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We combine singular value decomposition techniques and wavelet transform an~lysis to generalize 
the multifractal formalism to vector-valued random fields. The so-c~lled T~n~onal Wavelet Trans
form Modulus Maxima (TWTMM) method is calibrated on synthetic self-.slmllar 2D vector-valued 
multifractal measures and monofractal 3D vector-valued fractional Br?wman field~ .. We report the 
results of some application of the TWTMM method to turbulent. velOCity. and vorticIty fi:lds gene:
ated by Direct Numerical Simulations (DNS) of the incompressIble Navler-Stokes equatl?ns. T~lS 
study reveals the existence of an intimate relationship Dv(h + 1) = Dw (h), b~tween the sIng~lanty 
spectra of these two vector fields which are fou~d s~gnificantly m~re. intE;lrmIttent than prevIOusly 
estimated from longitudinal and transverse velOCIty Increment statIstIcS. 

PACS numbers: 47.53.+n, 02.50.Fz, (l5.40-a, 47.27.Gs 

I. INTRODUCTION 

The multifractal formalism was introduced in the mid-eighties to provide a statistical description of the fluctuations 
of regularity of singular measures that are found in chaotic dynamical systems [1-3] or in the modelling of the energy 
cascading process in turbulent flows (4-7]. Box-counting and correlation algorithms were successfully adapted to 
resolve multifractal scaling for isotropic self-similar fractals by computation of the generalized fractal dimensions Dq [8
12]. As to self-affine fractals [13, 14], Parisi and Frisch [15] proposed, in the context of the analysis of fully developed 
turbulence velocity data, an alternative multifractal description based on the investigation of the scaling behavior of 
the so-called structure functions [16, 17]: Sp(l) =< (OVI)P > rv lC;p (p integer> 0), where 6VI(X) = v(x +l) - v(x) is 
an increment of the recorded longitudinal velocity component over a distance l. Then, from the local scaling behavior 
of the velocity increments, OVI(X) rv lh(a::), the D(h) singularity spectrum is defined as the Hausdorff dimension of the 
set of points x where the local roughness (or HOlder) exponent h(x) of v is h [15, 18-21]. In principle, D(h) can be 
attained by Legendre transforming the structure function scaling exponents (p [15, 20, 21]. Unfortunately, as noticed 
by Muzy et al [22], there are some fundamental drawbacks to the structure function method. Indeed, it generally 
fails to fully characterize the D(h) singularity spectrum since only the strongest singularities of the function v itself 
(and not the singularities present in the derivatives of v) are a priori amenable to this analysis. Even though one 
can extend this study from integer to real positive p values by considering the increment absolute value 16vd, the 
structure functions generally do not exist for p < 0, which makes the decreasing right part of the D(h) singularity 
spectrum inaccessible to this method. Moreover, singularities corresponding to h > 1, as well as regular behavior, 
bias the estimate of (p [20-22]. 

In a previous work, Arneodo and collaborators [20-22] have shown that there exists a natural way of performing a 
unified multifractal analysis of both singular measures and multi-affine functions, which consists in using the continuous 
wavelet transform (WT) [23-27]. By using wavelets instead of boxes, one can take advantage of freedom in the choice 
of these "generalized oscillating boxes" to get rid of possible smooth behavior that might either mask singularities or 
perturb the estimation of their strength h. The other fundamental advantage of using wavelets is that the skeleton 
defined by the wavelet transform modulus maxima (WTMM) [28, 29], provides an adaptive space-scale partitioning 
from which one can extract the D(h) singularity spectrum via the scaling exponents r(q) (q real positive as well 
as negative) of some partition functions defined from the WT skeleton. The so-called WTMM method [20-22] 
therefore provides access to the entire D(h) spectrum via the usual Legendre transform D(h) = minq(qh - r(q)). 
We refer the reader to Refs. [30, 31] for rigorous mathematical results and to Ref. [32] for the theoretical treatment 
of random multifractal functions. Let us also note that from a fundamental point of view, the WTMM multifractal 
formalism has been revisited in Refs. [33, 34], in order to incorporate in this statistical "canonical" description (which 
applies for cusp-like singularities only), the possible existence of oscillating singularities [29, 33, 35]. This new "grand 
canonical" description [33, 34] allows us to compute the singUlarity spectrum D(h, fJ), which accounts for the statistical 
contribution of singularities of HOlder exponent h and oscillating exponent fJ (where fJ characterizes the local power 
law divergence of the instantaneous frequency). 
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Applications of the WTMM method to ID signal have already provided insight into a wide variety of prob
lems [36, 37],. e.~., the validation of the. log-normal cascade phenomenology of fully developed turbulence [38-42], 
the char~ctenzatlOn and the understa~dmg of l.ong-range correlations in DNA sequences [43-461, the demonstration 
of the eXIst:nce of a caus~l cascad: of.m~ormatlOn from large to small scales in financial time series [47, 48], the use 
of the. multIfractal formalIsm to dIscnmmate between healthy and sick heartbeat dynamics [49, 50], the discovery 
of a FIbonacci structural ordering in ID cuts of diffusion limited aggregates (DLA) [51-54]. The canonical WTMM 
method has been further generalized from ID to 2D with the specific goal to achieve multifractal analysis of rough 
surfaces with fractal dimensions DF anywhere between 2 and 3 [55-58]. The 2D WTMM methodology has been suc
cessfully applied to characterize the intermittent nature of satellite images of the cloud structure [55-581, to perform a 
morphological analysis of the anisotropic structure of atomic hydrogen (HI) density in Galatic spiral arms (59J and to 
assist in the diagnosis in digitized mammograms [60J. We refer the reader to Ref. [61] for a review of the 2D WTMM 
methodology, from the theoretical concepts to experimental applications. 

