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Abstract 

Using the charge reversal and time reversal properties of the Kerr-Newman solution, 
a definition of antimatter in General Relativity is proposed, which would provide a 
parameter-free explanation of the apparent cosmological term evidenced by super
novae, CMB and LSS data. Tests on positronium and antihydrogen, which could 
be realized in the next few years next to the CERN Antiproton Decelerator facility, 
are briefly discussed 

Introduction 

It seems obvious that General Relativity is unable to distinguish gravitation
ally matter from antimatter. Central to the General Theory of Relativity, the 
Equivalence Principle seems to imply, through the Einstein equations relating 
the metric tensor to the stress-energy tensor that, for identical initial condi
tions, the trajectory must be independent of the nature of the test particles 
or antiparticles. 

A number of authors have proposed various solutions appearing to circum
vent this argument, notably by extensions of general relativity [1,2]. In the 
following, we follow a different approach by showing that charge-reversal (C) 
and time-reversal (T) properties exist in simple solutions of General Relativ
ity that evoke strongly the transformation relating matter to antimatter. In 
particular, the Kerr-Newman geometry [3-5], which describes the geometry 
associated with a charged and spinning mass, and the simple geometry as
sociated with a spinning cosmic string [6] can be used to show that General 
Relativity appears to propose, through the discrete C, P and T transforma
tions, a rather natural, if surprising, definition of antimatter. 

The three discrete symmetries C, P and T are fundamental to the definition 
of antimatter. In effect, according to the CPT theorem [7,8], considered to be 
valid in extremely general conditions -although this theorem has not been 
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demonstrated in the case, notably, of curved spacetimes [9,10]""""1 the CP trans
formation relating matter and antimatter is strongly associated to the discrete 
T time-reversal symmetry, whose violation has recently been demonstrated 
experimentally for the first time [11]. Conversely, CP violation, discovered 
experimentally in 1964 by Christenson et al. [12], introduces an asymmetry 
between matter and antimatter [13], which appears extremely limited and 
confined until now to the neutral meson systems. Therefore, to an excellent 
approximation, antimatter appears as the CP-transformation of matter. Sim
ilarly, if the CPT symmetry is exact, antimatter can be defined, at the same 
excellent approximation, as "matter going backwards in time" [14]. In a first 
part, we will recall the properties of the Kerr-Newman geometry, representing 
a charged spinning mass, to exhibit its charge and time-reversal properties. 

A Kerr-Newman electron is also a positron 

In order to test the existence of charge-reversal properties, it appears adapted 
to use the maximal analytic extension of the Kerr-Newman geometry which 
represents the geometry associated with a mass m (supposed for the moment 
positive), specific angular momentum a = L/m, and an electric charge e. We 

2will use the fast Kerr geometry, i.e. respecting the condition e2 + a2 > m • 

In this case, the geometry has a simple topology and is not afflicted with a 
Cauchy horizon. Note that this condition is met for all elementary particles, 
with the notable exception of the scalar Higgs boson. 

The disk limited by the annular singularity present in the Kerr-Newman ge
ometry constitutes a "wormhole"between two asymptotically fiat spacetimes 
isomorphic to R,\ in which the top and bottom of the disk in the first spacetime 
are identified, respectively, to the top and bottom of the disk in the second 
spacetime [15]. An example is provided by the Kerr-Newman geometry with 
the m, a and e parameters of an electron: 

m "" 0.9 x 10-30kg, a = Ii/2m, e "" 1.6 x 10-19C 

In this case, the radius of the ring is "" 100 fm. 

The fast Kerr geometry is particularly simple since it involves no horizon. The 
angular momentum imposes an annular shape to the singularity, which appears 
naked but nevertheless almost invisible since the measure of initial conditions 
allowing to reach the ring singularity is zero. Brandon Carter has studied the 
topology of this solution [5], noting the striking analogy that a "Kerr-Newman 
particle"bears with real particles. In particular, the gyromagnetic factor of the 
Kerr-Newman electron is g = 2 and the geometric extension of the ring is of the 
order of the Compton wavelength of the electron, giving it a spatial extension 
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compatible with its cross-section. 

