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Gray and Color Image C.ontrast Enhanceme11t by the Cllrvelet 
Transform 

J.-L. Starck*, F. Murtagh, E.J. Candes , D.L. Donoho 

Abstract- We present in this paper a new method for con­
trast enhancement based on the curvelet transform. The curvelet 
transform represents edges better than wavelets, and is therefore 
well-suited for multiscale edge enhancement. We compare this 
approach with enhancement based on the wavelet transform, and 
the Multiscale Retinex. In a range of examples, we use edge de­
tection and segmentation, among other processing applications, 
to provide for quantitative comparative evaluation. Our find­
ings are that curvelet based enhancement out-performs other 
enhancement methods on noisy images, but on noiseless or near 
noiseless images curvelet based enhancement is not remarkably 
better than wavelet based enhancement. 

Keywords- Wavelets, Ridgelets, CUl'velets, Contrast Enhance­
ment. 

I. INTRODUCTION 

Because some features are hardly detectable by eye in an 
image, we often transform images before display. Histogram 
equalization is one the most well-known methods for contrast 
enhancement. Such an approach is generally useful for images 
with poor intensity distribution. Since edges playa fundamen­
tal role in image understanding, one good way to enhance the 
contrast is to enhance the edges. For example, we can add to 
the original image its Laplacian 6.1 (I' = 1 + 16./, where [' 
is the enhanced image and 1 is a parameter). Only features at 
the finest scale are enhanced (linearly). For a high 1 value, only 
the high frequencies are visible. Multiscale edge enhancement 
[15] can be seen as a generalization of this approach, taking all 
resolution levels into account. 

In color images, objects can exhibit variations in color satu­
ration with little or no correspondence in luminance variation. 
Several methods have been proposed in the past for color im­
age enhancement [14]. The retinex concept was introduced by 
Land [7] as a model for human color constancy. The single 
scale retinex (SSR) method [6] consists of applying the follow­
ing transform to each band i of the color image: 

Ri(X,y) = 10g(Ii(x,y)) -log(F(x,y) * li(X,y)) (1) 

where Ri(X, y) is the retinex output, li(X, y) is the image distri­
bution in the ith spectral band, F is a Gaussian function, and 
* is convolution. A gain/offset is applied to the retinex output 
which clips the highest and lowest signal excursions. This can 
be done by k-sigma clipping. The retinex method is efficient for 
dynamic range compression, but does not provide good tonal 
rendition [10]. The Mnltiscale Ret.inex (MSR) comhines several 
SSR outputs to produce a single output image which has both 
good dynamic range compression and color constancy (color 
constancy may be defined as the independence of the perceived 
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color from the color of the light source [8], [9]), and good tonal 
rendition [5]. The MSR can be defined by: 

RMSRi = L
N 

WjRi,j (2) 
j=1 

with 

N is the number of scales, Ri,j is the ith spectral component of 
the MSR output, and Wj is the weight associated with the scale 
j. The Gaussian Fj is given by: 

(4) 

where Cj defines the width of the Gaussian. In [5], three 
scales were recommended with Cj values equal respectively to 
15,80,250, and all weights Wj fixed to -k. These parameters 
may however be image dependent, and automatic parameter 
estimation by a genetic algorithm was proposed in' [9]. 

The Multiscale Retinex introduces the concept of multiresolu­
tion for contrast enhancement. It performs dynamic range com­
pression and can be used for different image processing goals. 
Improvements of the algorithm have been presented in [1], lead­
ing to better color fidelity. 

MSR softens the strongest edges and keeps the faint edges ,al­
most tmtouched. The opposite approach was proposed by Velde 
[15] in using the wavelet transform for enhancing the faintest 
edges and keeping untouched the strongest. The strategies are 
different, but both methods allow the user to see details which 
were hardly distinguishable in the original image, by reducing 
the ratio of strong features to faint features. 

