wavelet Transform (CWT) 

In order to obtain an invariance for translations with only one undecimated 
scale, an additional refinement can be introduced to the PWT(l) by consid­
ering two sets of filter banks FO = (hO, gO) and Fe = (he, ge) instead of one. 
This new decomposition is called the Complex Wavelet Transform (Kingsbury, 
1998; Kingsbury, 1999). The wavelet function is not complex but complex 
numbers are derived from the wavelet coefficients. As described in figure 7, 
an N x N image Co is first decomposed using (hO ,gO) into four images (first 
decomposition level), each one of size N x N (i.e redundancy factor is equal 
to 4). Then the smoothed image Cl is split into four parts: 

• Image ct: pixels at even line index and even column index. 
• Image cf: pixels at odd line index and even column index. 
• Image cf: pixels at even line index and odd column index. 
• Image if: pixels at odd line index and odd column index. 

These four images ct, cf, cf, cf are decomposed using the decimated wavelet 
transform but with different filter banks: 

Tree T A B C D 

T JieJie JieJio JioJie JioJiocj + 1 

T geJie geJio goJie goJio
Wj+l,l 

T Jiege Jiego JiOge JiOgO
W j + 1,2 

T gege gego gOge gOgO
W j + 1,3 

BFor each sub-band, wavelet coefficients W A , w , we, w D can be interpreted as 
real and imaginary parts of complex numbers: 

(17) 

Therefore the three wavelet bands leads to six complex bands corresponding 
to six directional analysis and it has been shown that the thresholding of 
IZ+,j,kl and IZ-,j,kl produces less artifacts than the thresholding of the standard 
wavelet coefficients (Jalobeanu et al., 2000; Jalobeanu et aL, 2003). 
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D 
Fig. 7. First level of the 2D complex wavelet transform. Left: undecimated scales, 
Right: pixels corresponding to the four trees. 

2 n. 

to 

,," 

t 

sLJ-lO­

sLJ-lO­

LJ--[J---l Lu-tu-

fl-lO­ o-ro---J Lu-tu-
o-ro---J Lu-tu­

[[]­

Fig. 8. Second and third levels of the 2D complex wavelet transform. 

2.6 The Isotropic atrous Wavelet Transform 

This algorithm is well known in the astronomical domain, because it is well 
adapted to astronomical data where objects are more or less isotropic in most 
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cases (Starck and Murtagh, 2002). In the undecimated version, we have less 
constraint on the filters for having a perfect reconstruction. For example, we 
can define 9 as 90 = 1 - ho and 91 = -hz if l is not equal to zero. Then 
the wavelet coefficients are obtained just by taking the difference between two 
resolutions: 

Wj+1,1 = Cj,l - Cj+1,1 	 (18) 

where Cj+1,1 = (Ji(j) *Cj)l. At each scale j, we obtain a set {Wj}. This has the 
same number of pixels as the input signal. Here, the wavelet function 1jJ is 
defined by: 

1 	 x 1 x
-1jJ(-) = ¢(x) - -¢(-) 	 (19)
2 	 2 2 2 

A simple algorithm in order to compute the associated wavelet transform is: 

(1) Initialize j to 0 and we start with Co being the given image. 
(2) Increment j, and apply a discrete convolution of Cj with the filter h. The 

distance between the central pixel and the adjacent ones is 2j
• 

(3) After this smoothing, obtain the discrete wavelet transform as the differ­
ence Cj - Cj+1. 

(4) 	If j < J, go to step 2. 
(5) The set W 	 {WI, ... ,WJ, cJ} represents the wavelet transform of the 

data. 

The reconstruction is obtained by a simple co-addition of all wavelet scales 
and the final smoothed array, namely 

J 

Co,l = CJ,1 + LWJ,I. 	 (20) 
j=1 

For the scaling function, ¢(x), the B-spline of degree 3 is generally considered 
as a good choice. The associated h filter is 1~ (1,4,6,4,1), being symmetric. 

The above atrous algorithm is easily extendable to two-dimensional space: 

C '+1 k I = (Ji(j) Ji(j) *C')k IJ " J , 

Wj+1,k,1 = Cj,k,l - Cj+1,k,1 	 (21) 

and the reconstruction is still a simple co-addition of the wavelet scales and 
the smooth arrays. 
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The use of the Ba spline leads to a convolution with the mask hh of 5 x 5: 

1 4 6 4 1 

416 24 16 4 
1 

6 24 36 24 6256 
4 16 24 16 4 

1 4 6 4 1 

but it is faster to compute the convolution in a separable way (first on rows, 
and then on the resulting columns). 

Figure 9 shows the undecimated isotropic wavelet transform of the image 
Einstein using six resolution levels. This transformation contains 6 bands, 
each one being of the same size as the original image. The redundancy factor is 
therefore equals to 6. The simple addition of these six images reproduce exactly 
the original image. This transformation is very well adapted to the analysis of 
astronomical images, assumed to contain generally relatively isotropic features. 
This construction has close relation to the Laplacian pyramidal construction 
by Burt and Adelson (Burt and Adelson, 1983) or the FFT based pyramidal 
wavelet transform (Starck et aI., 1998). 

Fig. 9. Undecimated isotropic wavelet transform of the Einstein image. 
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2. 7 Contrast enhancement 

Since some features in an image may be hard to detect by the human eyes due 
to low contrast, we often process the image before visualization. Histogram 
equalization is certainly one the most well known methods for contrast en­
hancement. Images with a high dynamic range are also difficult to analyze. 
For example, astronomers generally visualize their images using a logarithmic 
look -up-table conversion. 

Wavelet can also be used to compress the dynamic range at all scales, and 
therefore allows us to clearly see some very faint features. For instance, the 
wavelet-log representations consists in replacing Wj,k,Z by log(lwj,k,d), leading 
to the alternative image 

J 

Ik,l = log(cJ,k,l) + L sgn(Wj,k,Z) log(1 Wj,k,l I) (22) 
j=1 

Figure 10 shows a Hale-Bopp Comet image (top left) and an opthalmic med­
ical image (top right), their histogram equalization (middle row), and their 
wavelet-log representation (bottom). Jets clearly appears in the last represen­
tation of Hale-Bopp Comet image, and many more features are distinguishable 
in the wavelet log representation of the opthalmic medical image. 

2.8 Other Redundant Wavelet Constructions 

Other redundant wavelet transforms that are of interest are the steerable 
wavelet and the dyadic wavelet transforms. The steerable wavelet transform 
(Simoncelli et al., 1992a) allows us to choose the number of directions in the 
multiscale decomposition, and the redundancy is proportional to this number. 
The dyadic wavelet transform (Mallat and Hwang, 1992; Mallat and Zhong, 
1992) produces two undecimated bands per scale (horizontal and vertical) 
with a redundancy factor R = 2J + 1 where J is the number of scales. This 
decomposition can be seen as a generalizing of the concept of multiscale edge 
detection. Indeed, by using a differentiable smoothing function, we have 

'ljJl(X y) = d¢(x, y) 'ljJ2(X, y) = d¢(x, y)and (23), dx dy 

By definition, 'ljJ1 and'ljJ2 are wavelets (their integral is equal to zero). The local 
extremum of the wavelet coefficients using 'ljJ1 ,'ljJ2 correspond to the inflection 
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Fig. 10. Top left - Hale-Bopp Comet image, To right - opthalmic medical image. 
Middle - histogram equalization results, Bottom - wavelet-log representations. 

points (edges) of f * ¢s (with ¢s = !¢(!». Then we have at each scale j and 
at pixel location (k,l) two wavelet coefficients Wj,l,k,!, Wj,2,k,l' The modulus of 
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the gradient is then defined by Gj,k,l = W1,l,k,1 + W1,2,k,1 and the directional 
angle Bj is 

( w'2kL)'f > 0arctan ~ 1 Wj,l,k,l_B, k I = 3,1,k,L (24)
J, , W'2k L{ 

7r - arctan(~) if WJ'l kl < 0
Wj,l,k,L ' , , 

Multiscale edge points, also called modulus maxima, are points where the 
modulus is locally maximum with respect to its neighbors along the direction 
Bj . An interesting feature is that an image can be reconstructed (approxi­
mately) from its multiscale edges (Mallat, 1998) using an iterative algorithm. 
It does not converge exactly towards the original image, but in practice the 
error is very small. 

Wavelet packets are an extension of the wavelet transform. They were intro­
duced by Coifman, Meyer and Wickerhauser (Coifman et al., 1992). Instead 
of dividing only the approximation space, as in the standard (bi-) orthogonal 
wavelet transform, detail spaces are also divided. For some application such 
deconvolution, it has been shown that some wavelet packets bases called mir­
ror bases allows us to better take into account the noise behavior and therefore 
to outperform the standard wavelet transform (Kalifa et al., 2003; Jalobeanu 
et aL, 2003). Introducing a redundancy in the wavelet packets decomposition 
improves also significantly the restoration. 