In a recent work [62, 63], we have further extended the canonical WTMM method to 3D analysis. After some 
convincing test applications to synthetic 3D monofractal Brownian fields and to 3D multifractal realizations of singular 
cascade measures as well as their random function counterpart obtained by fractional integration, we have applied 
the 3D WTMM method to dissipation and enstrophy 3D numerical data issued from Direct Numerical Simulations 
(DNS) of isotropic turbulence. The results so obtained have revealed that ~he multifractal spatial structure of both 
the dissipation and ens trophy fields are likely to be well described by a multiplicative cascade process that is definitely 
non-conservative. This contrasts with the conclusions of previous boi-counting analysis [5, 7, 64-69) that failed to 
estimate correctly the corresponding multifractal spectra because of their intrinsic inability to master non-conservative 
singular cascade measures [62, 63J. To our knowledge, thus far, the multifractal description has been mainly devoted 
to scalar measures and functions. However, in physics as well as in other fundamental and applied sciences, fractals 
appear not only as deterministic or random scalar fields but also as vector-valued deterministic or random fields. In 
the spirit of a preliminary theoretical study of self similar vector-valued measures by Falconer and O'Neil [70], our 
objective here is to generalize the WTMM method to multi-dimensional vector valued fields with the specific goal to 
achieve the first comparative 3D vectorial multifractal analysis of numerical velocity and vorticity fields generated in 
(256)3 DNS of the incompressible Navier-Stokes equations. The preliminary results of this study have been announced 
in a previous short communication [71J. 

The article is organized as follows. In Section II, we define the tensorial w~velet tran~form of a ve~tor-val~ed field. 
Using singular value decomposition techniques [72J, we show how to characte~I~e the (~older) regularIty of. this vector 
field taking into account all its components, from the scale-spa~e decompOSItIOn prOVIded by the Te;tsorml Wavel~t 
1fansforin Modulus Maxima (TWTMM) method which generalIzes the WTMM method to the mul~Ifracta~ a~alysIs 
of vector-valued fields. Section III is devoted to test applications of the TWTMM method to synthetIc self-sllllliar 2D 
vector-valued multifractal measures and to monofractal 3D vector-valued fractional Brownian fields. In Section IV, 
we report the results of the application of the TWTMM method to DNS t~bulenc~ data. The. singularity sp~ctr~ of 
the full 3D velocity and vorticity fields are computed and compared to preVIOUS estImates obtamed from 10ngItudmai 
and transverse velocity increments. We conclude with some perspectives in Section V. 

II. A WAVELET-BASED MULTIFRACTAL FORMALISM FOR VECTOR-VALUED FIELDS 

A. The tensorial wavelet transform 

Let us note Vex = (Xl, X2,", Xd)), a vector-valued field with square integrable scalar compone.nts Vj(x), j = 1,2, .. , d. 
Along the line of the multi-dimensional WTMM me~hod [56-58, 61-:-63], let us define d analyzmg wavelets 'l/Ji(X) that 
are, respectively, the partial derivatives of a smoothmg scalar functIOn ¢(x) : 

'l/Ji(X = (xt, X2, ... , Xd») = 8¢(x = (xt, X2, ... , xd»/8xi, i = 1,2, .. , d. (2.1) 

We will assume that ¢ is well localized around Ixl = 0 and that it is an isotropic function that depends on Ixl only. 

In this work, we will mainly use the Gaussian function: 

_ -lxI2/2 (2.2)¢(X=(Xl,X2, ... ,Xd )) -e . 

For our specific 3D application to DNS data in, Secti~n IV, .we will test the robustness of our estimates of the 
multifractal spectra when using alternatively the ISOtroPIC meXIcan hat: 

¢(x) = (3 _ x2)e-lxI2/2. (2.3) 
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This will correspond to use third-order analyzing wavelets 'l/Ji(X) (i = 1,2, .. , d) with their three first moments equal 
to zero instead of first order analyzing wavelets with one zero moment only. 

The wavelet transform of V with respect to 'l/Ji (i 1,2, .. , d), at the point b and the scale a can be expressed in a 
tensorial form [71]: 

where 

... T'IjIl[Vd]) 

... T'IjI2[Vd] 
. , (2.4) 

T'ljld[Vd] 

(2.5) 


Let us point out that each column vector of the tensor in Eq. (2.4) is nothing but the 3D wavelet transform of the 
component Vj of the vector field V [62, 63]. This vector T ",[Vj] defines the direction and the amplitude of the largest 
variation of the scalar component Vj at scale a. Our strategy will thus consist in defining some equivalent for the 
vector field V itself, i.e., in finding the direction that locally corresponds to the maximum amplitude variation of V. 
To be more concrete, this requires to find the column vector C that maximizes the following norm: 

(2.6) 

where ICI = JEt=10; is the Euclidean norm of Rd and . denotes the usual matrix product. This can be obtained 
from the singular value decomposition [71, 72] of the matrix (T'IjI.[Vj]) (Eq. (2.4)): 