The wavelet approach [15] consists of first transforming the 
image using the dyadic wavelet transform (two directions per 
scale). The gradient Gj,k at scale j and at pixel location k 
is calculated at each scale j from the wavelet coefficients 'W;~2 
and w(v2 relative to the horizontal and vertical wavelet bands: 

}, 

Gj,k = ('W;~2)2 + (wt2p. Then the two wavelet coefficients 

at scale j and at pixel position k (i.e. k = (Xl,X2)) are multi­
plied by y(Gj,k), where y is defined by: 

Y(X) (~)P if 1x 1< C 

y(x) C':I)P if C ::;1 x 1< m 

y(x) 1 if 1x 12: m (5) 

Three parameters are needed: p, m and c. p determines the 
degree of non-linearity in the nonlinear rescaling of the lumi­
nance, and must be in [0,1]. Coefficients larger than mare 
not modified by the algorithm. The c parameter corresponds 
to the noise level. Figure 1 shows the modified wavelet coef­
ficients versus the original wavelet coefficients for a given set 
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Fig. 1. Enhanced coefficients versus original coefficients. Parameters are 
m=30,c=3 and p=O.5. 

of parameters (m = 30, c = 3 and p = 0.5). Finally, the en­
hanced image is obtained by the inverse wavelet transform from 
the modified wavelet coefficients. For color images, a similar 
method can be used, but by calculating the overall multiscale 
gradient rj,k from the multiscale gradient of the three L, 'U, V 
components: rj(i) = vII Gf,k 112 + II Gj,k 112 + II Gj,k 112. All 
wavelet coefficients at scale j and at position k are multiplied 
by y(rj,k), the enhanced L, u, v components are_reconstructed 
from the modified wavelet coefficients, and the (L,u,v) image is 
transformed into an RGB image. More details can be found in 
[15]. 

Wavelet bases present some limitations, because they are not 
well adapted to the detection of highly anisotropic elements, 
such as alignments in an image, or sheets in a cube. Recently, 
other multiscale systems have beendeveloped, which include in 
particular ridgelets [2] and curvelets [3], [12], and these are very 
different from wavelet-like systems. Curvelets and ridgelets take 
the form of basis elements which exhibit very high directional 
sensitivity and are highly anisotropic. The curvelet transform 
uses the ridgelet transform in its digital implementation. We 
first describe the ridgelet and the curvelet transforms, and then· 
we show how contrast enhancement can be obtained from the 
curvelet coefficients. Following that, we present a number of 
evaluations of the <use of wavelet- and curvelet-based enhance­
ment. 

II. 	 CONTRAST ENHANCEMENT USING THE CURVELET 

TRANSFORM 

A. The Ridgelet T1'ansform 

The two-dimensional continuous ridgelet transform in R 2 can 
be defined as follows [2]. We pick a smooth univariate function 
t/J : R -+ R with sufficient decay and satisfying the admissibility 
condition 

(6) 

where i: denotes the Fourier transform of x. Equation 6 holds 
if, say, t/J has a vanishing mean I 'IjJ(t)dt = 0. We will suppose 

a special normalization about 'IjJ. so that Iooo 1t,b(~)12~-2d~ = l. 
For each a > 0, each b E R and each fJ E [0,2rr), we define 

the bivariate ridgelet t/Ja,b,(J : R2 -+ R by 

A ridgelet is constant along lines Xl cos fJ + X2 sin fJ = const. 
Transverse to these ridges it is a wavelet. 

Figure II-A graphs a few ridgelets with different parameter 
values. The top right, bottom left and right panels are obtained 
after simple geometric manipulations of the upper left ridgelet, 
namely rotation, rescaling, and shifting. 

Given an integrable bivariate function f(x), we define its 
ridgelet coefficients by 

Rf(a, b, fJ) = ;j;a,b,(J(x)f(x)dx,J 

where x denotes the conjugate of x. We have the exact recon­
struction formula 

1
00 

271" 100 1	 d dfJ 
f(x)= 0 -00 0 	 Rf(a,b,fJ)t/Ja,b,(J(X)a~db4rr (8) 

valid a.e. for functions which are both integrable and square 
integrable. 

Ridgelet analysis may be construed as wavelet analysis in the 
Radon domain. Recall that the Radon transform of an object f 
is the collection of line integrals indexed by (fJ, t) E [0,2rr) x R 
given by 

where 8 is the Dirac function. Then the ridgelet transform is 
precisely the application of a I-dimensional wavelet transform 
to the slices of the Radon transform where the angular variable 
fJ is constant and t is varying. 

This viewpoint strongly suggests developing approximate 
Radon transforms for digital data. This subject has received 
considerable attention over the past decades since the Radon 
transform naturally appears as a fundamental tool in many 
fields of scientific investigation. Our implementation follows a 
widely used approach in the literature of medical imaging and 
is based on fast Fourier transforms. The key cOIl1ponent is to 
obtain approximate digital samples from the Fourier transform 
on a polar grid, i.e. along lines going through the origin in the 
frequency plane. Figure 3 (left) represents the flowgraph of the 
ridgelet transform. We will not detail this approach further 
here, and instead refer the reader to [12]. 