Finally, we should note that we have considered in this section only linear 
redundant transforms. Non-linear redundant multiscale transform have also 
been proposed, such those based on the median transform (Starck et al., 1996; 
Donoho, 2000). 

2.9 Local Overlapping DeT 

The DCT is not a multiscale transform, but its relevance to the topic of 
image separation discussed later in this paper justifies its brief description. 
The DCT is a variant of the Discrete Fourier Transform, replacing the complex 
analysis with real numbers by a symmetric signal extension. The DCT is an 
orthonormal transform, known to be well suited for stationary signals obeying 
a first order Markov models with high correlation. This transform is defined 
by 
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1 
DCT(u, v) = v'2Nc(u)c(v) (25) 

~l ~l I ((2k + 1)U7r) ((2l + 1)V7r) 
• ~ ~ k,lCOS 2N cos 2N 

k=O l=O 

where Ik,l is the input image. Its coefficients essentially represents frequency 
content, similar to the ones obtained by Fourier analysis. When dealing with 
non-stationary sources, DCT is typically applied in blocks. Such is indeed the 
case in the JPEG image compression algorithm. Choice of overlapping blocks 
is preferred for analyzing signals while preventing blotckiness effects. In such 
a case we get again an over complete transform with redundancy factor of 4 for 
an overlap of 0.5. A multiscale version of the block-DCT could be proposed, 
where the image is divided into blocks of varying sizes. A fast algorithm with 
complexity of n2 log2 n exists for its computation. The DCT is appropriate for 
a sparse representation of smooth or periodic behaviors. 

3 background - Part II - From Wavelets to Curvelets 

3.1 Problems with Wavelets 

Despite the success of the classical wavelet viewpoint, recent papers (Candes 
and Donoho, 1999d; Candes and Donoho, 1999c) argued that the traditional 
wavelets present some strong limitations that question their effectiveness in 
higher-dimension than 1. Wavelets rely on a dictionary of roughly isotropic 
elements occurring at all scales and locations, do not describe well highly 
anisotropic elements, and contain only a fixed number of directional elements, 
independent of scale. Therefore, classical multiresolution ideas only address 
a portion of the whole range of interesting multiscale phenomena. Following 
this reasoning, new constructions have been proposed such as the ridgelets 
(Candes, 1999; Vetterli, 2001), the curvelets (Candes and Donoho, 1999c; 
Starck et aI., 2002), the bandlets (Pennec and Mallat, 2000), and the con­
tourlets (Do and Vetterli, 2003b). This section presents some of these new 
redundant constructions and explains how they better suit the 2D signals the 
come to describe. 

3.2 The Continuous Ridgelet Transform 

The two-dimensional continuous ridgelet transform in R 2 can be defined as 
follows (Candes, 1999). We pick a smooth univariate function 1/1 : R --. R with 
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sufficient decay and satisfying the admissibility condition 

(26) 


which holds if, say, 'ljJ has a vanishing mean f'ljJ(t)dt = O. We will suppose a 
special normalization about 'ljJ so that fooo 1"z,(e)12e-2de = 1. 

For each a > 0, each b E R and each B E [0, 27r), we define the bivariate 
ridgelet'ljJa,b,e : R2 -+ R by 

1j2'ljJa,b,e(Xl, X2) = a- . 'ljJ((XI cosB + X2 sin B- b)/a); (27) 

A ridgelet is constant along lines Xl cos B+ X2 sin B = const. Thansverse to 
these ridges it is a wavelet. 

Fig. 11. Few Ridgelets examples - The top right, bottom left and right graphs are 
obtained after simple geometric manipulations of the upper left ridgelet, namely 
rotation, rescaling, and shifting. 

Figure 11 presents few ridgelets examples. The top right, bottom left and 
right panels are obtained after simple geometric manipulations of the upper 
left ridgelet, namely rotation, rescaling, and shifting. 

Given an integrable bivariate function f(x), we define its ridgelet coefficients 
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by 

n,(a, b, 8) = J1fia,b,o(x)f(x)dx. 

We have the exact reconstruction formula 

(28) 

valid a.e. for functions which are both integrable and square integrable. 

Ridgelet analysis may be constructed as wavelet analysis in the Radon domain. 
Recall that the Radon transform of an object f is the collection of line integrals 
indexed by (8, t) E[O, 27r) x R given by 

Rf(8, t) Jf(x}, X2)<5(XI cos 8 + X2 sin 8 - t) dx1dx2, (29) 

where <5 is the Dirac distribution. Then the ridgelet transform is precisely the 
application of a I-dimensional wavelet transform to the slices of the Radon 
transform where the angular variable 8 is constant and t is varying. Thus, 
the basic strategy for calculating the continuous ridgelet transform is first to 
compute the Radon transform Rf(t, 8) and second, to apply a one-dimensional 
wavelet transform to the slices Rf(·, 8). Several digital ridgelet transforms have 
been proposed, and we will describe three of them in this section, based on 
different implementations of the· Radon transform. 

B.2.1 The RectoPolar Ridgelet tmnsform 

A fast implementation of the RT can be proposed in the Fourier domain, 
based on the projection-slice-theorem. First the 2D FFT is computed to the 
given image. Then the resulting function in the frequency domain is to be used 
to evaluate the frequency values in a polar grid of rays passing through the 
origin and spread uniformly in angle. This conversion from cartesian to Polar 
grid could be obtained by interpolation, and this process is well known by the 
name gridding in tomography. Given the polar grid samples, the number of 
rays corresponds to the number of projections; and the number of samples-on 
each ray corresponds to the number of shifts per such angle. Applying one 
dimensional inverse Fourier transform for each ray, the Radon projections are 
obtained. 

The above described process is known to be inaccurate due to the sensitivity 
to the interpolation involved. This implies that for a better accuracy, the first 
2D-FFT employed should be done with high-redundancy. 

An alternative solution for the Fourier-based Radon transform exists, where 
the polar grid is replaced with a pseudo-polar one. The geometry of this new 
grid is illustrated in Figure 3.2.1. Concentric circles of linearly growing radius 
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in the polar grid are replaced by concentric squares of linearly growing sides. 
The rays are spread uniformly not in angle but in slope. These two changes 
give a grid vaguely resembling the polar one, but for this grid a direct FFT 
can be implemented with no interpolation. When applying now ID-FFT for 
the rays, we get a variant of the radon transform, where the projection angles 
are not spaced uniformly. 

For the pseudo-polar FFT to be stable, it was shown that it should contain at 
least twice as many samples, compared to the original image we started with. 
A by-product of this construction is the fact that the transform is organized 
as a 2D array with rows containing the projections as a function of the angle. 
Thus, processing the Radon transform in one axis is easily implemented. More 
details can be found in (Starck et al., 2002). 

Fig. 12. Illustration of the psudo-polar grid in the frequency domain for an n by n 
image (n = 8). 

3.2.2 1D Wavelet Transform 

To complete the ridge let transform, we must take a one-dimensional wavelet 
transform along the radial variable in Radon. space. We now discuss the choice 
of digital one-dimensional wavelet transform. 

Experience has shown that compactly-supported wavelets can lead to many 
visual artifacts when used in conjunction with nonlinear processing, such as 
hard-thresholding of individual wavelet coefficients, particularly for decimated 
wavelet schemes used at critical sampling. Also, because of the lack of local­
ization of such compactly-supported wavelets in the frequency domain, fluctu­
ations in coarse-scale wavelet coefficients can introduce fine-scale fluctuations. 
A frequency-domain approach must be taken, where the discrete Fourier trans­
form is reconstructed from the inverse Radon transform. These considerations 
lead to use band-limited wavelet, whose support is compact in the Fourier 
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domain rather than the time-domain (Donoho, 1998; Donoho, 1997; Starck 
et al., 2002). In (Starck et al., 2002), a specific overcomplete wavelet transform 
(Starck et al., 1994; Starcket al., 1998) has been used. The wavelet transform 
algorithm is based on a scaling function ¢> such that ¢ vanishes outside of the 
interval (-ve, vel. We define the scaling function ¢ as are-normalized B3-spline 

¢(V) 


and 1/1 as the difference between two consecutive resolutions 

1/1(2v) = ¢(v) - ¢(2v). 

Because 1/1 is compactly supported, the sampling theorem shows than one can 
easily build a pyramid of n + n/2 + ... + 1 = 2n elements, see (Starck et al., 
1998) for details. 