(2.7) 

where G and 1H[ are orthogonal matrices (GTG = 1H[T1H[ = lId) and ~ = diag(aI, a2, .. , ad) with ai ~ 0, for 1 :::; i :::; d. 
The columns of G and 1H[ are referred to as the left and right singular vectors respectively, and the singular values 
of'lf",[V] are defined as the diagonal elements of ~ which are the non-negative square roots of the d eigenvalues of 
'If,,,[V]T'lf,,, [V]. Let us note that this decomposition is unique, up to some permutation of the ai's. The direction of 
the largest amplitude variation of V, at point b, when seen at scale a by the "wavelet transform microscope", is thus 
given by the eigenvector G p(b, a) associated to the spectral radius 

p(b, a) m~xaj(b, a). (2.8) 
J 

One is thus led to the analysis of the vector field: 

T""p[VJ(b, a) = p(b, a)Gp(b, a), (2.9) 

whose modulus is nothing but the spectral radius 

M",(b, a) = IT""p[V](b, a)1 = p(b, a). (2.10) 

Thus from the scaling behavior of the spectral radius, one can characterize the local Holder regularity of the vector 
field V. Let hj(xo), j 1,2, .. , d, be the Holder exponents of the d components of V respectively [13, 20, 30, 31]. 
Provided the number n'ljlj of zero moments of the analyzing wavelets 'l/Jj be larger than hj(Xo) for j = 1,2, .. , d, then 
as proved in Refs. [62, 63J, the wavelet transform of the component Vj with respect to 'l/Ji behaves as: 

(2.11 ) 

It is then straightforward to show that, in the limit a -+ 0+, the scaling behavior of the spectral radius is dominated 
by the smallest Holder exponent: 

(2.12) 

that we will call the Holder exponent of V at the point Xo. 
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B. The tensorial wavelet transform modulus maxima method 

Very much like what has been done for the WTMM analysis of multi-dimensional scalar fields [56, 61-63], let us 
define, ata given scale a, the WTMM as the position b where the modulus M",,[V](b, a) p(b, a) (Eq. (2.10)) is 
locally maximum along the direction of Gp(b, a) (Eq. (2.9)). These WTMM lie on connected (d 1) hypersurfaces 
called maxima hypersurJaces (see Figs. 3 and 7). In theory, at each scale a, one only needs to record the position 
of the local maxima of M"" (WTMMM) along the maxima hypersurfaces together with the value of M"" [V] and the 
direction of G p • These WTMMM are disposed along connected curves accross scales called maxima lines [56, 61-63] 
living in a (d + I)-space (Xl, X2, •• , Xd, a). The WT skeleton is then defined as the set of maxima lines that converge 
to the (XlJ X2, •• , Xd) hyperplane in the limit a --+ 0+ (see Fig. 3d). As originally demonstrated in Ref. [63, 71], the 
local HOlder regularity of V, as characterized by h(xo) minj hj(xo), can be estimated from the power-law behavior 
ofM",,[V]: 

(2.13) 

along the maxima line £xo (a) pointing to the point Xo in the limit a --+ 0+, ,provided h(xo) be smaller than the 
number n"" (= minj n1/Jj) of zero moments of the analyzing wavelet 1/1 [62,6'3,71]. 

As recalled in the introduction, the multifractal formalism aims at computing the singularity spectrum D(h) of the 
considered field, here the vector-valued field V: 

D(h) = dH{x E JR., h(x) h}. (2.14) 

D(h) associates with any h, the Hausdorff dimension of Sh, the set of all point Xo E JR., so that the Holder exponent 
of V is h. Mapping the WTMM methodology developed for multidimensional scalar fields [56, 61-63], we use the 
space-scale partitioning given by the WT skeleton to define the following partition functions: 

Z(q, a) = L (M",,[V](x, a))q , (2.15) 
£e£(a) 

where q E JR. and £(a) is the set of maxima lines that exist at scale a in the WT skeleton. From a deep analogy that 
links the multifractal formalism to statistical thermodynamics [1-3, 5, 21], one can define the scaling exponents r(q) 
from the power-law behavior of the partition functions: 

Z(q, a) '" ar(q) , a --+ 0+ , (2.16) 

where q and r(q) play respectively the role of the inverse temperature and the free energy. The main result of 
the tensorial wavelet based multifractal formalism [71] is that in place of the energy and the entropy (Le. the 
thermodynamical variables conjugated to q and r), one has the Holder exponent h (Eq. (2.13)) and the singularity 
spectrum D(h) (Eq. (2.14)). This means that the D(h) singularity spectrum of V can be determined from the 
Legendre transform of the partition function scaling exponents r(q): 

D(h) = min(qh - r(q)). (2.17) 
q 

From the properties of the Legendre transform, it is easy to convince oneself that homogeneous (monofractal) vector
valued fields that involve singularities of a unique Holder exponent h or/oq, are characterized by a r(q) spectrum 
which is a linear function of q. On the contrary, a non-linear r(q) curve is the signature of nonhomogenous fields 
that display multi fractal properties, in the sense that the Holder exponent h(x) is a fluctuating quantity that depends 
upon the spatial position x (in other words, the local roughness exponent is fluctuating from point to point). 