The· ridgelet transform of a digital array of size n x n is an 
array of size 2n x 2n and hence introduces a redundancy factor 
equal to 4. 

Local Ridgelet Transforms 

Speaking in engineering terms, one might say that the ridgelet 
transform is well-adapted for picking linear structures of about 
the size of the image. However, interesting linear structures, 
e.g. line segments, may occur at a wide range of scales. Follow­
ing a well-established tradition in time-frequency analysis, the 
opportunity arises of developing a pyramid of ridgelet trans­
forms. We may indeed apply classical ideas such as recursive 
dyadic partitioning, and thereby construct dictionaries of win­
dowed ridgelets, renormalized and transported to a wide range 
of scales and locations. 

To make things more explicit we consider the situation at a 
fixed scale. The image is decomposed into smoothly overlapping 

. blocks 	of side length b pixels in such a way that the overlap 
between two vertically adjacent blocks is a rectangular array of 
size b by b/2; we use overlap to avoid blocking artifacts. For an 
n by n image, we cOlmt 2n/b such blocks in each direction. The 
partitioning introduces redundancy, since a pixel belongs to 4 
neighboring blocks. More details on a possible implementation 
of the digital ridgelet transform can be found in [12]. Talong 
the ridgelet transform of these smoothly localized data is what. 
we call the local ridgelet transform. 
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Fig. 2. A few ridgelets. 

B. The Curvelet Transfol'm 

The idea of clITvelets [3] is to represent a curve as a super­
position of functions of various lengths and widths obeying the 
scaling law width ~ length2 

• This can be done by first decom­
posing the image into subbands, i.e. separating the object into 
a series of disjoint scales. Each scale is then analyzed by means 
of a local ridgelet transform. 

Curvelets are based on multiscale ridgelets combined with a 
spatial bandpass filtering operation to isolate different scales. 
This spatial bandpass filter nearly kills all multiscale ridgelets 
which are not in the frequency range of the filter. In other 
words, a curvelet is a multiscale' ridgelet which lives in a pre­
scribed frequency band. The bandpass is set so that the curvelet 
length and width at fine scales are related by a scaling law 
width ~ length 2 and so the anisotropy increases with decreas­
ing scale like a power law. There is a very special relation­
ship between the depth of the multi scale pyramid and the index 
of the dyadic subbands; the side length of the localizing win­
dows is doubled at every other'dyadic subband, hence maintain­
ing the flUldamental property of the curvelet transform which 
says that elements of lengt.h about. 2- j

/ 2 serve for the analy­
sis and synthesis of the j- th subband [2 j 

, 2j +1]. VVhile multi­
scale ridgelets have arbit.rary dyadic length and arbitrary dyadic 
widths, curvelets have a scaling obeying width ~ length2 

. 

Loosely speaking, the curvelet dictionary is a subset of t.he mul­
tiscale ridgelet dictionary, but which allows reconstruction. 

In our opinion the "a trous" subband filt.ering algorithm is es­
pecially well-adapted to the needs of the digit.al clITvelet trans­
form, The algmithm decomposes an n by n image I as a super­

position of the form 

I(x, y) == cJ(x, y) + L
J 

Wj(x, y), 
j=1 

where CJ is a coarse or smooth version of the original image I
jand Wj represents "the details of l" at scale 2- . See [13] for 

more information. Thus, the algorithm outputs J + 1 subband 
arrays of size n x n. (The indexing is such that, here, j == 1 
corresponds to the finest scale, i.e., high frequencies.) 

As a side comment, we note that the coarse description of the 
image CJ is not processed. We used the default value bmin 16 
pixels in our implementation. Figure 3 (right) gives an overview 
of the organization of the algorithm. 

This implementation of the curvelet transform is redlUldant. 
The redlUldancy factor is equal to 16J +1 whenever J scales are 
employed. Finally, the method enjoys exact reconstruction and 
stability, because each step of the transform is both invertible 
and stable. 