This transform enjoys the following features: 

• The wavelet coefficients are directly calculated in the Fourier space. In the 
context of the ridgelet transform., this allows avoiding the computation of 
the one-dimensional inverse Fourier transform along each radial line. 

• Each sub-band 	is sampled above the Nyquist rate, hence, avoiding alias­
ing -a phenomenon typically encountered by critically sampled orthogonal 
wavelet transforms (Simoncelli et al., 1992b). 

• The reconstruction is trivial. The wavelet coefficients simply need to be co­
added to reconstruct the input signal at any given point. In our application, 
this implies that the ridgelet coefficients simply need to be co-added to 
reconstruct Fourier coefficients. 

This wavelet transform introduces an extra redundancy factor. However, we 
note that the goal in this implementation is not data compression or efficient 
coding. Rather, we focus on data analysis, for which it is well-known that 
over-completeness can provide substantial advantages as we have already seen 
before (Coifman and Donoho, 1995). 

FIgure 13 shows the flow-graph of the ridgelet transform. The ridgelet trans­
form of an image of size n x n is an image of size 2n x 2n, introducing a 
redundancy factor equal to 4. 

We note that, because this transform is made of a chain of steps, each one of 
which is invertible, the whole transform is invertible, and so has the exact re­
construction property. For the same reason, the reconstruction is stable under 
perturbations of the coefficients. 

Last but not least, this discrete transform is computationally attractive. In­
deed, the algorithm we presented here has low complexity since it runs in 
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O(n2 Iog(n)) flops for an n x n image. 

Fig. 13. Ridgelet transform Bow graph. Each of the 2n radial lines in the Fourier 
domain is processed separately. The 1-D inverse FFT is calculated along each 
radial line followed by a 1-D nonorthogonal wavelet transform. In practice, the 
one-dimensional wavelet coefficients are directly calculated in the Fourier space. 

The ridgelet transform of a digital array of size n x n is an array of size 2n x 2n 
and hence introduces a redundancy factor equal to 4. 

3.2.3 Example: anisotropic feature detection 

Consider an image containing a vertical band embedded in white noise with 
relatively large amplitude. Figure 14 (top left) represents such an image. The 
parameters are as follows: the pixel width of the band is 20 and the SNR 
is set to be 0.1. Note that it is not possible to distinguish the band by eye. 
The wavelet transform (undecimated wavelet transform) is also incapable of 
detecting the presence of this object; roughly speaking, wavelet coefficients 
correspond to averages over approximately isotropic neighborhoods (at differ­
ent scales) and those wavelets clearly do not correlate very well with the very 
elongated structure (pattern) of the object to be detected. 
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Fig. 14. Original image containing a vertical band embedded in white noise with 
relatively large amplitude (top left). The signal obtained by integrating the image 
intensity over columns (top right). Reconstructed image for the undecimated wavelet 
coefficient (bottom left). Reconstructed image from the ridgelet coefficients (bottom 
right). 

3.3 The Orthonormal Finite Ridgelet Transform 

The orthonormal finite ridgelet transform (0FRT) has been recently proposed 
(Do and Vetterli, 2003c) for image compression and filtering. This transform 
is based on the finite Radon transform (Matus and Flusser, 1993) and a ID 
orthogonal wavelet transform. It is not redundant and reversible. It would 
have been a great alternative to the previously described ridgelet transform 
if the OFRT were not based on a strange definition of a line. In fact, a line 
in the 0 FRT is defined as a set of periodic equidistant points (Matus and 
Flusser, 1993). Figure 15 shows the back-projection of a ridgelet coefficient by 
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the FFT-based ridgelet transform (left) and by the OFRT (right): It is clear 
that the backprojection of the OFRT is nothing like a ridge functIOn. 

Fig. 15. The backprojection of a ridgelet coefficient by the FFT-based ridgelet trans­
form (left), and by the OFRT (right). 

Because of this specific definition of a line, the thresholding of the OFRT 
coefficients produces strong artifacts. Figure 16 shows a part of the original 
image Lena, and its reconstruction after the hard thresholding of the 0 FRT. 
A noise has been added to the noise-free image as part of the filtering! 

Finally, the OFRT presents another limitation: the image size must be a prime 
number. This last point is however not too restrictive, because we generally 
use a partitioning when denoising the data, and a prime number block size 
can be used. The OFTR is interesting from the conceptual point of view, but 
still requires work before it can be used for real applications such as denoising. 

3.4 The Slant Stack Ridgelet Transform 

The Fast Slant Stack (Averbuch et al., 2001) is geometrically more accurate 
than the previously described methods. The back-projection of a point in 
Radon space is exactly a ridge function in the spatial domain (see Figure 17). 
The transformation of an n x n image is a 2n x 2n image. n line integrals 
with angle between [-~,~] are calculated from the zero padded image on 
the y-axis, and n line integrals with angle between [~, 3;] are computed by 
zero padding the image on the x-axis. For a given angle inside [-i, i), 2n 
line integrals are calculated by first shearing the zero-padded image, and then 
integrating the pixel values along all horizontal lines (resp. vertical lines for ~ 
angles in [~, 3471']). The shearing is performed one column at a time (resp. one 
line at a time) by using the ID FFT. Figure 18 shows an example of the image 

28 



Fig. 16. Part of original noise free Lena image (left), and reconstruction after 
OFRT-based denoising (right). 

shearing step with two different angles (51 and -1)' A ridgelet transform 
based on the Fast Slant Stack transform has been proposed in (Donoho and 
Flesia, 2002). The connection between the Fast Slant Stack and the linogram 
has been investigated in (Averbuch et aI., 2001), and a Fast Slant Stack is 
proposed, based on the 2D Fourier transform. 

Fig. 17. Backprojection of a point at four different locations in the Radon space. 

3.5 Local Ridgelet Transforms 

The ridgelet transform is optimal for finding global lines of the size of the 
image. To detect line segments, a partitioning must be introduced (Candes, 
1998). The image can be decomposed into overlapping blocks of side-length b 
pixels in such a way that the overlap between two vertically adjacent blocks is 
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Fig. 18. Slant Stack Transform of an image. 

a rectangular array of size b by b/2; we use overlap to avoid blocking artifacts. 
For an n by n image, we count 2n/b such blocks in each direction, and thus 
the redundancy factor grows by a factor of 4. 

The partitioning introduces redundancy, as a pixel belongs to 4 neighboring 
blocks. We present two competing strategies to perform the analysis and syn­
thesis: 

(1) The block values 	are weighted (analysis) in such a way that the co­
addition of all blocks reproduce exactly the original pixel value (syn­
thesis). 

(2) 	 The block values are those of the image pixel values (analysis) but are 
weighted when the image is reconstructed (synthesis). 

Experiments have shown that the second approach leads to better results. 
We calculate a pixel value, f( i, j) from its four corresponding block values of 
half-size f = b/2, namely, B1(i1,jl), B2(i2,jl), B3(it,j2) and B4(i2,j2) with 
it, it > b/2 and i2 = it - f, j2 = jt - f, in the following way: 
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II W(i2/f)Bl(iI,jl) +w(l - i2/f)B2(i2,jl) 
f2 = w(i2/f)B3(i},j2) + w(l - i2/f)B4(i2,j2) 

f(i,j) =w(j2/f )fl +w(l - j2/f)f2' (30) 

with w(x) = cos2(7rx/2). Of course, one might select any other smooth, non­
increasing function satisfying, w(O) = 1, w(l) = 0, w'(O) = 0 and obeying the 
symmetry property w(x) + w(l - x) = 1. 

3.6 The Curvelet Transform 

The curvelet transform (Candes and Donoho, 1999a; Donoho and Duncan, 
2000; Starck et al., 2002) opens the possibility to analyze an image with dif­
ferent block sizes, but with a single transform. The idea is to first decom­
pose the image into a set of wavelet bands, and to analyze each band by a 
local ridgelet transform. The block size can be changed at each scale level. 
Roughly speaking, different levels of the multiscale ridgelet pyramid are used 
to represent different sub-bands of a filter bank output. At the same time, 
this sub-band decomposition imposes a relationship between the width and 
length of the important frame elements so that they are anisotropic and obey 
width = length2

• 

The discrete curvelet transform of a continuum function f(x}, X2) makes use 
of a dyadic sequence of scales, and a bank of filters with the property that the 
pass-band filter Ll8 is concentrated near the frequencies [228 , 228+2], e.g. 

In wavelet theory, one uses a decomposition into dyadic sub-bands [28 ,28 +1]. In 
contrast, the sub-bands used in the discrete curvelet transform of continuum 
functions have the nonstandard form [228,228+2]. This is nonstandard feature 
of the discrete curvelet transform well worth remembering. 