From a practical point of view, one can avoid performing the Legendre transform by considering the quantities h 
and D(h) as mean quantities defined in a canonical ensemble, i.e. with respect to their Boltzmann weights computed 
from the WTMMM [20, 21, 56, 61-63]: 

(M",,[V](x, a))q
W",,[V](q,£,a) (2.18)Z(q,a) 

where Z(q, a) is the partition function defined in Eq. (2.15). Then one computes the expectation values: 

h(q, a) = L In 1M"" [V](r, a)1 W",,[V](q, £, a) , (2.19) 
£e£(a} 
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and 

D(q,a) = L W,p[V](q,C,a) In(W,p[V](q,C,a») , 	 (2.20) 

£E£(a) 

from which one extracts 

h(q) = lim h(q, a)j Ina, 	 (2.21) 
a-+O+ 

D(q) = lim D(q, a)jlna, 	 (2.22) 
a-+O+ 

and therefore the D(h) singularity spectrum. 

III. 	 TEST APPLICATIONS OF THE TWTMM METHOD TO MONOFRACTAL AND MULTIFRACTAL 
SYNTHETIC VECTOR FIELDS 

A. Multifractal vector-valued measures 

As a first test application of the TWTMM method described in Section II to the vector situation, let us consider 
the self-similar vector measures defined on Euclidean space originally introduced by Falconer and O'Neil [70]. The 
a-additivity property of positive scalar measures [1-3, 6, 13] is now replaced by the vectorial equality: 

m 

tt(U Ai) = tt(A1 ) + ... + tt(Am), (3.1) 
i=l 

where Ab", Am are disjoint sets. In figure 1, are illustrated the first three steps in the construction of a multiplicative 
2D vector measure supported by the unit square. From step n to step n + 1, each square is divided into 4 identical 
sub-squares and for each of these sub-squares, one defines a similitude Si that transforms the vector v(n) at step n 
into the vector V~n+l) for the sub-square i at step n + 1. The so-defined four similitudes must satisfy the vectorial 
additivity condition: 

4 
v(n) = ~V~n+l)L..t (3.2)t • 

i=l 

A straightforward calculation yields the following analytical expression for the partition function scaling exponents 
r(q) (Eq. (2.16»: 

(3.3) 
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FIG. 2: Theoretical m~ltifrac~al spectra of the. singular vector-valued measures described in Figure 1. (a) r(q) spectrum 
(Eq. (3.3)). (b) D(h) sl.ngulanty spectrum obtamed by Legendre transforming the r(q) spectrum Ceq. (2.17». The symbols 
correspond to the followmg model parameters: P2 = 2, P3 = 1 and C = Pl = P4 0.5 «0»,0.3 «.6» and 0.1 (Co»~. 

where Pi, i = 1 to 4, are the norms of the similitudes Si, respectively. Note that this formula is identical to the 
t~eoreti~al spectrum of a nonconservative scalar multinomial measure distributed multiplicatively on the unit square 
wIth weIghts ~i that do not s~tisfy the c~nservativity condition 2:t=1 Pi = 1 [62, 63]. It is clear, from the example of 
figure 1, that If the constructiOn process IS conservative from a vectorial point of view, it does not conserve the norm 
of the measure since 2:t=1 Pi 4. In particular, it is remarkable that the vector measures in the left top and right 
bottom subsquares at construction step 2 are along the y-axis whereas the original vector measure has no component 
along this axis. By denoting 0 = PI = P4(= 1/2 in figure 1) this coupling parameter between x and y directions in 
the construction process, we show in figure 2a that the theoretical r(q) spectrum (Eq. (3.3)) is a nonlinear function 
of q that strongly depends on the value of 0 :::; 0 :::; 1. From Legendre transforming Eq. (3.3), one gets a D(h) 
singularity spectrum with a characteristic multifractal single-humped shape (Fig. 2b) that expands over the interval 
[hmin , hmaxl = [-I-log2(maxiPi), -1-log2(miniPi)} and whose maximum DF = -reO) = 2 is the signature that the 
considered vector-valued measure generated by iterating the rule described in figure 1 is almost everywhere singular 
on the unit square. 

In Fig. 3 are illustrated the main steps of our TWTMM methodology when applied to a (1024)2 realization of a 
random generalization of the multiplicative construction process described in figure 1. At each successive construction 
step, the similitudes Si are randomly permutated. Focusing on the central (128)2 sub-square, we show the singular 
vector-valued measure (Fig. 3a), the WTMM chains computed with a first order analyzing wavelet at scales a = 22UW 

