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ABSTRACT 

We introduce wavelets, cUlVelets and multiresolution 
analysis techniques to assess the symmetry of X ray 
driven imploding shells in ICF targets. After denoising X 
ray backlighting produced images, we determine the Shell 
Thickness Averaged Radius (STAR) ofmaximum density, 
r*(N, B), where N is the percentage of the shell thickness 
over which to average. The non-uniformities of r*(N, B) 
are quantified by a Legendre polynomial decomposition 
in angle, B. Undecimated wavelet decompositions 
outpeiform decimated ones in denoising and both are 
surpassed by the cUlVelet transform. In each case, hard 
thresholding based on noise modeling is used. We have 
also applied combined wavelet and culVelet filter 
techniques with variational minimization as a way to 
select the Significant coeffiCients. Gains are minimal over 
cUlVelets alone in the images we have analyzed. 

Keywords: wavelets, curvelets, implosion symmetry, 
Legendre polynomial decompositions, denoising, hard 
thresholding, ICF 

1. INTRODUCTION 

High yield targets for inertial confmement fusion 
(ICF) have been designed recently which rely on a double 
Z pinch configuration. 1 These novel approaches to 
indirect drive inertial confmement fusion energy 
production promise to attain fusion by next generation Z 
pinch machines such as those proposed by Sandia 
National Laboratories. 2 The idea is to attain the uniform 
implosion of an annular shell containing fusion fuel via 
intense X ray illumination in an intermediate chamber 
sitting between two wire array Z pinches which create the 
necessary mega-Joules of X rays.1-3 To diagnose the 
imploding shell at the center of the middle chamber of a 
double Z pinch hohlraum (DZPH). an X ray backlighter 
is used. 4 The X rays must enter the middle chamber from 
its side, and image it through a slit on the other side of the 
chamber at an external film plane. 4 The implosion is due 

to the radiation driven ablation of the shell driven by 
copious amounts of X rays that enter the central chamber 
having been created by the two imploding Z pinch wire 
arrays on either side, which generate mega-Joules of X 
rays each. 1·3 These X ray fluxes, if sufficiently 
synchronized to allow for a uniform radiation distribution 
inside the central hohlraum chamber, will drive the 
uniform implosion of the fusion capsule in its center. The 
quantitative assessment of the degree to which this is so is 
our goal when we denoise such X ray backlighting 
generated images. The three images we will denoise and 
analyze are given in Fig. 1. 

Ideally, one would acquire a sequence of such images per 
implosion using gated optics and track the evolution of a 
given accelerating shell. 4 Distortions in the shell as it 
implodes can be due to non-uniformities in the X ray 
illumination, target surface imperfections and their 
amplification due to hydrodynamic instabilities such as 
Rayleigh-Taylor. 1 From a given X ray backlighting 
image, one would like to extract the degree of asymmetry 
of the imploding shell near its peak plasma density or, 
equivalently, its radius of minimum X ray transmission. 5 

Identifying that radius is the task at hand with appropriate 
shell thickness averaging and denoising. The main 
sources of the noise are thought to be the graininess of the 
film and the scanner digitization process?-5 This suggests 
that the noise is additive and the empirical evidence is that 
it is white Gaussian. For the very symmetric shot. Z927, 
and the intermediate one, Z926, this is certainly the case. 
For Z928, however, the noisiest and most distorted image 
analyzed herein (since it is taken later in time and 
therefore further along in the compression and thus has a 
much smaller radius) the log of the image was used and a 
Gaussian noise model seemed to fit that better. The 
techniques utilized in this paper should fmd fruitful 
application in the denoising of X ray backlit laser driven 
reF target implosion images from facilities such as 
Omega6 and the NIF.7 
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2. WAVELETS, CURVELETS AND 
DENOISING 

In the past ftfteen years, there has been a revolution in 
signal processing by the introduction and popularization 
of multiresolution analysis techniques and in particular, 
those based on wavelets.s-9 The reign of Fourier as the 
dominant spectral representation domain where filtering, 
smoothing, scale identification and even phase space 
tiling concepts are evoked has been challenged by the 
advent of wavelets and their fast algorithmic 
implementation.8-10 The successes of wavelets and their 
usage are too many to review here. A visit to 
FWWJYJ!Y~lfl\~Q.rg will reveal the history of, tutorials on, 
and latest news concerning, wavelets and their uses from 
astronomy to medicine, pure mathematics to audio 
engineering. For the purposes of this paper, the important 
tools are wavelets for image processing,10 curvelets for 
image processingllo12 and noise modeling (statistical 
analysis) and discrimination/thresholding techniques. 1()'13 