The curvelet decomposition is the sequence of the following steps: 

• 'Sub-band Decomposition. The object f is decomposed into sub-bands. 
• 	 Smooth Parlitioning. Each sub-band is smoothly windowed into "squares" 

of an appropriate scale (of side-length rv 2-8
). 

• 	 Ridgelet Analysis. Each square is analyzed via the discrete ridgelet trans­
form. 

In this definition, the two dyadic sub-bands [228 , 228+1
] and [228+1

, 228+2] are 
merged before applying the ridgelet transform. 
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3. 6.1 Digital Realization 

It seems that the isotropic "a trous" wavelet transform is especially well­
adapted to the needs of the digital curvelet transform. The algorithm decom­
poses an n by n image J as a superposition of the form 

J 

J(k, l) = CJ,k,l + L Wj,k,Z, 
j=l 

where CJ is a coarse or smooth version of the original image J and Wj represents 
'the details of l' at scale 2-j (see section 1). Thus, the algorithm outputs J +1 
sub-band arrays of size n x n. 

-­

/ 7 
/ / 
/ /

/ 7 

/ / 
Fig. 19. Curvelet transform flow graph. The -figure illustrates -the decomposition 
of the original image into sub-bands followed by the spatial partitioning of each 
sub-band. The ridgelet transform is then applied to each block. 

A sketch of the discrete curvelet transform algorithm is: 

(1) apply the a trous isotropic WT with J scales, 
(2) set Bl = Bmin , 

(3) for j = 1, ... , J do, 
• partition the sub-band Wj with a block size B j and apply the digital 

ridgelet transform to each block, 
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• if j modulo 2 = 1 then B j +1 = 2Bj , 

• else Bi+1 = Bi . 

The side-length of the localizing windows is doubled at every other dyadic sub­
band, hence maintaining the fundamental property of the curvelet transform 
which says that elements of length about 2-ij2 serve for the analysis and 
synthesis of the j-th sub-band [2 j , 2i +1]. Note also that the coarse description 
of the image CJ is not processed. We used the default value Bmin 16 pixels in 
our implementation. Finally, Figure 19 gives an overview of the organization 
of the algo~ithm. 

This implementation of the curvelet transform is also redundant. The redun­
dancy factor is equal to 16J + 1 whenever J scales are employed. Finally, the 
method enjoys exact reconstruction and stability, because these invertibility 
holds for each element of the processing chain. Figure 20 shows a few c:urvelets 
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Fig. 20. A few curvelets. 

at different scales, orientations and locations. 

The curvelet transform is a promising approach and is still under development 
(Candes and Donoho, 2002; Do and Vetterli, 2003a). Future curvelet decom­
positions will certainly allows us to obtain similar quality for denoising and 
detection applications, but with much less redundancy. 

3.6.2 Example: Recovery of Curves 

In this experiment (Figure 21), we have added a Gaussian noise to "War 
and Peace," a drawing from Picasso which contains many curved features. 
Figure 21 bottom left and right shows respectively the restored images by the 
undecimated wavelet transform and the curve let transform. Curves are more 
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sharply recovered with the curve let transform. 

Fig. 21. The Picasso picture War and Peace (top left), the same image contami­
nated with a Gaussian white noise (top right). T;he restored images using the undec­
imated wavelet transform (bottom left) and the curvelet transform (bottom right). 

4 Background - Part III - Sparsity in Transforms 

4.1 Linear transforms and their limitations 

So far we have been focusing on transforms without specifying whether they 
are applied linearly or non-linearly, and as we shall see, both options are open 
before us. In this section we present these alternatives and show how sparsity 
fits into this dichotomy. 

Since the signals we work with here are all of finite dimensions, linearity is 
characterized by the ability to represent both the forward and the inverse 
transforms by matrices multiplying vectors. We denote our signal as §. E RN, 
and assume that the inverse transform is obtained by the multiplication §. = 
Ty. The transform matrix T has N rows and L columns, and clearly T must 
be full rank and with L ~ N if we desire to span the entire RN space. The idea 
behind the relation §. = Ty is to consider the signal §. as a linear combination 
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of cO.lumns from T. Thus, we commonly refer to this matrix as the dictionary 
and Its columns as atoms that construct the signal. 

If T is a square (an? ~on-sing~ar) matrix, the forward transform is uniquely 
defined as the matrIX Inverse, I.e. T-1ft = y. Such is the case with the DFT 
and the critically sampled Wavelet transform. If, on the other hand, L > 
N, the transfo~m is redundant, and we have some freedom in defining its 
forward operatIon. We can propose a specific forward transform depicted by 
the following constrained optimization task 

~n IIDy"~ subject to ft = Ty, (31) 

where D is a full rank matrix with L columns and P rows, and we must 
require that P 2:: L for obtaining a unique solution from (31) (this property is 
immediately seen from the next analysis). Due to the [2_norm involved in the 
above expression, the forward transform is also linear and given by 

(32) 


The choice of D dictates the behavior of the representation coefficients y. As 
a popular example, choosing D = I implies a search for the minimal [2 energy 
signal, and the forward transform in this case becomes 

D=I (33) 


resulting with the well known Moore-Penrose pseudo-inverse (Golub and Van­
Loan, 1996). 

Note that a dual approach can be used where the forward transform is defined 
as a redundant matrix multiplying a vector, and from there develop the inverse 
transform. Our choice to start with the inverse as a linear operation and 
expand from there to the forward is aligned with the way the sparsity....,based 
transforms are developed, as we shall show in the next Section. 

Linearity is a tempting property since it leads to a traceable analysis and to a 
closed-form transform description as we have seen above. Moreover, numerical 
solution of (31) can be employed as an iterative process with the use of only 
multiplications by T and its adjoint, an appealing option that avoids inversions 
of matrices which could be daunting if high-dimensional signals are involved. 

All the tools described in Sections 2 and 3 are typically employed as linear 
transforms, although they can be used differently. Ridgelets, Curvelets, and . 
other mentioned algorithms are proposing over-complete representations, but 
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linearity may impose undesired limitations. In fact we can regar~ all. these 
methods as proposals for the content of the matrix T. The questIOn IS now 
_ can we use this content in a better setting? This leads us naturally to the 

non-linear transforms. 

As an interesting side-comment we mention that in the setting described in 
(31), we have the freedom to choose T as one of the matrices built by the 
transforms described in previous sections. However, we may also consider to 
construct T as an amalgam of several matrices concatenated horizontally, 
forming this way a longer representation with a richer set of building atoms. 
As we shall observe in later sections, this is crucial for the signal separation 
we will advocate. 

4.2 Non-Linear approach - Sparsity and the Pursuit Algorithms 

In (31) the term IIDYII~ measures the complexity of the obtained representa­
tion vector, and in seeking the minimum, we effectively search for the most 
appealing representation. However, the use of f2-norm for measuring the com­
plexity of the representation are far from satisfactory. If we desire sparseness in 
yas a true measure of simplicity, the above term should be replaced by lIyllo, 
essentially counting number of non-zero entries in 1!. This is a commonly used 
abuse of notation since 1I1!1I~ = E1=1Iu(j)IP, and for p --+ 0 we get that any 
non-zero entry to the power of p becomes 1,while every zero entry is nulled 
in this summation. 

With the above proposed change we lose the linearity of the forward transform 
and the ease of analysis and operations that accompany it. For years these 
shortcomings were considered as a grave loss to be seriously considered, and 
sparsity was therefore left aside. In recent years, with improved computing 
power and with a strong thirst for performance-barrier breaking methods, 
sparsity became a relevant issue. Surprisingly, several supporting evidence 
emerged from different directions to support this choice of simplicity measure 
and make it a serious candidate for the alternative design of the forward 
transform. 

We still think in terms of a matrix T multiplying the representation vector 
1! in order to construct the signal ;!, and thus the inverse transform remains 
linear. Our objective in defining the forward transform is now 

(Po) min IIYllo subject to ;! = T1!. (34)
.!:! 

One major problem that stands as 'an obstacle in addressing (34) is the fact 
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that this problem is non-convex and highly non smooth, implying difficulties in 
its numerical solution. An exhaustive approach for the solution of this problem 
can be suggested, were we start with the assumption 11MI/o = 1 and test every 
column as a candidate representation. If successful we are done, and if not we 
assume IIMilo = 2 and test for all the pairs of columns. This sweep of tests 
should theoretically proceed till the solution is found or till IIMlio = N where 
a solution must be found. Thus, the overall number of Least-Squares tests to 
be done is growing exponentially with L, the number of columns in T. 