I I I. CONTRAST ENHANCEMENT USING THE CURVELET 

TRANSFORM 

Since the curvelet. t.ransform is well-adapted to represent im­
ages containing edges, it is a good candidate for edge enhance­
ment. Curvelet coefficients can be modified in order to enhance 
edges in an image. A funct.ion Yc must be defined which modi­
fies the values of the curvelet coefficients. I t could be a flUlction 
similru' to the one defined for the wavelet coefficients [15] (see 
equation 5). This flUlct.ion however gives rise t.o the drawback 
amplifying the noise (linearly) as well as the signal of int.erest. 
VVe introduce explicitly· the noise standard deviation in the(7 

http:digit.al
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Fig. 3. Top, ridgelet transform ftowgraph. Each of the 2n radial lines in the Fourier domain is processed separately. The I-D inverse FFT is 
calculated along each radial line followed by a I-D non-orthogonal wavelet tL'ansform. In practice, the one-dimensional wavelet coefficients are 
directly calculated in the Fourier space. Bottom, curvelet transform ftowgraph. The figure illustra.tes the decomposition of the original image 
into subbands followed by the spatial partitioning of each subband (i.e. each subba.nd is decomposed into blocks). The ridgelet transform is then 
applied to each block. 

equation: yc(x, u) (10) 

yc(x, u) 1 if x < cu p determines the degree of non-linearity and s introduces dy­
na.mic range compression. Using a non-zero s will enhance thex- cu (m) p x2cu

Yc(x,o-) = --- - + --- if x < 2cu faintest edges and soften the strongest edges at the same time.cu cu cu 
c becomes a normalization paramet.er, and a c value larger than 

yc(x, Go) = ( mx )P if 2cu :::;:t: < 'In 3 guaranties that the noise will not be amplified. The m pa­

http:paramet.er
http:subba.nd
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Fig. 5. Top, part of Lena image and its histogram equalization. Bottom, enhanced image by the wavelet transfol'm and the curvelet transform. 

are certainly more appropriate), but we consider that if an im­
age enhancement. method improves the human performance for 
analyzing a scene, it should do the same for a machine-based 
vision approach. We describe two experiments in the following, 
providing some measure of objectivity for comparison of results, 
using edge detection and segmentation. Finally, we return to 
the issue of the limits of curvelet versus wavelet enhancement. 

B. Edge Detection 

Figure 9 consists of an artificial image containing a number of 
bars. The intensity is constant along each individual bar; from 
left to right, the intensities of the six vertical bars (these are 
in fact thin rectangles which are 20 pixels wide and 150 pixels 
long, having a 30 degree angle with the x-axis) are respectively 
equal to 1,2,3,4,5,8, The noise standard deviat.ion is 1. 

We ran the wavelet and the curvelet methods on this sim­
ulated image. The cm'velet method was applied twice, once 
with Velde's enhancement funct.ion and once with the proposed 
enhancement function. Then we applied a Canny edge det.ec­
tor on the three enhanced images. vVe est.imat.ed the noise in 
the three edge images from pixels outside t.he bars, and consid­

ered as edges all pixels with a value larger than five times the 
noise standard deviation. Knowing the right edges (t.hey were 
extracted by applying the Canny edge detector to t.he original 
noise free image, see Figure 9 right), we derived the percentage 
of recovered edge pixels: this is 54.77% for the wavelet-based 
image, 64.66% for the curvelet enhanced image using Velde's 
function enhancement, and 73.91% for the curvelet enhanced 
image using the' new function enhancement. As each bar has 
a different intensity level, we can also derive the percentage of 
recovered edge pixels as a function of the edge signal to noise 
ratio (SNR). Figure 10 shows such a curve. This gives the per­
centage of detected edge pixels versus the edge SNR using a 
Canny edge det.ector on (i) the wavelet enhanced image (dashed 
line), (ii) the curvelet enhanced image using Velde's function en­
hancement, and (iii) the curvelet enhanced image using the new 
function enhancement (continuous line). 

These results are clearly in favor of the curvelet transform. 

C. Segmentation 

Contrast enhancement can facilitate user interpretation of au 
image, or it. can help in automated int.erpretation. Here, we will 

http:est.imat.ed
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Fig. 4. Enhanced coefficients versus original coefficients. Left, 

m=30,c=3,s=O.6,p=O.5. 

rameter is the value under 'which coefficients are amplified. This 
value depends obviously on the pixel values inside the curvelet 
scale. Therefore, we found it necessary to derive the m value 
from the data. Two options are possible: 

• m ean be derived from the noise standard deviation (m = 
K m(1) using an additional parameter Km. The advantage is 
that K m is now independent of the curvelet coefficient values, 
and therefore much easier for a user to set. For instance, using 
c = 3 and K m = 10 amplifies all coefficients with a SNR between 
3 and 10. 
• m can also be derived from the maximum curvelet coefficient 
Mc of the relative band (m = lMc, with I < 1). In this case, 
choosing for instance c = 3 and I = 0.5, we amplify all coeffi­
cients with an absolute value between 3(1 and half the maximum 
absolute value of the band. 