Another interesting feature concerns the charge conjugation (C) properties of 
this solution. By crossing the non singular interior of the ring, an observer 
will measure the charge and mass of the electron with a reversed sign. For a 
particle physicist, this means that the particle with the quantum numbers of 
an electron in the first spacetime has the quantum numbers of a positron in 
the second spacetime, linked to the first by the interior of the Kerr ring. It is 
important to note that if we assume that the initial "electron "has a positive 
mass, the "positron"has necessarily a negative mass -m, inducing repulsive 
gravity. 

This results immediately from the symmetry properties of the metric and 
electromagnetic field tensor form of the Kerr-Newman solution, which can be 
expressed [5] in Boyer~Lindquist coordinates: 

and: 

F =2ep-4 [(r2 - a2cos20( dr 1\ (dt - asin20d4»] 

-2earp-4 [sin20dO 1\ (adt - (r2 + a2) d4»] 

and where: 

and 

Another significant and surprising feature of the Kerr-Newman solution is the 
fact that it is possible to go backward in time by exploring the second space
time linked to the first by the interior of the Kerr ring. This feature was also 
studied by Brandon Carter, and is known as the "Carter time machine" [16]. 
Initially considered as a source of paradoxical situations, the solutions incor
porating CTCs are now known to lead to consistent solutions [17-19]. Using 
regions with CTCs to define antimatter appears consistent with antimatter 
defined as matter going backwards in time, as suggested by the CPT theorem 
and the Feynman-Wheeler picture [14] .. 
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3 Conjugate points in the Kerr-Newman geometry 

An important generic property of General Relativity is the existence of points 
of infinite magnification for the image of an object through the lensing created 
by a massive object. Used in recent years to detect massive compact halo 
objects (:NIACHOs) in our galactic neighborhood [20,21]' this magnification, 
when it is infinite, has the consequence that the lensed object may appear 
infinitely more luminous and closer than its true position. This property is 
even stronger for the' fast Kerr-Newman geometry, where Closed Timelike 
Curves (CTCs) exist between any two points. For a given point A in the 
neighborhood of the ring, there exists a set of points B such that the radar 
interaction between A and B -photons are emitted by A, scattered by B 
and received back by A- is instantaneous. The signal emitted comes back 
with zero time delay as seen by the emitter, and an object at location B will 
then appear to an observer as if it were at location A. These points can be 
explicitly constructed in the Kerr geometry in 2 + 1 dimensions, where the 
spinning cosmic string is an exactly soluble model [6]. It is straightforward 
to demonstrate that the set of such points B lies on a portion of ellipse 
a portion of ellipsoid in 3 + 1 dimensions - (Fig. 1) since the time pitch 
associated wi th a 27r rotation around the spinning cosmic string can be wri tten 
as i:l.t = 87raG, where a is the specific angular momentum per unit length of 
the string [6J. 

From the existence of conjugate points in 2 + 1 gravity, expected to be valid 
also in 3 + 1 gravity from the existence of CTCs, there follows a (non local) 
definition of antiparticles in general relativity as the time-reversed image of 
particles observed through a Kerr ring. These Kerr rings could be present in 
all elementary particles, if they are string loops, and in the past singularity of 
the Big Bang. This (non-local) definition of antimatter and the symmetries ex
hibited by the Kerr-Newman solution imply as a consequence a gravitational 
repulsion between matter and antimatter, defined relatively to each other and 
not in an absolute way. The coupling of systems with opposite arrows of time 
is reminiscent of the dynamical systems studied by Schulman [22]. From the 
persistence of individual arrows of time for such weakly coupled systems, in
teractions of each system with the conjugate system are expected to appear 
as nOIse. 

