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ABSTRACT 

We are concerned with the optimal selection of multiple thresholds in image analysis. We propose the use 
of the Bayes information criterion, a minimal information measure, for this and illustrate its use in practical 
cases. Applications of multiple threshold selection of interest to us include the closely related problems 
of (i) quantization for lossy encoding, and (ii) segmentation. Our examples relate to segmentation as a 
post-processing phase in edge detection. 

Keywords: image thresholding, model selection, Bayes factor, Bayes information criterion, edge detection, 
wavelet transform. 

1.. INTRODUCTION 

Optimal selection of multiple thresholds is a di:ffi.cult problem for a number of reasons. Firstly, we are 
often concerned with non-fixed intervals, unlike e.g. Yin (2002) who considers fixed interval thresholding. 
Secondly, the distribution of the signal and/or noise in our image data is rarely a distribution which is 
amenable to fixed a priori setting of thresholds. We will now look in somewhat greater depth at these two 
reasons for considering optimal multiple selection. First we consider optima.1 quantization with non-fixed 
thresholds. This will allow us to introduce notation to be used in the section to follow where we will discuss 
how to choose optimally the number of classes. 

Optimal non-uniform quantization is reviewed in Gray and Neuhoff (1998) and Gray (2002). In the 
univariate case, one-dimensional.(scalar) observations Xi are taken, with n pixels or observations in total: 
X :::: {Xl, ... 1 xn }. A lossy encoder is a classification function, which maps the observations onto a label 
or index set of class labels or sequence numbers: 'Y : x ~ K. We will write K {I, 2, ... ,g, ... , G}. The 
classification function, is the (initially unknown) n x G assignment matrix, where 'ig = 1 if Xi is assigned 
to the gth group, and lig 0 otherwise. 

In non-uniform quantization, with each label we associate a codebook entry, or associated cluster 
mean. The function defining this, the "reproduction decoder", is f.J : K -t approx(x), where approx(x) 
. is an approximation or distortion function. For class label g, 9 E K, we write J1.g as the mean of the 
gth class. Therefore approx(xi) = I-'g when observation i is assigned to class g. The approximation or 
distortion function is usually defined such that the minimal average or expected distortion, E[d(x, I-'C'Y(X))] , 
is minimized. JJ(/(X)) is to be read as: first assign each observation in x to a class which gives us the 
assignment matrix, ,i and then determine the mean of the class. I.e. E{d(x, JJ I ,)], where each term 
is written d( Xi 1 I-'g I lig = 1). The measure d will be taken as the probability of the random variable 
or observation, Xi, given that the clas~Lis Gaussian of mean JJg and variance 0;. H the class variance is 
constant then d is the Euclidean distance. 

The Lloyd (1957) quantizer, originally developed by Lukaszewicz and Steinhaus (1955), has the following 
among its properties: The optimal reproduction decoder J1. is given by f.JK = argmin.yE[d(x, J.') \/] I.e., we 
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mjnimize the conditional expectation of the distortion between the codebook entries and the input, given 
that the encoder produced index label set K. In the section to-follow, this property will reappear as one 
step, the M step, of the expectation-maximization algorithm. 

Our discussion of optimal lossy encoding has not d~t with the optimal value of G, the number of 
classes. In the next _section we will return to this. 

The second reason why we are studying optimal multiple threshold selection is due to the fact that 
signal and/or noise is often not distributed as, e.g., a. Gaussian. 

Let us take the particular case of the wavelet transform, which can be nsed as a. preliminary to segmen­
tation or quantization. Wavelet coefficients have been shown to be long-tailed or of generalized Gaussian 
distribution (Tsakalides et al., 2000; -Bnccigrossi and Simoncelli, 1999; Belge et al., 2000; and elsewhere), 
for a. wide class of input data signals. The generaJ.ized Gaussian distribution includes the Gaussian and 
Cauchy as special cases. The genera.lized Gaussian distribution is difficult to quantize in an analytic way 
(Tsakalides et al., 2000). 