The fundamental concept of multiresolution analysis is 
to decompose a signal or image into time (or space) and 
scale Simultaneously. Thus, just as in music notation, not 
only which notes are to be played are specified (what 
Fourier supplies very precisely) but when and for what 
durations (about which Fourier is silent). The 
simultaneous scale and time (or space) decompositions 
are carried out in the simplest case by equispaced 
translates (whose number per scale or spacing is scale 
dependent) and 21 dilates of a mother waveletS

-9 (where J 
is the number of scales to be used). A wavelet is a 
localized waveform with zero mean and good localization 
properties both in space (time) and reciprocal space 
(frequency) (i.e. good localization in phase space). In 
signal processing terms, a wavelet is a band pass filter 
around a low pass ftlter used to detect the coarsest 
features of a signal (which itself is known as the scaling 
function in wavelet parlance). Wavelets record the fmer 
and finer scale structures around the coarsest scale ones in 
a nested set of levels, with proportionately more translates 
at each finer scale. This pyramid structure can be 
constructed by the basic fast algorithm (O(N) operations, 
N being the number of data points, FFT being O(N InN)) 
that was invented in the late eighties.8-9 The resulting 
orthogonal or biorthogonal decompositions are said to be 
decimated wavelet ones. The drawback in denoising 
applications is that these decompositions are not 
translationally invariant while noise presumably is (how 
would the noise know which bit to corrupt?). The scale 
information content of a signal is the same no matter 
when we start or end the signal just as long as we keep all 
of it (all sequential permutations of the bits, that is). To 
adhere to that symmetry, the number of translates at each 

multiresolution level (scale) should not be changed and at 
all scales the number of translates should be the same as 
that at the fmest scale. This gives rise to a highly 
redundant representation which nevertheless has great 
advantages in denoising since now the noise is diluted in a 
great many more coefficients only the most significant of 
which is to be kept via hard thresholding. 1()'14 Denoising is 
done by estimating the type and variance of the noise and 
choosing to keep large wavelet coefficients which have a 
low probability of being noise. This is done iteratively as 
described in numerous references. 1()'1.5 

The three images in Fig. 1 will be denoised using 
undecimated and decimated wavelets as well as curvelets. 
We have used the variance of the noise found in the 
individual images to estimate the coefficients which are 
likely to be noise dominated and discarded them. This is 
referred to hard thresholding. 1()'15 The decimated wavelet 
transform, being a non-redundant transform, does not 
allow for optimal denoising since it is not translationally 
invariant in its construction. Fig. 2 shows denoising using 
a 50' iterative denoising method using the Antonini 9n 
biorthogonal set of wavelets. 10 Decimated biorthogonal 
wavelet transforms such as these are far more useful for 
image compression than for denoising.8-9 

Fig. 3 shows undecimated wavelet transforms with 
hard thresholding based on noise modeling. 10,13,15 This 
highly redundant transform does allow for optimal 
denoising in the wavelet domain since it is translationally 
invariant in its construction. Discrimination against noise 
is much easier in this transform than in the decimated 
transform case. However, many artifacts still remain since 
a point wise and isotropic construction is being 
implemented when wavelets are used. To adapt to the 
contours of the figure a truly 2D construction is needed 
such as that afforded by cUIvelets.1l-12 Curvelets afford a 
very useful tool for denoising images such as these. Fig. 4 
shows this directly. 

One way to see how the imploding shells behave 
as a function of angle is to plot the locus of the radius of 
minimum X ray transmission sandwiched between the loci 
of the inner and outer radii of maximum transmission. 
These max-ruin-max polar plots are shown in Fig. 5 for 
the curvelet transformed and denoised images. The 
asymmetry of the implosion can be easily seen from the 
nonuniformity of the distance separating the various 
curves. Z927 is the most symmetric while Z928 is the 
least. 