4 Explaining the cosmological constant coincidence 

During the sixties and early seventies, several attempts have been made, using 
notably a conjectured repulsion in strong interactions [23], which failed to jus
tify the survival of significant matter and antimatter domains in a symmetric 
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Fig. 1. An observer in A can use a spinning cosmic string to discuss at zero time 
delay with a set of points B located on a portion of ellipsoid. In the special case 
where the angle deficit created by a cosmic string is IT, a point B exists such that 
a signal emitted by A and reemitted by B comes back to A at zero time delay and 
with a direction identical to that of the initial signal. The interaction between A 
and B is then diverging, and as a consequence B appears to be at the position of A 

universe. The gravitational repulsion evidenced in the Kerr-Newman solution 
would, on the other hand, effectively lead to a symmetric matter-antimatter 
universe. It is fascinating to note that this gravitational repulsion between 
matter and antimatter as defined above appears to lead to a parameter-free 
explanation of the value of the "cosmological constant "observed in recent 
supernovae and C?vlB observations [24-26]: 

!ltot = !lmatter + !lA '" 1 ± 0.02 

where a nearly flat universe is composed of only 0.045 of ordinary baryonic 
matter, with a dark matter density !lmatter '" 0.30 and an apparent cosmologi
cal density !lA '" 0.70. To justify this statement, let us consider the expression 
for the deceleration parameter q as a function of the scale factor a and its 
derivatives: 

aa 
q=---=--:ia 

When observed on a scale larger than the matter or antimatter domains, this 
symmetric universe will appear flat with a parameter q <'" 0 due to the re
pulsion of adjacent domains. Therefore, in a situation where the cosmological 
constant is zero, it is possible to parametrize the repulsive term by a cosmo
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logical constant respecting: 

Although, at any given epoch, this equality will locally be verified, the evo
lution of the matter density pmatter with time has for consequence that the 
derived value of the effective "cosmological constant"energy density will vary 
according to (1 + z? since the matter density varies approximately in this 
way after recombination. Therefore, the simple approximation we have used 
indicates that by using a large number of smaIl-z supernovae, we would find a 
value of the cosmological constant f!A rv f!matter/2, while for the sample used 
in the SN1a observations [24,25], it is simple to check that the supernovae 
have redshift parameters such that the average value of ((1+z)3) rv 3, leading 
to an apparent OA rv 2 x Omatter. Therefore, the apparent extraordinary coin
cidence between the matter and cosmological constant densities [27] is simply 
explained in this symmetric matter-antimatter universe. Ripalda, in a differ
ent theoretical context, has also noted that repulsive gravity would lead to a 
cosmological constant density of the same order as the matter density [28]. 

Critical discussion 

Antigravity is usually considered as being impossible within the context of 
General Relativity. We recalled that, on the contrary, repulsive gravity is 
present in a large number of solutions in General Relativity and that the 
charge and time reversal properties of the solution provide a strong motiva
tion for antigravity. In addition, it should be remembered that most if not all 
the impossibility arguments against antigravity have been shown to present 
loopholes (see Nieto and Goldman [2] for a critical discussion). In the follow
ing, we briefly discuss some of the impossibility arguments associated with the 
use of the (mr < 0) part of the Kerr-Newman solution. 

In particular, using the (mr < 0) subspace in Kerr-Newman obviously violates 
the weak energy condition. On the other hand, various counterexamples are 
known for most of the expressions of positivity of energy (for a critical discus
sion, see e.g. Visser, Chap. 12, Ref. [29]). Therefore, while it seems probable 
that an instability will develop in some region of the maximal analytic ex
tension of the Kerr-Newman solution, it does not mean, however, that the 
subspace defined by the condition (mr < 0) has no physical content. 

The two-body solution in General Relativity is presently not known and even 
appears as a long-term goal. We note here that this solution might involve the 
coupling of regions of space-time with opposite relative time arrows, which 
would restore the symmetry between the (mr > 0) and the (mr < 0) parts of 
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the Kerr-Newmann solution. 

Also, Penrose has conjectured that naked singularities are forbidden (the so
called "cosmic censorship" conjecture). It may seem that the cosmic censor
ship hypothesis is grossly violated in the Kerr-Newman solution, which should 
therefore be rejected as non-physical. In fact, the violation could be very mild 
since, as noted already by Carter [5], the Kerr and Kerr-Newman singularities 
can only be reached by an observer following a null trajectory with initial con
ditions of zero measure. In this sense, the singularity present in these solutions 
is nearly perfec~ly invisible, and it appears probable that in every realistic so
lution (the Schwarzschild solution being exceptional with its perfect spherical 
symmetry [30]), the singularities will be effectively invisible. Note that, in our 
past, a global singularity (the Big Bang) is visible, while time asymmetry and 
instability are manifest in almost every macroscopic physical phenomenon. 