A fortiori, products of wavelet scales are found to be long-tailed. A product of wavelet scales, based 
on use of a redundant wavelet transform, is the pi:xelwise product of wavelet coe:ffi.cients. The wavelet 
transform, as is well-known, highlights local transitions in data signals. The persistence of large wavelet 
coefficients across scales gives further evidence of the presence of edges (Xu et al., 1994; Lu et ai, 1994; 
Lee and Kozaitis, 2000). A straightforward way to study wavelet coefficient persistence is using (pixel wise) 
wavelet products. The probability density of wavelet products for a. wide range of data has been shown to 
be long-tailed, and distributed as a generalized Gaussian or alpha-stable distribution (Sadler and Swami, 
1999). See also Murtagh and Starck (2002). 

In raising the problem of adaptive quantization of wavelet coefficient product distributions, we are 
thereby raising the issue of adaptive1y quantizing long-tailed distributed data. 

2. OPTIMALLY CHOOSING THE NUMBER OF CLASSES 

2.1. The Prior: Gaussian Mixture Model 
In the previous section, we have defined our observations or pixel values, x, the G classes which we seek, 
and the matrix 'Y of ones and zeros which represents the assignment of observa.tions to classes. This is the 
univariate normal finite mixture model, or Gaussian mixture model. Mixture model fitting is ,by now a. 
very common way to cluster data. Our goal is to determine the number of classes, to determine the class 
assignment of each observation, and to estimate the parameters 1-'9 and (J"9 of each class. The probability 
density for this model is 

G 

f(XiI 8, A) =L Agfg(Xi!fJg), (1) 
g=1 

where the class parameters are denoted 8 = (th, ..• ,6G), with 8g = (I-'g, U;)T; fg('18g) is a Gaussian 
density with mean f.'g and variance 0;; and A= (A17 ... , AG) is a. vector of mixture probabilities such that 

Ag ~ 0 (g = 1, ... , G) and r;~l )..g = 1. 

We estimate the parameters by maximum likelihood using the EM (expectation-ma.ximization) algo­
rithm (Dempster et al., 1997; Mclachlan and Krishnan, 1997). The EM algorithm iterates between the E 
step and the M step. In the E step, the conditional expectation, 7, of'Y given the data and the current 
estimates of 6 and A are computed, so that 7ig is the conditional probability that Xi belongs to the gth 
class. In the M step, conditional maximum likelihood estimators of 8 and A given the cUrrent '1 are com­
puted. Although the EM algorithm has some limitations ·(e.g. it is not guaranteed to converge to a. global 
rather than a local maximum of the likelihood), it is generally efficient and effective for Gaussian clustering 
problems. 
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2.2. BIC as a Minimum Description Length 

We have characterized the mixture model fitting, with a fixed number of classes G, as our prior. We 
denote this overall model, which we have fit to our data, as Ma. AB seen in the previous subsection, 
MG is defined as firstly the class parameters, 0 = ((h, 02, ... , Oa), and secondly the mixture probabilities 
A= (AI, A2," ., AO)' 

We now wish to investigate one such model versus another, i.e. Ma versus Mal for two choices of 
numbers of classes, G and G'. 

The posterior probability of model Ma is 

f(x I Ma)f(Ma) 
(2)f(Ma Ix) 

We can ignore f(Ma) and the influence of ML if each model is equilikely a priori. 

The Bayes factor is the posterior odds of one hypothesis when the prior probabilities of the two hy­
potheses are equal: f(x I Ma)/f(x I Ma'), The term f(x I Ma) is the integrated likelihood rather than 
the maximized likelihood. 

The integrated likelihood, f(x IMG), is given by 

f(x I Ma) = f f(x IOa,Ma)f(Oa)dOa (3) 

where Oa has now been redefined to be the set of all parameters for model MG (i.e. including both 0 and A 
terms for all classes). We have that f(x lOa, Ma) is the usual likelihood. Finally f(Oo) is the prior, which 
we will assume as equilikely for all MG. 