The first choice allows the user to define the coefficients to be 
amplified as a ftmction of their signal to noise ratio, while the 
second one gives an easy and general way to fix the m param­
eter independently of the range of the pixel values. Figure 4 
shows the curve representing the enhanced coefficients versus 
the original coefficients for two sets of parameters. 

The curvelet enhancement method for grayscale images con­
sists of the following steps: 

1. Estimate the noise standard deviation (1 in the input image 
I. 
2. Calculate the curvelet transform of the input image. We get 
a set of bands Wj, each band Wj contains Nj coefficients and 
corresponds to a given resolution leveL 
3. Calculate the noise standard deviation (1 j for each band j of 
the curvelet transform (see [12] for more details on this step). 
4. For each band j do 

• Calculate the maximum N!j of the band. 
• Multiply each curvelet coefficient Wj,k by yc(1 Wj,k I, (1j). 

5. Reconstruct the enhanced image from the modified ctll'velet 
coefficients. 

For color images, we apply first the curvelet transform to 
the three components L, tt, v. For each curvelet coefficient, 
we calculate e =JC1, + c~ + ct, where (CL, Cu., cv ) are re­
spectively the ctll'velet coefficients of the three component.s, 
and the modified coefficients are obtained by: (c L , cu., cv ) = 
(yc(e, (1)CL, yc(e, (1)cu, yc(e, (1)cv ), 

Values in the enhanced components can be larger than the 
authorized upper limit. (in general 255), and we fmmd it neces­
sary to add a final step to our method, which is a gain/offset 
select.ion applied uniformly to the t.hree color sub-images, as 
described in [6]. 

50 
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10 
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parameters are m=30,c=3,s=O, and p=O.5. Right, parameters are 

Examples 

Figure 5 shows the results of, respectively, histogram equal­
ization, wavelet and curvelet enhancement, using the standard 
Lena test image. No noise was added to the image used, imply­
ing small levels only of quantization noise present. The better 
result seen here for the curvelet enhancement (Figure 5 bot­
tom right) is in part due to the Velde method [15] used in the 
wavelet-based method over-enhancing small noise levels. 

Figure 6 shows the results for the enhancement of a grayscale 
satellite image (parameters were c = 3, 1= p = 0.5 and s = 0). 
Figure. 7 shows the results for the enhancement of a color image 
(Kodak image of the day 14/05/01) by the retinex (same pa­
rameters), the multiscale retinex and the curvelet multiscale 
edge enhancement methods. Figure 8 shows the results for 
the enhancement of a color image (Kodak image of the day 
11/12/01). These examples present some evidence for the ben­
efits of curvelet enhancement. Small, aligned features are pre­
served well. Note however that better color fidelity can be ob­
tained for the MSR image by using the color restoration algo­
rithm described in [1]. 

In summary, the results of these three figures indicate that 
the curvelet based enhancement approach works well. In the 
next section, we will evaluate it relative to other enhancement 
approaches, and in particular wavelet based enhancement. 

IV. EVALUATION 

A. Evaluation Methodology 

Image enhancement quality is difficult to assess. Considerable 
literature exists relative to image quality estimation [11], [4]. 
However tIns is most often in the context of image compression 
where the problem is to estimate the distorsion or the loss of 
information, with criteria other than PSNR (peak signal to noise 
ratio), because PSNR does not reflect errors in the way that 
the human vision syst.em does. For image enhancement, the 
goal is to introduce distorsion, in such a way that some low 
level or low contrast features can easily be seen by a human 
operator. A subject.ive assessment approach is simply to present 
images enhanced by different methods, as we did in the previous 
section, and to let a domain expert judge the best result. 