Until recently, it was believed that Closed Timelike Curves (CTCs) would 
lead to inconsistencies and should therefore be avoided at all cost. A more 
precise study [19,17,18] has shown that consistent histories can always be 
found despite the presence of CTCs. Surely enough, the existence of CTCs in a 
solution brings with it a loss of uniqueness and determinism in the solution, but 
it may be useful to remember that quantum physics has the same characters. 

Similarly, coupling two systems with opposite arrows of time was initially 
considered as inconsistent, or leading at the very least to the destruction of 
the individual arrows of time of each of the two subsystems (see e.g. [22] and 
references therein). But Schulman [22] provided evidence, using simulations 
of simple dynamical systems, that the coupling of dynamical systems with 
opposite times would preserve the existence of individual time arrows. Note 
also that the initial low entropy of the universe could be justified much more 
easily in this context than in the standard cosmological model. 

Finally, we note that the usual arguments invoked to exclude the existence of 
large domains of antimatter through the non observation of diffuse gamma
ray background [31] are not applicable since diffusion and annihilation at the 
border of matter and antimatter domains is prevented to a large extent by 
gravitational repulsion. 

Experimental tests 

There is presently no direct experimental test of the gravitational mass of 
antiparticles. Fairbank and Witteborn [32] made pioneering measurements on 
electrons but these measurements were inconclusive [33]. In fact, it can be 
shown that, under realistic conditions, the measurement of the gravitational 
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mass of an electron is almost necessarily hidden in the Johnson noise of ad
jacent metallic surfaces used to shield the measurement from external fields. 
On the other hand, measurements on antiprotons, with a higher m/e ratio, 
could probably be realized using high bandwidth Single Electron Transistor 
(SET) electronics [34]. However, since the quark mass content of the proton is 
only of the order of one percent, the significance of a null measurement could 
remain ambiguous. 

Measurements of the gravitational mass of antihydrogen and positronium 
atoms have been proposed [35-37]. Realized on neutral systems, these ex
periments could lead to the first precision measurements of the gravitational 
mass of simple antiparticle systems. These measurements could be realized 
within the next few years near the Antiproton Decelerator (AD) at CERN. 

Precision measurements in cosmology, in particular on supernovae, could also 
represent an important test. By observing SN1a supernovae of high z (typi
cally> 1), the difference of prediction between a cosmological constant term 
and a term directly linked to the matter content could be observed. Satellite 
experiments such as SNAP, by observing samples of a few thousand SN1a 
supernovae, could test our hypothesis with precision. 

Finally, we note that our definition of antimatter in General Relativity could 
lead to a parameter-free explanation of CP-violation in the neutral meson 
system [38-42]. 

7 Conclusions 

Charge (C) and time (T) reversal properties of the Kerr-Newman solutions 
suggest a natural definition of antimatter in General Relativity, strongly remi
niscent of Dirac's definition of antimatter. Although, clearly, the cosmological 
consistency of our proposed definition of antimatter in general relativity has 
yet to be demonstrated, it provides a parameter-free explanation of the oth
erwise extraordinary coincidence of the cosmological constant energy density 
with the matter density, evidenced in the supernovae SN1a and CMB data. 

8 Acknowledgments 

Discussions with J-M. Rax, D. Ahluwhalia, B. Carter, D. Connetable, G. 
Esposito-Farese, E. Fischbach, T. Goldman, lvI.lvI. Nieto and R. Pain are grate
fully acknowledged. Needless to say, these people are not responsible for the 
errors and omissions contained in this paper. 