A good approximation to the integrated likelihood is given in terms ofBIC, Bayes information criterion 
(Schwarz, 1978; Kass and Raftery, 1995): 

BIC = 2logf(x IBa,Ma) Nlog(dim(Oa)) (4) 

where OK is the maximum likelihood estimator of OK, Le. the result of the Gaussian mixture fitting. N is 
the dimensionality of the observation vectors, and dim(OG) is the cardinality of th~ parameter set. 

Finally the Bayes factor is approximated by the difference ofBIC terms, which in turn are the maximized 
likelihood results of Gaussian model fits for different numbers of classes, G and G': 

2log f(x IMa) ~ BIC(G) - BIC(G') (5)
f(x I Ma,) 

In operation, a plot of BIC for increasing numbers of classes, G, generally shows increase to an approx­
imate plateau. We can usually increase the model fit indefinitely by increasing G. It is usual to consider 
the first peak in this plot, or the effective reaching of the plateau, to provide the optimal value of G. 

We can also derive the BIC term as a parsimony or minimum information measure (Hansen and Yu, 
2001; Rissanen, 1986). 

1 ' 
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Figure 1. Histogram of Canny filtered data, showing clearly long-tailed behavior. Shown also are the 
classification regions mapped out by the 5 Gaussian mixture components which were fit to this distribution. 

3. APPLICATION 

A test data set from Kominek (2000) was used, the red component of a color 768 X 512 image. 

Our first set of results is based on use of the Canny (1986) derivative of Gaussian edge detector, 
8CZ;f) + 8(Z;f) with 9 = exp _x;;t ,with scale parameter a = 1/J3, and where * is convolution of image 
f. Visually, long-tailed behavior in the marginal density can be noted. In a second set of results, also with 
the objective of edge finding, we use wavelet correlation. 

Fig. 1 shows the histogram, and the classification boundaries or thresholds resulting from a 5-component 
Gaussian fit. Fig. 2 explains why we selected a. 5-component fit: a plateau is reached for this number of 
components. For reference, Fig. 3 shows the 2-component result. Fig. 4 shows the 5-component result, 
with all components represented. Fig. 5 shows the 5-component result with only the component of highest 
mean shown. 

With reference to Fig. 1, Fig. 5 sl}ows only the tail of the distribution. The threshold used in Fig. 5 is 
defined by the separation line between the fourth and fifth components. This threshold resulted from the 
use of the BIC minimum information principle. 
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Figure 2. Plot of BIC values. 

Figure 3. Mixture model fit, with 2 components, for result of Canny filtering. 
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Figure 4. Mixture model fit, with 5 components, for result of Canny filtering. 

Figure 5. Mixture model fit, with one component of largest mean, for result of Canny filtering. 
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Figure 6. Mixture model fit, with 5 components, for product of first and second wavelet scales. 

The product of wavelet scales has been proposed as an edge detector, in that persistence of large 
wavelet coefficients across scales increases our confidence of the presence of edges (Murtagh and Starck, 
2002). Here we use a redundant transform, the a trous B3 spline wavelet transform (Starck et al., 1998) 
which is shift invariant, and also allows a pixel's information at varying resolution scales to be read off 
very straightforwardly. Consider an image x, which in the a trous B3 spline wavelet transform can be 
decomposed additively as x = Ws + Ej Wj where each set of wavelet coefficients Wj constitutes an image 
of the same dimensions as x, where j is the number of resolution scales in use, and finally where Ws is the 
last smooth version of the data (or DC, "direct current", component). The product of wavelet scales 1 and 
2, which we used, is then the pixelwise product Wl.W2. 

Fig. 6 shows the result following a 5-component mixture model fit, which gives a fully adequate indi­
cation of the wavelet product itself. Wavelet scales 1 (Le., the highest frequency scale) and 2 were used 
in this pixelwise product. Why we selected five components is explained in Fig. 7: essentially a plateau 
is reached at this number. Fig. 8 shows the somewhat poorer 2-component fit. Fig. 9 shows the class 
assignment corresponding to the tail of the wavelet product density. It corresponds to the class with the 
highest mean. 