Approximations with empirical success were proposed to overcome this prob­
lem, and well known methods among those are the pursuit algorithms (Match­
ing Pursuit, Basis Pursuit, and their variants). It is perhaps most surprising 
that in-spite of their heuristic origin, exact theoretical claims can be made, 
and indeed have been done recently, supporting the successful behavior of 
these algorithms. A brief survey of these results as presented in (Donoho and 
Huo, 2001; Elad and Bruckstein, 2001; Elad and Bruckstein, 2002; Donoho 
and Elad, 2003; Gribonval, 2003; Tropp, 2003; Gilbert and Strauss, 2003) is 
given below. 

4.3 Theoretical and Empirical Performance of Pursuit algorithms 

Common to the analysis of both the MP and the BP algorithms is a feature M 
describing the richness of the dictionary T and called the mutual incoherence. 
If we assume that the columns of T, denoted as t.i' are of unit f2-norm, M is 
defined as 

(35)M = max l{ftt.1
1<k,J_.<L,k ..... · -J....... , 
_ rJ 

and this is equal to the maximal value in the off-diagonal absolute entries in 
the Gram matrix TTT. This scalar value plays a vital role on dictating bounds 
on the pursuit algorithms' success. 

We have already identified our desired objective as solving (Po) as given in 
(34). The following property for solving (Po) is shown in (Donoho and Elad, 
2003; Gribonval, 2003) 

Theorem 1: A representation satisfying 

111!IIo < ~ ( 1 + ~) . (36) 

is necessarily the unique solution of (Po) as defined in (34)· 
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This Theorem suggests that even though (Po) is non-convex and its solution 
is very complicated, if an approximation method is employed and a spar~e 
enough solution is found, we can test it in a simple way to verify that this 
is the globally optimal solution of (Po), a claim hard to make in general f?r 
non-convex problems. We see that the mutual incoherence plays a key role In 
the proposed optimality test. 

A tighter uniqueness bound exists, paralleling the claim made in Theorem 1, 
but using a different measure for the richness of the dictionary - the Spark 
(also known as Kruskal-rank). Given a dictionary T, its Spark (J' is defined as 
the the minimal number of columns from T that form a linearly dependent 
set. The following relationship between the mutual incoherence and the Spark 
has been established: 

Lemma 2: For a given dictionary T, its mutual incoherence and Spark are 
related via 

1 (37)Spark{T} ~ 1 + M {T} 

Using the Spark, we have the following uniqueness result 

Theorem 3: A representation satisfying 

1II.!!lIo < 2Spark{T} (38) 

is necessarily the unique solution of (Po) as defined in (34). 

As an example, if the dictionary is an N x 2N matrix built as a concatenation 
of the identity square matrix and the Hadamard one, the mutual incoherence 
M is l/VF/, whereas the Spark is 2VF/ (i.e., gathering a smaller group of 
columns leads to linear independence - based on the Poisson formula). Thus, 
Theorem,2 is sharper with a bound being twice as high. 

The existence of both these uniqueness results (Theorems 1 and 2) are encour­
aging as they motivate us to employ approximations with the hope to hit a 
sparse result that could be verified as the best one possible. However, reality 
is even more promising - it turns out that for some approximation methods 
we can actually guarantee that sparse solution will be found if there exists 
one, as we shall show immediately. 

The Orthonormal Matching Pursuit (OMP) algorithm suggests searching an 
approximated solution by a greedy step-wise nested process, solving the alter­
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native (much easier) sequence of problems, 

N 
{II}in Il~ - Tull2 subject to lIullo k .} (39)

k=l 

The first problem in this set is solved easily by testing every column in T as a 
sole member in constructing ~, and choosing the one that leads to the minimal 
error. If we assume that the columns of T are of unit (2-norm, we obtain the 
best column as the one maximizing the inner product with~. 

Going to the next problem in this set, the previously chosen column is kept 
(this causes the 0 MP to be sub-optimal in general, and explains the term 
'nested' mentioned above on the MP), and a second column candidate is again 
searched sweeping through the L -1 remaining columns. This process proceeds 
till the Least Squares error hits zero, implying an equality ~ = TU, or till k L 
where the L8 error must be zero by definition. 

The following result was established in (Tropp, 2003; Donoho et aI., 2003) for 
the performance of the OMP algorithm. 

Theorem 4: The OMP algorithm applied as an approximation to solve (Po) 
finds the globally optimal solution of it if there exists a solution satisfying 

(40) 


Thus, if there exists a sparse enough solution for (Po), we know that it must 
be the best solution (based on Theorem 1), and now we can also guarantee 
that the OMP will find it. 

The Basis Pursuit approach towards an approximate solution of (Po) is a 
convexification of the problem, addressing the alternative problem 

min Ilulh subject to ~ = Tu. (41)
.!! 

The new problem, (PI) has a linear programming str.ucture, and there are 
efficient ways to solve it, even in high-dimensions. 

The following result was established in (Donoho and Elad, 2003) for the per­
formance of the BP algorithm. 

Theorem 5: The BP algorithm applied as an approximation to solve (Po) 
finds the globally optimal solution of it if there exists a solution satisfying 
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1I~lIo < ~ (1 + ~) . (42) 


Thus, a parallel result to the one referring to the OMP suggests that the BP 
is also expected to successfully recover the best representation if it is sparse 

enough. 

We should note that both Theorem 4 and 5 refer to the worst-case scenario, 
and in general the performance of the 0 MP and the BP is far better that 
the limit 0.5(1 + 11M). Returning to our previous example, with the N x 
2N dictionary built as a concatenation of the identity square matrix and 
the Hadamard one, the mutual incoherence M is 11m, and the bounds 
here refer to m12 as the limit number of non-zeros in the representation to 
guarantee uniqueness and successful performance of the OMP and the BP. In 
practice, much denser representations are still recovered by these algorithms. 
Also, empirical tests indicate that the BP performs in general better than the 
OMP, although it is of higher computational complexity. 

4.4 Approximations with Sparsity 

For a signal 2 we may be interested in its approximate representation rather 
than its exact one. Such relaxation in the passage from 2 to its representation 
could be exploited for getting a simpler description of the signal, and thus, 
fulfill the underlying desire originally planned in adopting a transform as a 
simplifying tool. 

Going back to the linear methodology, we generalize (31) to be 

(43) 


The parameter A controls the amount of distortion in representing 2. The 
solution in this case is easily obtained as 

(44) 


and we see that the linearity of the overall transform is preserved. Note that 
for A -+ 00, we obtain the transform as posed in (32). 

One commonly used heuristic for simplifying a given representation is a shrink­
age of the representation coefficients. Given the vector y, this heuristic sug­
gests shrinking values by multiplication bya constant smaller than one . This 
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is actually well-supported by the above approximated transform if D and T. ,
are umtary, where we obtain 

(45) 


Thus, if for example, D = I, and T is an orthonormal wavelet transform 
simplification of the representation is easily achieved by simple manipulatio~ 
of the original exact representation. However, this heuristic in the general case 
is wrong, and a better and more rigorous method is the use of (44). 

Extending similarly the sparsity-oriented definition for a forward transform 
reads 

(46) 


It is interesting to note that even though this problem is generally complicated 
to solve, a closed form solution exists when T is a unitary matrix. Defining 
i! = T-l~, the above problem can be described alternatively as 

This way we got a set of L independent optimization problems with the scalars 
Uk as unknowns. The solution is the hard-thresholding operation, and com­
monly used in Wavelet denoising - see Section 2.2.1 and (Donoho and John­
stone, 1994; Donoho, 1993). 

(48) 


This way, again, we get that a manipulation of the original exact representation 
leads to the desired simplification, and again, this is not true for the general 
case, although thresholding is popular heuristic employed nevertheless. 

Once again, approximations can be used in order to solve the (PO,A) problem. 
The idea is the replacement of the exact representation ~ = T1! by a penalty 
II~ - T1!II~· 

The OMP version for solving (PO,A) is simple and requires only changing the 
stopping rule of the algorithm. The same sequence of problems as in (39) is 
solved, and in the same manner. At each stage the error II~ - T1!II~ should 
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decrease by more than 1/-\ so as to compensate for the increase in 1I1!\lo. When 
the decrease is smaller than 1/-\ the 0 MP should be stopped. 

The Basis Pursuit Denoising (BPDN) is the generalization of the Basis Pursuit 
for approximating the solution of (PO,A), based on solving 

(49) 


This problem has a quadratic programming structure for which there are effi­
cient solvers. A closed form solution exists here as well for the choice of unitary 
T leading to 

(50) 


This operation is known as soft-thresholding, and it has both the influences 
of the hard-thresholding of the eo and the simple shrinkage of the (2 (Donoho 
and Johnstone, 1994; Donoho, 1993). 