8 



References 

[1] J. Scherk, Phys. Lett. B 88 (1979) 265 

[2] 111. M. Nieto and T. Goldman, Phys. Rep. 205 (1991) 221 and references therein 

[3] R.P. Kerr, Phys. Rev. Lett. 11 (1963) 238 

[4] E. T. Newman, E. Couch, R. Chinnapared, A. Exton, A. Prakash and R. 
Torrence, J. Math. Phys. 6 (1965) 918 

[5] B. Carter, Phys. Rev. 174 (1968) 1559 

[6] S. Deser, R. Jackiw and G. t'Hooft, Ann. Phys. 152 (1984) 220 

[7] W. Pauli, Phys. Rev. 56 (1940) 716 

[8] G. Liiders, Ann. Phys. 2 (1957) 1 

[9] T. Banks, Nucl. Phys. B 249 (1985) 332 

[10] R.M. Wald, Phys. Rev. D 21 (1980) 2742 

[11] A. Angelopoulos, et al., Phys. Lett. B 444 (1998) 43 

[12] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 
13 (1964) 138 

[13] J.J. Sakurai and A. Wattenberg, Phys. Rev. 161 (1967) 1449 

[14] J .A. Wheeler, Ann. Phys. 2 (1957) 604 

[15] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time 
(Cambridge Univ. Press, Cambridge, UK, 1973) 

[16] B. O'Neill, The Geometry of Kerr Black Holes (A.K. Peters, Wellesley, 
Massachusetts, 1995) 

[17] J. Friedman, -1,1. S. tJ.lorris, I. D~ Novikov, F. Echeverria, G. Klinkhammer, K. 
S. Thorne and U. Yurtsever, Phys. Rev. D 42 (1990) 1915 

[18] J. Friedman and M. S. Morris, Phys. Rev. Lett. 66 (1991) 401 

[19] F. Echeverria, G. Klinkhammer and K. S. Thorne, Phys. Rev. D44 (1991) 1077 

[20] C. Alcock et al., (lIIACHO Collaboration) Nature 365 (1993) 621 

[21] E. Aubourg et al., (EROS Collaboration) Nature 365 ( 1993) 623 

[22] L.S. Schulman, Phys. Rev. Lett. 83 (1999) 5419 

[23] R. Omnes, Phys. Rev. Lett. 23 (1969) 38 ; Phys. Rep. 3 (1970) 1 

[24] S. Perlmutter et al., Nature 391 (1998) 51 

[25] A. G. Riess et al., Ap. J. 116 (1998) 1009 

9 



[26] M. Tegmark et al., astro-ph/0310723, to appear in Phys. Rev. D 

[27] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1 

[28] J .M. Ripalda, gr-qc/9906012 

[29] M. Visser, Lorentzian wormholes, From Einstein to Hawking, (Springer, New 
York, 1996), Chapter 12 

[30] W. Israel, Phys. Rev. 164 (1967) 1776 

[31] A.G. Cohen, A. De Rujula, S.L. Glashow, Ap. J. 495 (1998) 539 

[32] F.C. Witteborn and W.M. Fairbank, Phys. Rev. Lett. 19 (1967) 1049 

[33] J .M. Lockhart, F.C. Witteborn and WM. Fairbank, Phys. Rev. Lett. 67 (1991) 
erratum 

[34] V. Bouchiat, G. Chardin, M. Devoret and D. Esteve, Hyperfine Interactions 
109 (1997) 345 

[35] M. Charlton et al., Phys. Rep. 241 (1994) 65 

[36] C.L. Cesar, Hyperfine Interactions 109 (1997) 293 

[37] A.P. Mills, M. Leventhal, Nucl. Instr. Meth. B 192 (2002) 102 

[38] G. Chardin and J .M. Rax, Phys. Lett. B 282 (1992) 256 

[39] G. Chardin, Hyperfine Interactions 109 (1997) 83 

[40] T. Goldman, M.M. Nieto and V. D. Sandberg, Mod. Phys. Lett. A 7 (1992) 
3455 

[41] A.W. Overhauser, Physics Department, Purdue University, March 2000, private 
communication 

[42] S.H. Aronson, G.J. Bock, H.-Y. Cheng and E. Fischbach, Phys. Rev. D 28 
(1983) 495, see not~ 69 

10 