(Fig. 3b) and a = 23UW (Fig. 3c), where Uw = 7 (pixels) is the smallest resolved scale. On these maxima chains, the 
black squares correspond to the location of the WTMMM at these scales. The size and the direction of the arrows that 
originate from these black dots are respectively proportional to the spectral radius pCb, a) and along the eigenvector 
Gp(b,a)j they allow to visualize T1/J,p[V}(b, a) at the WTMMM. When linking these WTMMM across scales, one 
gets the set of maxima lines shown in figure 3d as defining the WT skeleton. In figure 4 are reported. the. results of 
the computation of the multifractal spectra when avera~ing t~e partition fun~tions over 16 (1024)2 realIzatIOns. of the 
random vector measure construction process under conSIderatIOn. As shown III figure 4a, Z(q, a) (Eq. (2.15)) dIsplays 
nice scaling behavior over four octaves, when plotted versus a in a logarithmic representat.ion, (or q E] ~ 2,4[ for 
which statistical convergence turns out to be achieved. A linear regression fit of the data YIelds the ~onlIlle~r r(q) 
spectrum shown in figure 4c, in remarkable agreement with the theoretical spectrum (Eq. (3.3)). ThIS multIfractal 
diagnosis is confirmed in figure 4b where the slope of h(q,a) (Eq. (2.19)) versus log2 a , clearly depends?n q. From 
the estimate of h(q) (Eq. (2.21)) and D(q) (Eq. (2.22)), one gets the single-humped D~h) curve shown III figure 4d 
which matches perfectly the theoretical D(h) spectrum obtained ~y Legendre tra~sformmg Eq. ~3.3). In figure 4, we 
h 1 rted for comparison the results obtained when usmg a box-countmg (BC) algOrIthm adap~ed to the 
~~~ifr:~t:~Pa:aly~is of singular ve~tor-valued measures (63, 70, 71, 73]. There is no doubt that BC prOVIdes much 
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(d) 

FIG. 3: TWTMM analysis of the 2D vector-valued self-similar measure shown in figure 1 but with systematic random permu
tation of the Si at each construction step. The model parameters are C = 0.5, P2 = 2 and P3 = 1. '¢ is a first-order analyzing 
wavelet; ¢(r) is the Gaussian function defined in Eq. (2.2). (a) 32 grey-scale coding of the central (128)2 portion of the original 
(1024)2 field. In (b) a = 220W and (c) a = 2 30w, are shown the maxima chains; from the local maxima (WTMMM) of M", 
along these chains (_) originates a black arrow whose length is proportional to M", and direction is along T""p[V] (Eq. (2.9»). 
(d) WT skeleton obtained by linking the WTMMM across scales. Ow = 7 (pixels) is the characteristic size of '¢ at the smallest 
resolved scale. 

poorer results, in particular as far as the estimates of the scaling exponents r(q), h(q) and D(q), for negative q values, 
are concerned. This deficiency mainly results from the fact that the vectorial resultant may be very small (even zero) 
whereas the norms of the vector measures in the sub-boxes are not small at all. Altogether the results reported in 
figure 4 bring the demonstration that our TWTMM methodology paves the way from multifractal analysis of singular 
scalar measures to singular vector measures. 

B. Monofractal vector-valued functions 

Fractional Brownian motions (fum) are homogeneous random self-affine functions that have been specifically used to 
calibrate the 1D [20, 21, 36], 2D (56,61] and 3D [62, 63] WTMM methodologies. A way to generalize fBm to vector
valued random fields consists in generating independently the d components of such vector fields by fractionally 
integrating a Gaussian white noise from Rd into Rd. The multifractal statistical properties of the so-generated 
fractional Brownian vector fields BH(X) (hi = H, i = 1,2, .. , d) are characterized by a singularity spectrum which 
reduces to a single point (63]: 

D(h) = d if h = H , 
(3.4)

= - 00 if h =I H . 
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FIG. 4: Multifractal analysis of the 2D vector-valued random measure field (Fig. 3a) using the 2D TWTMM method (0) and 
box-counting techniques (.). (a) log2 Z(q, a) vs log2 a; (b) h(q, a) vs log2 aj the solid lines correspond to linear regression fits 
over ow :s a:S 24aw. (c) 7(q) vs qj the solid line corresponds to the theoretical prediction (Eq. (3.3)). (d) D(h) vs h; the 
solid line is the Legendre transform of Eq. (3.3). The results reported in this figure correspond to annealed averaging over 16 
(1024)2 realizations of the vector-valued random measure construction process. Same analyzing wavelet as in figure 3. 

Almost all realizations of BH(X) are continuous, everywhere non-differentiable, isotropically scale-invariant as charac
terized by a unique Holder exponent hex) H, 'r/x. By inverse Legendre transforming D(h) according to Eq. (2.17), 
one gets the following expression for the partition function exponents (Eq. (2.16)): 

r(q) = qH - d. (3.5) 

In figure 5 are illustrated three (128 x 128) realizations of BH(X) for d = 2. From a visual inspection of figures 5a 
(H 0.2), 5b (H = 0.5) and 5c (H 0.8), one can convince oneself that this vector-valued random field becomes less 
and less irregular when increasing the index H. In figure 6 are reported the results of the computation of the r(q) 
and D(h) spectra using the TWTMM method described in Section II. As shown in figure 6a, the annealed average 
partition functions Z(q, a) (Eq. (2.15)) over 16 (1024)2 realizations of B 1/2(X), display remarkable scaling behavior 
over 4 octaves when plotted versus the scale a in a logarithmic representation (Eq. (2.16)). Moreover, for a wide 
range of values of q E [-3,4]' the data are in good agreement with the theoretical r(q) spectrum (Eq. (3.5)). When 
proceeding to a linear regression fit of the data over the first four octaves, one gets the linear r(q) spectrum shown 