Returning to the general case, no closed-form solution exists, and numerical 
methods are to be applied in order to solve (PI,A)' 

Similar to the claims in Theorems 2 and 3, analysis of these approximation 
methods can be discussed, relating their success to the sparsity of the rep­
resentation and the mutual incoherence of the dictionary T. Such analysis 
is a current topic of research, and it is hoped that in several years a better 
knowledge on these methods will become available. 

4.5 Numerical Methods for BPDN 

While theoretically known to be convex, the BPDN as posed in (PI,A) is gen­
erally not trivial to solve, and requires some skills in optimization techniques. 
General modern methods for quadratic programming based on interior point 
and active set algorithms can of-course be used as solvers. Here we will men­
tion two alternatives that are popular among signal processing practitioners 
- The Iterative Reweighed Least-Squares (IRLS) and the Block-Coordinate­
Relaxation method. 

We start with the IRLS method as described in (Kariovitz, 1970). The basic 
theme here is the replacement of the original problem, 
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(51) 

wit~ a sequence of Least-Squares (LS) problems, exploiting the fact that highly 
effiCIent LS solvers are available. 

The reason (PI,A) cannot be solved with LS in the first place is the use of 
the £l-norm, but if we assume that a near-optimal solution i! was found, and 
an update to the solution is desired, we can replace lIyUI with an f2-norm 
expression of the form 

(52) 

The matrix Wei!) is a diagonal matrix of size Lx L. Its main diagonal contains 
the reciprocals of 1i!1· For numerical stability, for near zero entries in Ii!I the 
weight is chosen as a fixed high value (this has the effect of using a slightly 
distorted norm definition, rounded around the origin to avoid singularity). 

Thus, solving the new problem 

(53) 


could lead to the updated solution, and can be applied using a LS solver, since 
the solution is given by' 

(54) 


Given the updated solution, we can redo the above process with updated 
weights in W (i!) . In order to guarantee convergence, a relaxation maybe 
needed, where a one-pole smoothing is done on the sequence of results to slow 
down the changes. Alternatively, instead of exact LS solution, few iterations 
using only multiplications by T and its adjoint can be used to update the 
solution, then updating the weights. Due to the use of a non-exact LS solver, 
the smoothing becomes implicit. 

An alternative algorithm with a similar flavor is the Block Coordinate Relax­
ation (BCR) method (Bruce et aL, 1998). Again, the original (PI,A) is replaced 
by a sequence of easier problems - this time owing to.a specific assumption on 
the structure of T. We assume that the dictionary T is built as an amalgam 
of J different unitary matrices {Tj}f=l, namely, 

(55) 
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The representation vector 1! can be also broken in this case to J disjoint 
parts of N entries each, denoted by {1!j}f=I' The problem (PI,A) can now be 
rewritten as 

2J J 

(56)min L l11!jlb + A ~ - LTj1!j
l!1 'Y2' ... 'YL j=1 j=1 2 

While this problem is difficult to solve in the general case, if we assume that 
{1!j }f=2 are all known and seek the optimal1!b there is a closed-form solution 
we can exploit. Since {1!j }f=2 are known, the new optimization task is 

(57) 


Since TI is unitary, this problem has the same structure as in (46) were we have 
given a closed-form solution being the soft-thresholding. This thresholding 
should be applied on the representation 

(58) 


and the first block of coordinates in 1! is updated. This process could be 
repeated sweeping through the various parts of 1!, always updating one while 
assuming all the other J - 1 blocks fixed. This algorithm is proven to converge 
to the solution of (PI,A)' 
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5 Morphological Component Analysis 

The task of decomposing signals into their building atoms is of great interest 
for many applications. In such problems a typical assumption is made that the 
given signal is a linear mixture of several source signals of more coherent origin. 
These kind of problems have drawn a lot of research attention in last years. 
Independent Component Analysis (ICA) and sparsity methods are typically 
used for the separation of signal mixtures with varying degrees of success. A 
classic example is the cocktail party problem where a sound signal containing 
several concurrent speakers is to be decomposed into the separate speakers. 
In image processing, a parallel situation is encountered for example in cases 
of photographs containing transparent layers. 

In this section we present the way to decompose a signal into its building 
parts using the Morphological Component Analysis (MCA) methodology. We 
start with a model of the problem, and show how sparsity plays a vital role in 
our ability to separates the different ingredients from each other. We discuss 
theoretic justification for the MCA method, and show some applications that 
are built around it. 

5.1 Sepamting signals to their ingredients 

Assume that the input signal to be processed has N samples, organized as a 
ID vector, §. ERN. Assume that the signal §. is a linear combination of two 
parts, §. = §.A +§.B, where §.A and §.B represent two different types of signals to 
be decomposed. The entire analysis presented here can be extended to treat 
any arbitrary number of data types, and for simplicity we assume that only 
two such types are to be separated. 

Our model assumes the following to hold true: 

(1) For every possible signal §.A of the first type, there exists an over-complete 
dictionary TA E MNxL.A' (where typically LA ~ N) such that solving 

Q.c;,rt = Arg mjn 1I!tllo subject to: §.A = TAQ. (59) 

leads to a very sparse solution (i.e. 11Q.:~rllo is very small). The definition 
in the above equation is essentially the overcomplete transform of §.A, 

yielding a representation Q.A' 

(2) For every possible signal §.B of the second type, solving 

Q.~ = ArgmJn I\flilo subject to: §.B = TAQ. (60) 
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leads to a very non-sparse solution (i.e. I\qA BO'Ptl\o is very big). This 
requirement suggests that the dictionary T A is distinguishing between 
the two types of signals to be separated. 

(3) 	 Similar to the above, we assume that a dictionary T B E MNxLB can 
be proposed, such that it leads to very sparse representations for every 
possible signal fiB of the second type, and it is also leading to highly 
non-sparse results when applied on signals of the first type. 

Thus, the two dictionaries T A and T B play a role of discriminants between 
the two content types. If we have two training sets of the first and the second 
signal types, {fiA (k) h: and {fiB (j)h, a possible measure of fidelity for the 
chosen dictionary T A is the functional 

(61) 


{~:;r(k) = ArgminQ. 1I~lIo subject to: fiA(k) ~ TAq}k
where: 

{~T(j) = ArgminQ. 1I~lIo subject to: fiB(j) = TA~}j. 

and similar expression can be written for the T B choice. This function of the 
dictionary is measuring the relative sparsity between the type-A family of 
signals and the B-type one. This, or a similar measure, could be used for the 
design of the proper choice of T A, but in this paper we assume that the choice 
of dictionaries is already done somehow. 

For an arbitrary signal fi containing both type A and type B contents as a 
linear combination, we propose to seek the sparsest of all representations over 
the augmented dictionary containing both T A and T B. Thus we need to solve 

{~T, ~r}=Argmin II~Allo+II~Bllo 	 (62) 
{~A' !!B} 

subject to: fi = TA~A +TB~B' 

This optimization task is likely to lead to a successful separation of the image 
content, such that TA~A is mostly of type A and TB~B is mostly with type-B 
content. The reason for this expectation relies on the assumptions made earlier 
about T A and T B being very efficient in representing one phenomenon and 
being highly non-effective in representing the other signal type. 

Two difficulties we need to consider are that (a) While sensible from the point 
of view of the desired solution, the problem formulated in Equation (62) is 
non-convex and hard to solve; and (b) The given signal will generally not 
decompose cleanly into the two content types due to additive noise or model 
mismatch. 
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As we have seen in the previous section, simplifying (62) with the MP or the 
BP formulation is a natural step with empirical· and theoretical justification 
that will solve the first difficulty mentioned. Also, changing the constraint by a 
penalty allowing for an approximate representation is desired, in order to solve 
the second problem. With the BP approach, the alternative decomposition 
problem reads 

In order to translate the above idea into a practical algorithm we should 
answer three major questions: (i) Is there a theoretical backup to the heuristic 
claims made here? (ii) How should we choose the dictionaries T t and Tn? and 
(iii) How should we numerically solve the obtained optimization problem in a 
traceable way? These three questions are addressed in the coming sections. 

5.2 M1hy should it work? Theoretical analysis 

Our theoretical analysis embarks from Equation (62), which stands as the basis 
for the separation process. This equation could also be written differently as 

(64) 

Thus, based on Theorem 1 and 2 we have that 

Theorem 6: Given a signal §.. being a sparse mixture of type-A and type-B 
contents, such that 

II~dlo "~"o + "~B"O < ~ (1 + M {~all}) ::; Spark{Tall}, (65) 

this mixture is necessarily the unique solution of (Po) as defined in (64). 