In order to have an object quality criterion, we will mal<:e 
the following assumpt.ion: between two edge enhancement tech­
niques, the better one will be that which produces the best. 
results for standard vision processing tasks, such as segmenta­
tion or edge detect.ion. vVe do not claim t.hat image enhance­
ment should be applied before caITying out a segmentat.ion or 
an edge detection (ot.her pre-processing steps such as filtering 
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Fig. i. Top, color image (Kodak picture of the day 14/05/02) and retinex method. Bottom, multiscale retinex method and curvelet edge enhancement. 

density fidelity to the original image marginal density (upper curvelet.-enhanced images, respective values of: 0.72, 0.72, 0.63 
left panel). and 0.73. We also determined, as measures of model fit, pseudo­

To investigate the qualit.y of segmentations carried out on likelihood information criterion values, with limited explanatory 
these images, we used a 5-component Gaussian fit, based on a capability in this instance. 
Markov random field model with neighborhood 3 x 3, and with The segmentation results are shown in Figures 12-15. In the 
a Potts/Ising spatial model. The spatial influence paramet.er, hist.ogram equalized result (Figure 13) edge information is de­
¢i did not differ great.ly among these results. vVe found, for the stroyed: cf. details of the big cap feather. The wavelet-enhanced 
OIiginal and hist.ogram-equalized images, and t.he wavelet.- and result (Figure 14) does very well in edge regions: cf. details 

http:great.ly
http:paramet.er
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Fig. 6. Top, grayscale image, and bottom, curvelet enhanced image. 

use segmentation as an important processing goal. VVe will use Figure 11 shows the marginal densities of these images. His­
a grayscale 512 x 512 Lena test image on account of its smooth togram equalization essentially destroys information relative to 
and edge regions. pixel classification through marginal density fitting. With his­

The alternative contrast enhancement approaches used are: togram equalization, image quantization remains feasible, of 
(i) histogram equalization, using the algorithm in the IDL im­ course, but it is dear from Figure 12 that possibly useful in­
age processing package, (ii) wavelet coefficient enhancement, as formation is lost. Wavelet enhancement (bottom left panel in 
described in section I above, and (iii) curvelet t.ransform based Figure 12) also smooths out information. Only the curvelet en­
enhancement, as described in section II.B above. hancement (bottom right panel in Fig'ure 12) retains marginal 
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Fig. 10. Percentage of detected edge pixels versus the edge SNR using a Canny edge detector on the wavelet enhanced image (dashed line), the 
curvelet enhanced image using Velde's function enhancement (dotted line), and the curvelet enhanced image using the new function enhancement 
(continuous line). 
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Fig. 	11. Marginal density histograms (binsize =3) of original Lena image (top left), histogram equalized image (top right), wavelet enhanced (bottom 
left), and curvelet enhanced (bottom right). 

performs well in edge regions (feather, background) while simul- ter result which is simultaneously "close" to the original input 
taneously respecting smoot.h areas. Overall, from the points of image. 
view of marginal density, and also spatial segment.atioIl, we find 
the curvelet transform enhancement method to provide a bet.­
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Fig. 8. Top, color image (Kodak picture of the day 11/12/01), and bottom, curvelet enhanced image. 

Fig. 9. Left, image containing a number of bars, and right, bal' edge image. 

of the cap feather, and hair. However some injustice IS done to the smooth regions. The curvelet enhancement (Figure 15) 
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Fig. 12. A 5-segment result, using a Markov Potts model, of the original 
image. 

Fig. 14. A 5-segment result, using a Markov Potts model, of the wavelet­
enhanced image. 

Fig. 	13. A 5-segment result, using a Markov Potts model, of the his­
togram equalized image. 

V. CONCLUSION 

A number of properties, respected by the curvelet filtering 
described here, are important for contrast stretching: 

1. Noise must not be amplified in enhancing edges. 
2. Colors should not be lllduly modified. In the multi scale 
retinex, for example, a tendency towards increased grayness is 
seen. This is not the case using curvelets. However color restora­
tion could also. be carried out in a final step, as proposed for 
the multiscale retinex [1]. This should improve the final ima.ge 
quality. 
3. It is very advantageous if block effects do not occm·. Block 
overlapping is usually not necessary in curvelet-based contrast 
enhancement, unlike in the case of noise filtering. 

Fig. 	15. A 5-segment result, using a Markov Potts model, of the curvelet­
enhanced image. 

A range of further examples can be seen at 
http://www-stat.stanford.edu/ .......jstarck/contrast.htmL 

Our conclusions are as follows: 

1. The curvelet and wavelet enhancement flllctions take ac­
count very well of image noise. 
2. As evidenced by the experiments with the curvelet trans­
form, there is better detection of noisy contours than with other 
methods. 
3. For noise-free images, there is not a great deal to be gained 
by curvelet enhancement over wavelet enhancement since the 
enhancement function tends towards Velde's approach in such 
weak noise cases. Contours and edges are detected quite ade­
quately by wavelets in such situations. 

http:http://www-stat.stanford.edu