in figure 6(c) with a slope which slightly underestimates the corresponding H = 1/2 exponent. Let us point out that 
a few percent underestimate has been also reported when preforming similar analysis of 1D [20, 21, 74], 2D [56, 61] 
and 3D [62] scalar iBm fields. As seen in figure 6b, when plotting h(q, a) vs log2 a (Eq. (2.19)), the theoretical 
Hurst exponent H 1/2 provides an excellent fit of the limiting slope of the data at the smallest available scales 
(aw :s a :s 4aw) and this independently of the value of q E) - 2,4[. In figure 6d are reported the corresponding 
estimates of D(h) from a linear regression fit of D(q, a) vs log2 a (Eq. (2.20)) again at small scales. Independently of 
the value of q, one gets quantitatively comparable values D(h = H 1/2) = 2.00 ± 0.02. Let us emphasize that as 
shown in figures 6c and 6d, similar quantitative estimates of both the r(q) and D(h) spectra have been obtained for 
BH(X) with H 0.2 and H 0.8. The TWTMM method can thus be considered as having successfully passed the 
test of homogeneous monofractal stochastic vector-valued fields. 
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FIG. 5: Fractional Brownian vector-valued fields BH(X) (128 x 128) generated by Fo;urier transform filtering of two independent 
realizations of a Gaussian white noise from JR? into R. (a) H = 0.2; (b) H = 0.5j (c) H =0.8. The norm ofBH(x) is represented 
using a gray scale coding frow white (min) to black (max). • 
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FIG. 6: Determination of the r(q) and D(h) spectra of (1024 x 1024) fractional Brownian vector-valued fields BH(X) with 
the TWTMM method. (a) log2 Z(q, a) vs log2 a, for B H =1/2(r)j the solid lines correspond to the theoretical predictions 
r(q) = q/2 - 2 (Eq. (3.5» for the corresponding values of q. (b) h(q, a) vs log2 aj the solid lines correspond to the theoretical 
slope H = 1/2. (c) r(q) vs q for H = 0.2 (-),0.5 (.) and 0.8 (.)j the solid lines correspond to linear regression fit estimates of 
H. (d) D(h) vs h obtained from the estimates of h(q) (Eq. (2.21» and D(q) (Eq. (2.22» via the scaling bahavior of h(q, a) 
(Eq. (2.19» and D(q,a) (Eq. (2.20» respectivelYj the symbols have the same meaning as in (c). The analyzing wavelet is the 
third-order wavelet generated using the isotropic mexican hat smoothing function ¢(x) (Eq. (2.3». These results correspond 
to annealed averaging over 16 (1024 x 1024) realizations of BH(X). a is expressed in ow (= 13 pixels) units. 
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FIG. 7: 3D wavelet transform analysis of the velocity and vorticity fields from (256)3 DNS by Leveque (R>. = 140). 1/J is 
the third-order radially symmetric analyzing wavelet (the smoothing function ¢(x) is the isotropic mexican hat defined in Eq. 
(2.3)). Velocity field: (a) A snapshot of vex) using a 64 gray level coding of Ivl on the three visible sides of the (256)3 cube; 
in (b) a = 220W and (c) a = 230w, are shown the WT modulus maxima surfaces; from the local maxima (WTMMM) of M"" 
(Eq. (2.10)) along these surfaces originates a black segment whose length is proportional to M"" and direction is along Gp(x, a) 
(Eq. (2.9)). Vorticity field: (d), (e) and (f) are equivalent to (a), (b) and (c) but for the vorticity field w(x). aw = 13 pixels. 

IV. APPLICATION OF THE TWTMM METHOD TO VELOCITY AND VORTICITY FIELDS FROM 
DIRECT NUMERICAL SIMULATIONS OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

This section is devoted to the application of the TWTMM method to the velocity (v) and vorticity (w) fields from 
DNS of isotropic turbulence carried out by Leveque using a pseudo spectral method solver. The DNS were performed 
using 2563 mesh points in a 3D periodic box. The Taylor microscale is R>.. = 140. Here we will examine only one 
snapshot of the velocity (Fig. 7a) and vorticity (Fig. 7d) spatial fields. We will mainly proceed to a comparative 
multifractal analysis based on the estimate of the corresponding r(q) and D(h) spectra from some annealed averaging 
of the partition functions over 18 different snapshots. 

A. Velocity field 

In figure 7(a-c) are illustrated the main steps of our TWTMM analysis of the velocity field vex) . .Figure 7a shows a 
3D representation of the spatial profile of Ivl using a 64 gray level coding. In figures 7b and 7c are shown the WTMM 
maxima surfaces along with the WTMMM points as computed with a third-order analyzing wavelet at the scales 
a 22aw and a = 23uW respectively (uw = 13 pixels is the smallest resolved scale). From these WTMMM originate 
a black segment whose length is proportional to M"" (Eq. (2.10)) and direction is along Gp(x, a) (Eq. (2.9)). The 
results of the computation of the r(q) and D(h) spectra are reported in figure 8. As shown in figures 8a and 8b, both 
the Z(q, a) (Eqs. (2.15) and (2.16)) and h(q, a) (Eq. (2.19)) partition functions display rather nice scaling properties 
for q = -4 to 6, except at small scales (a;S 21.5uW ) where some curvature is observed in the log-log plots as induced 
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FIG. 8: Determination of the Tv(q) and Dv(h) spectra of the velocity field with the TWTMM method. The analyzing wavelet 
is the same as in figure 7. (a) log2 Z(q, a) vs log2 aj (b) h(q, a) vs log2 aj the solid lines correspond to linear regression fit 
estimates in the range 21.20W ;S a;S 23

.
5
0W. (c) Tv(q) vs q; the solid line corresponds to a fit of the data with the log-normal 

parabolic spectrum (4.1) for the parameter values C8 = 3.02, Cr = -0.34 and C~ = 0.049 (Eq. (4.2)). (d) Dv(h) vs h, as 
obtained from the scaling behavior of h(q, a) (Eq. (2.19)) and D(q, a) (Eq. (2.20)); the solid line corresponds to a fit of the 