The inner requirement using the mutual incoherence is weaker than the one 
using the Spark and thus more restrictive. However, in many cases evaluation 
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of the Spark is difficult and the alternative weaker bound can used rather 

easily. 

A direct consequence of Theorems 4 and 5 is the following result 

Theorem 7: Given a signal §. being a sparse mixture of type-A and type-B 
contents, such that 

(66) 

this mixture will be recovered correctly by both the MP/BP methods. 

Thus, we see that if indeed our type-A and type-B contents were composed 
as sparse linear combination of atoms· from T A and T B, respectively, our 
decomposition will stand as the global minimum of (64), and moreover, it will 
be recovered successfully from the application of either the MP or the BP 
methods - both being computationally traceable. 

Actually, stronger claims could be given if we assume a successful choice of 
dictionaries T A and T B, and consider the task as separation only and not 
exact recovery of the atom composition per every content type alone. Let us 
define a variation of the Spark that refers only to the interface between atoms 
from the two dictionaries, and not to interactions of atoms within them. 

Definition 8: Given two matrices TA and T B, their Inter-Spark ((J'A~B = 
Spark{TA' TB}) is defined as the minimal number of columns from the con­
catenated matrix [TA, T B] that form a linearly dependent set, and such that 
columns from both matrices participate in this combination. 

With this defined measure, we can propose the following claim (stated without 
proof) as a variation on Theorem 6. 

Theorem 9: Given a signal §. known to be a sparse mixture of type-A and 
type-B contents, such that 

(67) 

and 

(68) 

this mixture is necessarily the unique mixture solution of (Po) as defined in 
(64). 
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The benefit in using this Theorem is that in general 

(69) 

and this value could be quite small if either 0"A or O"B are small, implying a 
weak claim in Theorem 6. However, as we focus on the separation task, the 
bound is dependent on the inter-Spark alone. Alternative approach, simpler 
but also weaker, towards the same analysis, could be proposed based on the 
notion of mutual incoherence. 

based on the Inter-Spark we may propose an extension to Theorem 7 present­
ing a more generous bound, but we choose to stop the analysis here, as we 
concentrate in this paper on the applicative part. As we mentioned before, 
the bounds given here are quite restrictive and does not reflect truly the much 
better empirical results. We regard this analysis as merely supplying a theo­
retical motivation, rather than complete justification for the later results. We 
should also note that the above analysis is coming form a worst-case point 
of view (e.g., see the definition of the Spark), as opposed to the average case 
we expect to encounter empirically. Nevertheless, the ability to prove perfect 
separation in a stylized application without noise and with restricted success 
is of great benefit as a proof of concept. Further work is required to extend 
the theory developed here to the average case. 

5.3 Toy problem - feel the idea work 

In order to demonstrate the gap between theoretical results and empirical evi­
dence in Basis Pursuit separation performance, figure 22 presents a simulation 
of the separation task for the case of signal §. of length N = 64, a dictionary 
built as the combination of the Hadamard unitary matrix (assumed to be T A) 
and the identity matrix (assumed to be TB)' Thus, type-A signals are char­
acterized as being periodic step functions, whereas type-B signals are isolated 
spikes. 

We randomly generate sparse representations with varying number of non­
zeros in the two parts of the representation vector (of length 128), and present 
the empirical probability (based on averaging 100 experiments) to recover 
correctly the separation. 

For this case, Theorem 7 suggests that the number of non-zeros in the two parts 
should be smaller than 0.5 * (1 +1/M) = (1 + v'64) /2 = 4.5. Actually a better 
bound exists for this case in (Elad and Bruckstein, 2001; Elad and Bruckstein, 
2002) due to the construction of the overall dictionary as a combination of 
two unitary matrices. Thus, the better bound is (v'2 - 0.5))/M = 7.3. Both 
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these bounds are overlayed on the empirical results in the figure, and as ~an 
be seen Basis Pursuit succeeds well beyond the bound. Moreover, extensIve 
experi~ents show that this trend is expected to strengthen as the signal size 
grows, since than the worst-ease-scenarios (for which the bounds refer to) 
become of smaller probability and of less influence on the average result. 

5 10 15 20 25 30 
Number of elements in the H part 

Fig. 22. Empirical probability of success of the Basis Pursuit algorithm for separa­
tion of sources. Per every sparsity combination, 100 experiments are performed and 
the success rate is computed. Theoretical bounds are also drawn for comparison. 

5.4 MGA in Practice 

Returning to the separation process, its idea presentation is posed in Equation 
(62), and a BP approximation of it is given in (63). We need to solve an 
optimization problem of the form . 

Dealing with images, the dimensions involved are too big (N ~ 106 , L ~ N) 
to allow for direct storage of the dictionary matrices, or their inversion. Thus, 
we seek methods that are built around the use of multiplication by TA or TBl 
and their adjoint - both assumed to be practical. 

Another complicating factor is L - the length of the representation vectorlklz. 
If for example L = lOON (implying a redundancy of factor 100), it means that 
storing and manipulating the solution of this problem requires a memory of 
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100 images. Instead of solving this optimization problem finding two repre­
t . {OPt opt , 

sen a~lOn vectors qA, qB }, let us reformulate the problem so as to get the 
two sIgnal types, ~A and ~B, as our unknowns. This way, if we return for the 

. example mentioned above, we seek two images rather than 100. 

Define ~A = TAqA and similarly ~B TBqB' Given ~A, we can recover QA as 
qA = T~~A + LA where LA is an arbitrary vector in the null-space of T A. Put 
these back into (63) we obtain 

{lft
, ~'lt} ={Argmin IIT~~A + LAllI + IIT~~B + LBlh (70)

.ltA' .ltB' !A' !B} 

+ AIIX - ~A - ~BII; 
Subject to: TALA = 0 , T BLB = O. 

The term T~~A is an overcomplete linear transform of the image ~A' Similarly, 
T~~B is an overcomplete linear transform of the type-B signal part. 

In our attempt to replace the representation vectors as unknowns, we see that 
we have a pair of residual vectors to be found as well. If we choose (rather 
arbitrarily at this stage) to assign those vectors as zeros we obtain the problem 

(71) 

We can justify the choice LA = 0, LB = 0 in several ways: 

Bounding function: Consider the function posed on (70) as a function of 
~A, ~B, where per every possible values of those two images we optimize with 
respect to LA, LB' Comparing this function to the one we have suggested 
in (71), the new function could be referred to as an upper bounding surface 
to the true function. Thus, in minimizing it instead, we can guarantee that 
the true function to be minimized is of even lower value. 

Relation to the HeR algorithm: Comparing (71) to the block-coordinate 
relaxation method presented earlier, we see close resemblance. This will be­
come a complete equivalence if we assume that the dictionaries involved 
contain just one unitary part. Thus, in a way we may refer to the approxi­
mation we have made here as a method to generalize the block-coordinate­
relaxation method for the non-unitary case. 

Relation to MAP: The expression written as penalty function in (71) has 
a Maximal-A-Posteriori estimation flavor to it. It suggests that the given 
image ~ is known to originate from a linear combination of the form .§.A +~B' 
contaminated by Gaussian noise - this part comes from the likelihood func­
tion II~ - ~A .§.BII~. We further assume that both type A and type-B parts 
come from a Gibbs distribution of the formConst·exp (-,BAIBIIT~/B.§.AIBlll)' 
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While different from our original point of view, these assumptions are rea­
sonable and not far from the Basis Pursuit approach. 

The bottom line to all this discussion is that we have chosen an approxima­
tion to our true minimization task, and with it managed to get a simplified 
optimization problem, for which an effective algorithm can be proposed. Our 
minimization task is thus given by . 

(72) 

The algorithm we use is based on the Block-Coordinate-Relaxation method 
(Bruce et aI., 1998), with some required changes due to the non-unitary trans­
forms involved. The algorithm is given below: 

1. Initialize Lmax, number of iterations, and threshold 8 = A . Lmax· 
2. Perform J times: 

Part A - Update of §.B assuming §.A is fixed: 
- Calculate the residual R = §. - §.A­

- Calculate f!B = T~R. 
- Soft threshold the coefficient f!B with the 8 threshold and obtainQB' 
- Reconstruct §.B by §.B = T BQ:B' 

Part B - Update of §.A assuming §.A is fixed: 
- Calculate the residual R = §. - §.B' 

- Calculate f!A = T~R. 
- Soft threshold the coefficient f!A with the 8 threshold and obtain QA' 

- Reconstruct §.A by §.A = T AQA . 

3. 	Update the threshold by 8 = 8 - A. 
4. 	If 8 > A. return to Step 2. Else, finish. 

The numerical algorithm for minimizing (72). 