In conclusion, the procedure for selecting the optimal number of threshold components has been applied 
to the gradient maps provided by Canny and by the wavelet product operations. 

Table 1 summarizes what we expect from these results: the top class from the 5-class fit has a high 
mean value. In addition, as is visually clear from the figures, it is more concentrated in regard to class 
variance. The issue to be stressed here is that both approaches provide a sound basis for a necessary 
post-processing phase when determin!ng edges. 
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Figure 7. Plot of BIC values for mixture model fits to product of first and second wavelet scales. 

Figure 8. Mixture model fit, with 2 components, on product of first and second wavelet scales. 
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Figure 9. Mixture model fit, with one component of largest mean from a 5-component fit, on product of 
first and second wavelet scales. 

mean standard deviation 

Canny result 

2-cIass fit 117.29 54.36 
Top class of 5-c1ass fit 126.64 36.39 

Wavelet product result 

2-cIass fit 117.72 54.22 
Top class of 5-class fit 131.10 36.40 

,', 

Table 1. Comparison of, respective1.y. from top to bottom, Figs. 3, 5, and 8, 9. The comparison is based 
on class label and, for the two edge finding approaches, the same input image. 
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4. DISCUSSION AND CONCLUSION 


In Chipman et al. (1997), Choi and Baraniuk (2001), and elsewhere, a prior model is defined for wavelet 
coefficients which takes them as variates from an additive mixture of two Gaussians. One of these mixture 
components (let us call it L) has large wavelet coefficients and large variance, and the other component 
(we will call it S) has small wavelet coefficients and small variance. As an optimal model fit, the {L, S} 
solution defines simultaneously an optimal bilevel threshold. It is not unduly surprising that we have found 
a multilevel set of thresholds, defined from a mixture model with more than two components, to provide a 
better approximation. What is a lot more interesting is that a Bayes factor criterion gives us a perfor~ance 
metric for choosing the optimal mixture, and thereby the optimal set of thresholds. 

Two differences between our work and hierarchical models as pursued by Choi and Baraniuk (2001) 
deserve to be noted. We do not explicitly consider correlations between neighboring coefficiences, but the 
redundant wavelet transform does implicitly take correlation into account. Secondly, we do not consider 
persistence of wavelet coefficient values across more than two scales, although we could do so in a way 
similar to Xu et al. (1994). 

Coates and Kuruoglu (2002) consider the different problem of signal source detection in long-tailed 
noise, but similar to this article they fit a Gaussian mixture model to the data. In the problem of long­
tailed distribution parameter estimation, Swami and Sadler (2002) focus on the limits of Gaussian mixture 
model fitting. 

The edge detectors used for illustrative purposes in this article, viz. the Canny detector and the product 
of wavelet planes resulting from a redundant wavelet transform, are powerful approaches. Nonetheless it 
is clear that post-processing is needed to define edge presence and edge absence. This was the application 
area which we selected in order to exemplify optimal specification of multiple thresholds. 

We took a Canny edge detector and a wavelet product, both to provide localization information on 
edges in the image. In the first case we showed long-tailed behavior in the marginal density, and in the 
case of wavelet products we cited where such a distribution has been investigated in the literature. Setting 
ourselves the task of variable-width multiple thresholding, we showed how a Gaussian mixture fit to the 
marginal density permitted such a result to be derived. 

Next came the question of the optimality of such a result. Model fitting gives a maximum likelihood 
solution. We used the ratio of integrated likelihoods of one model against another, or in other words the 
differences of log likelihoods, for model selection. In this work, our objective in using this procedure was 
to choose objectively the number of mixture components. 

From different perspectives, this procedure can be viewed in terms of Bayes classification, minimum 
information, maximum likelihood, and minimum description length. The approach described here is a 
powerful one, both in terms of supporting theory and in terms of practicality and ease of deployment. 
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