data with the log-normal parabolic spectrum (4.3) with the same parameter values (Eq. (4.2)). These results correspond to 
annealed averaging over 18 (256)3 snapshots of vex). a is expressed in Ow (= 13 pixels) units. 

by dissipation effects [75-77]. Linear regression fit of the data in figure 8a in the range 21.50'w ;S a ;S 24.1O'w, yields 
the increasing non-linear Tv(q) curve shown in figure 8c, the hallmark of multifractal continuous vector-valued fields. 
Actually, this spectrum is quite well fitted by a parabola as predicted for log-normal statistics [39, 42, 78-80): 

(4.1) 

with the following parameter values 

C;; = 3.02 ± 0.02, C~ -0.34 ± 0.02, C~ 0.049 ± 0.003. (4.2) 

The corresponding singularity spectrum Dv(h) obtained from the scaling behavior of the partition functions h(q, a) 
(Eqs. (2.19) and (2.21)) and D(q, a) (Eqs. (2.20) and (2.22)) is shown in figure 8d. Consistently, the data points fall 
on a parabola which is well fitted by the Legendre transform of Eq. (4.1), namely: 

(h + Of? (4.3)
2C~ 

for the same parameter values as previously obtained in Eq. (4.2). The velocity field is thus found singular almost 
everywhere: GJ = -Tv(q = 0) = Dv(q 0) = 3.02 ± 0.02. The most frequent Holder exponent h(q = 0) -C1 

(corresponding to the maximum of D(h)) takes the value -Cr = 0.34 ± 0.02 which is much closer to the Kolmogorov 
(1941) prediction h 1/3 [16, 17, 81]' than previous experimental measurements (h ~ 0.39 ± 0.02) based on the 
analysis of the longitudinal velocity fluctuations [42]. As far the intermittency coefficient C~ (that characterizes 
the width of Dv(h)) is concerned, one gets a value C~ 0.049 ± 0.003 which is much larger than the estimate 
C2 0.025 ± 0.003 obtained for the ID longitudinal velocity increment statistics [39, 42, 79, 80]. Actually this 
estimate is comparable but still slightly larger than the value C2 ~ 0.04 extracted from the experimental analysis of 
transverse velocity increments [79, 82-88). Even though one has to be cautious as regard to the rather modest value 
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FIG. 9: Determination of the r",(q) and D",(h) spectra of the vorticity field with the TWTMM method (0), with the same 
analyzing wavelet as in figure 7, and with box-counting techniques (0). (a) log2 Z(q, a) vs log2 aj (b) h(q, a) vs log2 aj the solid 
and dashed lines correspond to linear regression fit estimates in the range 21.2 ow.::s a.::s 23

.
5aw. (c) r",(q) vs qj (d) D",(h) vs 

h as obtained from the scaling behavior of h(q, a) (Eq. (2.19» and D(q, a) (Eq. (2.20»; the dashed line corresponds to the 
parabolic spectrum found for v in figure 8d (Eqs. (4.2) and (4.3»; after a translation of one unit on the left (Eqs. (4.4) and 
(4.5)j the dashed vertical line marks the K41 value h", = h.u - 1 = -2/3. These results correspond to annealed averaging over 
18 (256)3 snapshots of w(x). a is expressed in ow 13 pixels) units. 

of R)., = 140 of the analyzed DNS data, it is not so surprising that when investigating the full 3D fluctuations of the 
velocity field, one realizes that this field is much more intermittent than previously estimated from the fluctuations 
of one of its component only. 

B. Vorticity field 

In figures 7d-f are shown for comparison the main steps of our TWTMM analysis of the vorticity field w = V A v. 
The results of the computation of the multifractal spectra rw(q) and Dw(h) with the TWTMM method are shown 
in figure 9 (symbols (0)). The partition function Z(q,a) (Fig. 9a) and h(q, a) (Fig. 9b) display rather convincing 
scaling behavior in the range 21.8aw ;S a;S 23.2aw for values of q E [-4,6]. At smaller scales a;S 21.8aw, one again 
observes a clear bending of the data curves as the signature of viscous effects [75-77]. As shown in figure 9c, the rw(q) 
spectrum estimated by linear regression fit of the Z(q, a) data in figure 9a, is a definite decreasing non-linear function 
similar to the one obtained for the singular vector-value measures in figure 4c; hence h(q) = 8r(q)/8q < 0 and the 
support of the Dw(h) singularity spectrum expands over negative h values as confirmed in figure 9d where the data 
points have been extracted from the scaling behavior of h(q, a) (Eqs. (2.19) and (2.21)) and D(q, a) (Eqs. (2.20) and 
(2.22)). 

What is quite remarkable with the results reported in figures 8 and 9, is the fact that, up to statistical uncertainty, 
the data for h(q, a) in figures 8b and 9b strongly suggest the validity of the following relationship [63, 71]: 

hw(q) = hv(q) - 1. 	 (4.4) 

Actually, as shown in figure 9d, both singularity spectra Dw(h) (symbols (0)) and D'IJ(h) (dashed line) are likely to 
coincide after translating the later by one unit on the left. Some slight difference can be noticed for the right decreasing 
branch of these spectra which actually is a consequence of the largest error bars obtained for the negative values of 
q ~ -2. Even though one could have guessed the results reported in figures 8 and 9 by noticing that w = V A v 
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involves first derivatives of v only, they bring, to our knowledge, the first numerical evidence that the singularity 
spectra of v and ware likely to be intimately related and to satisfy the equation: 

(4.5) 

More precisely the Tw(q) and Dw(h) spectra can again be very well fitted by a parabola of Eqs. (4.1) and (4.3) 
respectively, with the following parameter values: 

Off 3.01 ± 0.02, Or 0.66 0.02, Off 0.055 ± 0.004. (4.6) 

When comparing the parameter values to those found for the velocity in Eq. (4.2), one gets quite consistent estimates. 
In particular the most frequent Holder exponent corresponding to the maximum of the singularity spectrum satisfies 