In the above algorithm, soft threshold is used due to our formulation of the e1 

sparsity penalty term. However, as we have explained earlier, the e1 expression 
is merely a good approximation for the desired .eo one, and thus, replacing the 
soft by a hard threshold towards the end of the iterative process may lead to 
better results. 

We chose this numerical scheme over the Basis Pursuit interior-point approach 
in (Chen et aI., 1998), because it presents two major advantages: 

• 	We do not need to keep all the transformations in memory. This is par­
ticularly important when we use redundant transformations such the un­
decimated wavelet transform or the curvelet transform. 

• 	We can add different constraints on the components. As we shall see next, 
Total-Variation on some of the content types may support the separation 
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task, and other constraints, such as positivity, can easily be added as welL 

5.5 Applications - some examples and results 

5.5.1 1D elementary example 

1000 1500 2000 

500 1000 1500 2000 

r---r-~Sln.l2.5 
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o 500 1000 1500 2000 

=Io 500 1000 1500 2000 

Fig. 23. From top to bottom, oscillating component, component with bumps, coad­

dition of both, and simulated data 

Figure 23 shows an example of signal composed of two components,· one pre­
senting oscillations and the second three localized bumps. The number of sam­
ples is 2000. Gaussian noise have added to the signal (a = 0.1) (see Fig. 23 
bottom). Using the local neT with a block size equal to 256, and the isotropic 
a trous wavelet transform (with ten scales), we have obtained a decomposi­
tion shown in Figure 24. From top to bottom, we see the reconstructed os­
cillating component (continuous line) and the original oscillating component 
overplotted ( dashed line), the reconstructed component with bumps (contin­
uous line) and the original component overplotted (dashed line), the coaddi­
tion of both recovered signals (continuous line) and original signal overplotted 
(dashed line), and the residuaL This decomposition has been obtained with 
thirty iterations. 
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Fig. 24. From top to bottom, reconstructed oscillating component (continuous line) 

and original oscillating component overplotted (dashed line), reconstructed com­

ponent with bumps (continuous line) and original component overplotted (dashed 

line), co addition of both recovered signals (continuous line) and original signal over­

plotted (dashed line), residual. 

5.5.2 Lines - Points separation 

Figure 25 illustrates the separation result in the case where the input image 
(256 x 256) contains only lines and isotropic Gaussians. In this experiment, 
we have initialized Lmax to 20, and 8 to 2 (10 iterations). Two transform 
operators were used, the it trous wavelet transform and the ridge let transform. 
The first is well adapted to the detection of the isotropic Gaussians due to 
the isotropy of the wavelet function (Starck et al., 1998), while the second 
is optimal to represent lines (Candes _and Donohq,. ~Q}}9R).Ii'igure25_ top, 
bottom left, and bottom right represents respectively the original image, the 
reconstructed image from the it trous wavelet coefficient, and the reconstructed 
image from the ridge let coefficient. The addition of both reconstructed images 
reproduces the original one. 

The above experiment is synthetic and through it we validate the proper be­
havior of the numerical scheme proposed. While being synthetic, this experi­
ment has also high relevance for astronomical data processing where stars look 
like Gaussian and where images may also contain anisotropic features (dust 
emission, supernovae remnants, filaments, ... ). Separation of these compo­
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Fig. 25. Top, original image containing lines and Gaussians. Bottom left, recon­

structed image for the it. trous wavelet coefficient, bottom right, reconstructed image 

from the Ridgelet coefficients. 

nents is very important for the analysis of this type of images. 

5.5.3 Experiment on real astronomical data 

Fig. 26 upper left shows a compact blue galaxy located at 53 Mpc. The data 
have been obtained on ground with the GEMINI-OSCIR instrument at 10 
/Lm. The pixel field of view is 0.089" /pix, and the source was observed during 
1500s. The data are contaminated by a noise and a stripping artifact due to 
the instrument electronic. 

This image, noted D lO , has been decomposed using wavelets, ridgelets, and 
curvelets. Fig. 26 upper middle, upper right, and bottom left show the three 
images R lO , ClO , WlO reconstructed respectively from the ridgelets, the curvelets, 
and the wavelets. Image in Fig. 26 bottom middle shows the residual, i.e. 
elO = DlO - (RIO + ClO + WlO). Another interesting image is the artifact free 
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one, obtained by subtracting RIO and C10 from the input data (see Fig. ~6 
bottom right). The galaxy has well been detected in the wavelet space, while 
all stripping artifact have been capted by the ridgelets and curvelets. 

Fig. 26. Upper left, galaxy SBS 0335-052 (10 J..tm), upper middle, upper right, and 

bottom left, reconstruction respectively from the ridgelet, the curvelet and wavelet 

coefficients. Bottom middle, residual image. Bottom right, artifact free image. 

5.5.4 Separation of Texture from Piecewise-Smooth Content 

An ,interesting and complicated image content separation problem is the one 
targeting decomposition of an image to texture and piece-wise-smooth (car­
toon) parts. Such separation finds applications in in image coding, and in 
image analysis and synthesis (see for example (Bertalmio et aI., 2003)). 

A theoretic characterization of textures proposed recently by Meyer (2002) 
was used by Vese and Osher (2003), and Aujol et aI. (2003) for the design of 
such image separation algorithm, and these pioneering contributions awaken 
this application field. The approach advocated by Vese and Osher (2003) is 
built on variational grounds, extending the notion of Total-Variation (Rudin 
et al., 1992). 

Here we demonstrate that the MeA is capable of separating these image 
content types, and as such poses an alternative method to the variational one 
mentioned above. More on this approach can be found in (Starck et aI., 2003a). 
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Fig. 27. Original simulated image and OCT reconstructed component. Top - the 

combination image, Middle left - original texture part, Middle right - Original nat­

ural part, Bottom left - separated texture part, Bottom right - separated natural 

part. 

For the texture description, the DCT seems to have good properties due to 
the natural periodicity. If the texture is not homogeneous, a local DCT should 
be preferred. Characterizing the cartoon part of the image could be done in 

57 



6 

various ways, depending on the image content. For images containing lines of 
a fixed size, the local ridgelet transform will be a good dictionary candidate. 
More generally the curvelet transform represents well edges in images, and 
could be a good candidate as welL In our experiments, we have chosen images 
with edges, and decided to apply the texture/signal separation using the DCT 
and the curvelet transform. 

Assume hereafter that we use the DCT for the texture - denoted as T A = V. 
Assume further that given the representation coefficients of this transform, 
we have an inversion process of these DCT coefficients, denoted as V+ (with 
a clear abuse of notations). In such an inversion we refer to the frame ap­
proach that generalizes the inverse by a pseudo-inverse. Similarly, we choose 
the curvelet transform for the natural scene part, denote it by T B = C, and 
denote its inverse by C+. 

Returning to the separation process as posed earlier, we have two unknowns 
- ~D and §..c - the texture and the piecewise smooth images. The optimization 
problem to be solved is 

In this optimization problem we support the choice of the cartoon dictionary 
by adding another penalty term based on the Tot al-Variation on the cartoon 
image part. 

Figure 27 shows an original image (top), the two original parts the image 
was composed from (middle left and right), and the separated texture part 
(bottom left) and the separated cartoon part (bottom right). As we can see, 

. the separation is reproduced rather welL 

Figure 28 shows respectively the Barbara image, the reconstructed local cosine 
component and the reconstructed curvelet component. 

Conclusion 

The need to decompose signals into linearly-joined atomic parts belonging 
to different behaviors finds many appealing applications in signal and image 
processing. Past approach to this problem was based on statistical consider­
ations leading to Independent Component Analysis and its variants. In this 
paper we have presented an alternative deterministic methodology, based on 
sparsity, towards the same problem, named Morphological Component Analy­
sis (MCA). We have anchored this method with some conclusive theoretical 
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Fig. 28. Top, original Barbara image (512x512). Bottom left, reconstructed DCT 

component. Bottom left right, reconstructed curvelet component. 

results, essentially guaranteeing successful separation under some conditions. 
We have also demonstrated its use in several applications for images. 

A major role in the application of the MCA method is played by the dictionar­
ies chosen for the decomposition. This paper gives a wide survey of possible 
fast-implementation dictionaries taken from the wavelet theory, along with 
ways to use these dictionaries in linear and non-linear settings. We have seen 
that the combination of the multiscale transforms lead to a powerful method 
in the MCA framework. For some applications such denoising or deconvolu­
tion, M CA is however not the best way to combine the different transforms 
and to benefit of the advantages of each of them. Indeed, it has been shown 
that a very high quality restoration can be achieved in an efficient way using 
several multiscale transforms without having to perform a full decomposition 
of the original image (Starck et al., 2001; Starck et al., 2003b). 
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