A better way to characterize the deviations of a 
shell from spherical symmetry (in its projection onto a 
plane), is to unwrap the circular ribbon like structures by 
plotting the images as radius vs angle on a Cartesian grid. 
Now a circular shell becomes a ribbon, a circle becomes a 
horizontal line and any deviations from that line imply 
distortions and fluctuations. Nestled in the middle of the 
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ribbons, we also plot r*(O, 8), r*(50, 8) and r*(90, 8) 
~here the first argument of r* is the percentage of the 
distance between the minimum transmission radius and its 
closest maximum (on either side of the minimum). This is 
the shell thickness averaged radius (STAR), r*, where r(r, 
8) is the X ray intensity distribution in the image: 

rR (N,9) rRO'f'9)j

r* (N,B) = f I(r,B)rdr JI(:,B) dr 

rL (N.e) rL (N,f)) 

I(rL) = I(:R) 1~O 0tin [I(rmax,L) I(rmax.R )]-I(rmin)) 

We have found that r*(90, 8) has the smoothest and most 
useful qUalities of the three shown in Figs 6. 

Next, in Fig. 7, we plot the r*(90, 8) curves (each 
nonnalized with its own average radius), obtained by 
curvelet filtering. For Z928, only curvelets produce a 
smooth r*(90, 8) curve. Finally, the Legendre polynomial 
decompositions of curvelet generated r*(90, 8) curves for 
Z926-Z928 are given in Figure 8. The degrees of 
asymmetry in the imploding shells are thus quantified. 
The vertical axes contain the Legendre polynomial 
coefficients Cn nonnalized to the zero order Legendre 
polynomial coefficient Co. Co is equal to the average 
diameter of the curve r*(90, 8). The coefficients en are 
found by Legendre decomposing each half of r* 
separately and adding the results. For further details see 
Ref. 14-15. Combined filtering promoted in Ref 12, for 
instance, was seen in our case not to improve the results 
obtained with curvelets alone. 15 
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Figure 1.. X Ray backlighting generated images of double Z pinch compressed hollow shells in Sandia Z machine shots 
Z926-Z928. The axes are in pixels. The conversion factor is 5 microns per pixel Originally, before compression, the shells 
had millimeter size radii. 
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Figure 2. Decimated Wavelet transform reconstructions of X Ray backlighting images. 

Figure 3. Undecimated Wavelet transform reconstructions of X Ray backlighting images. 

1::°' 


I
i:. 

:;:~:~ 

·s 

2.5 

2 

"·::i··s 

:&:ui( 

iI.S 

2.5 

2 

Figure 4. Curvelet transform reconstructions of X Ray backlighting images. 



Figure 5. Polar max-min-max plots of minimum and maximum X ray transmission radii for clllvelet transform reconstructed 
X r~y backlightin~ images of Z926-Z928. The reason the Z928 min and max curves seem to pinch around a 100 degrees and 
agam around 250 IS because the shells seem to be flattened there blurring the concept of min and max, 

Z928 Curvlet Ribbon 20a 

5. 
Figure 6. Interpolated polar coordinates ribbon plots: Curvelet transform reconstructions of X Ray backlighting image of 
double Z Pinch target shots Z926 with r*(O, 8), r*(50, 8) and r*(90, 8) superposed. 
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Figure 7. A comparison of the r*(90, 8) curves obtained via the three filters on the three data sets each normalized to its own 
average radius. The average radii for the three Z images are roughly 603, 574 and 340, respectively. Black (solid lines) 
corresponds to a decimated wavelet decomposition, red (diamonds), undecimated, and blue (squares) corresponds to a 
curvelets based decomposition, Note that only curvelets can detect the R *(90) curves for Z928. Wavelets fly off the mark. 
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Figure 8. The Legendre polynomial decomposition of curvelet generated r*(90) curves for Z926-Z928. The first 20 mode 
amplitudes are shown. We see that Z927 has around 1.5% P2 and 0.2% P4 deformations, Z926 has over 3.5% P2 and almost 
1% P4 deformations while Z928 has over 6% P2 and 2% P4 deformations. These are decompositions without any attempts at 
centering the images to within 5 pixels of the true centers. That is why PI is nonzero but small in all three cases. 