Eq. (4.4): -Or = -0.66 ± 0.02 c::: -or - 1, and therefore confirms the statistical predominance of singularities of 
strength hW = -2/3, accordingly to K41 theoretical prediction h1J = 1/3 [16, 17, 81]. 

In figure 9, we have also reported for comparison the estimates of the TW(q) and DW(h) spectra when using classical 
box-counting techniques [63]. The results obtained for positive q values (0 ::; q ::; 6) are in good agreement with those 
obtained with our TWTMM methodology. This is no longer true for negative q values for which, very much like 
what have already been observed for multifractal vector valued measures in figure 4, the box-counting techniques fail 
to master the scaling behavior of the partition functions Z(q, a), h(q, a) and D(q, a). This justifies, a posteriori, the 
need of elaborating and implementing a new wavelet based methodology for multifractal analysis of multidimensional 
vector-valued random fields. 

V. CONCLUSION AND PERSPECTIVES 

To summarize, we have extended the wavelet based multifractal formalism to vector-valued random fields [63, 71]. 
Indeed we believe that the generalization of the 1D [20-22,30]' 2D [56,57,61] and 3D [62,63] WTMM methodology 
to vector-valued multidimensional fields is likely to provide a unified theoretical framework for the application of 
fractal and multifractal concepts to various situations in fundamental as well as applied sciences. In particular, 
we hope that the new algorithms we have implemented and the new softwares we have developed, will become as 
useful to characterizing the roughness fluctuations of scalar and vector-valued fields as the well known phase portrait 
reconstruction, Poincare section and first return map techniques for the analysis of chaotic times series [89-92]. 
Moreover, besides the technical aspect and the potential interest for future applications, there is also some very 
promising perspectives on the theoretical side. Actually, if our phenomenological approach has provided some keys 
towards a unified multifractal statistical formalism for scalar and vector-valued fields, there is clearly a need to extend 
in higher dimensions the rigorous mathematical results derived for the 1D WTMM method in Refs. [30,31]. 

As far as the results of the application of the TWTMM method to DNS turbulence data reported in Section IV, they 
have clearly revealed the existence of an intimate relationship between the velocity and the vorticity 3D statistics that 
turn out to be significantly more intermittent than previously estimated from the statistics of 1D longitUdinal velocity 
increments. The multifractal spectra of both the velocity and the vorticity fields were shown to be very well fitted by 
parabolic curves consistantly with the log-normal picture proposed by Kolmogorov [93] and Obukhov [94] in 1962, to 
account for the intermittency corrections to K41 theory [81]. In the context of fully developed turbulence numerical 
data analysis, the TWTMM method looks very promising to many extents. By applying the 3D WTMM method 
to the dissipation and enstrophy scalar fields [62, 63] and the 3D TWTMM method to the velocity and vorticity 
fields [63, 71], one can plan to revisit previous comparative studies of the statistics of these scalar and vector-valued 
fields. In particular, several experiments and numerical works [7, 64, 67, 95-108] have tested various facets of the 
so-called refined similarity hypothesis (RSH) [93, 94] between the statistics of the dissipation and the longitudinal 
velocity increments. Nevertheless, so far, the support for the RSH is strong but not unequivocal. Pioneering [109, 110] 
as well as more recent [62, 63, 111] numerical DNS studies have shown that the enstrophy field is more intermittent 
than the dissipation field. As suggested by Chen et al. [88]' this difference is likely to result from the difference observed 
in the scaling exponents (,~ and (J of longitudinal and transverse velocity structure functions, respectively [79, 82
87]. More precisely, Chen et al. [88] reported numerical results that demonstrate the possible validity of a different 
RSH for the transverse direction (RSHT) that connects the statistics of the transverse velocity increments to the 
locally averaged enstrophy in the inertial range. The important implication of RSHT is the possible existence of two 
independent sets of scaling exponents respectively related to the symmetric (dissipation physics) and antisymmetric 
(vortex dynamics) parts of the strain rate. But these results deserve further confirmation and some caution should 
be taken when extrapolating them to high Reynolds numbers since different theoretical studies have converged to the 
conclusion that asymptotic scaling exponents must be equal in the limit RA -4 00 [112-116]. Finally, the actual role 
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of coherent and/or localized structures like vorticity filaments in the intermittent nature of turbulent flows is still 
debated. In the past decade, the observation and the characterization of well organized structures have received some 
renewed interest from both a numerical [109, 117-125] and an experimental [40, 126-136] point of view. Thanks to 
the singular value decomposition, one has a way to focus on fluctuations that are locally confined in 2D (mini O'i = 0, 
i 1,2,3 in Eq. (2.7)) or in ID (the two smallest O'i are zero) and then simultaneously proceed to a multifractal and 
structural analysis of turbulent flows. The investigation along this line of vorticity sheets and vorticity filaments in 
DNS of the incompressible Navier-Stokes equations is in current progress. We hope to elaborate on the results of this 
study in a forthcoming pUblication. 
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