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ABSTRACT 

This paper describes a new deconvolution algorithm, based 
on both the wavelet transform and the curvelet transform. It 
extends previous results which were obtained for the denois­
ing problem. Using these two different transformations in 
the same algorithm allows us to optimally detect in the same 
time isotropic features, well represented by the wavelet trans­
form, and edges better represented by the curvelet trans­
form. Adding a TV penalization term avoid the presence 
of oscillary patterns around the edges which may appear 
when using multi scale methods. We illustrate the results 
with simulations. 

1. INTRODUCTION 

New multi scale systems like curvelets [1] and ridgelets [2] 
are very different from wavelet-like systems. They take the 
form of basis elements which exhibit very high directional 
sensitivity and are highly anisotropic. A digital curvelet 
transform has been proposed in [3, 4] for image denois­
ing and image contrast enhancement. It has been shown 
[3] that, for denoising problems, the curvelet transform ap­
proach outputs a PSNR comparable to that obtained via the 
undecimated wavelet transform, but the curvelet reconstruc­
tion does not contain as many disturbing artifacts along edges 
that one sees in wavelet reconstructions. Although the re­
sults obtained by simply thresholding the curvelet expan­
sion are encouraging, there is of course ample room for fur­
ther improvement. A quick inspection of the residual im­
ages resulting from the Lena image filtering for both the 
wavelet and curve let transforms shown in paper [5] (fig­
ure 5) reveals the presence of very different features. For 
instance, wavelets do not restore long edges with high fi­
delity while curvelets are challenged by small features such 
as Lena's eyes. Loosely speaking, each transform has its 
own area of expertise and this complementarity may be of 
great potential. 

In [5], a denoising algorithm was proposed which inves­
tigates this complementarity, by combining several multi­
scale transforms in order to achieve very high quality image 
restoration. Considering J{ linear transforms T1 , ••• ,TK, 
the method consists of minimizing a functional such as the 
Total Variation (TV) or the 11 norm of the multiscale co­
efficients, but under a set of constraints in the transform 
domains. Such constraints express the idea that if a sig­
nificant coefficient is detected by a given transform Tk at 
a scale j and at a pixel position (x, y), then the transfor­
mation of the solution must reproduce the same coefficient 
value at the same scale and the same position. In short, the 
constraints guarantee that the reconstruction will take into 
account any pattern which is detected as significant by any 
of the J{ transforms. 

Several papers have been recently published, based on 
the concept of minimizing the total variation under con­
straints in the wavelet domain [6, 7, 8] or in the curvelet 
domain [9]. The combined filtering approach [5] can be 
seen as a generalization of these methods. 

Section 2 introduces the deconvolution problem, and 
discusses different wavelet based methods and section 4 shows 
how a deconvolution can be derived from a combined ap­
proach. 

2. WAVELETS AND DECONVOLUTION 

Consider an image characterized by its intensity distribu­
tion I, corresponding to the observation of a "real image" 
o through an optical system. If the imaging system is lin­
ear and shift-invariant, the relation between the data and 
the image in the same coordinate frame is a convolution: 
J(x, y) = (P * O)(x, y) + N(x, y), where P is the point 
spread function (PSF) of the imaging system, and N is ad­
ditive noise. We want to determine O(x, y) knowing J and 
P. This inverse problem has led to a large amount of work, 
the main difficulties being the existence of: (i) a cut-off fre­



quency of the PSF, and (ii) the additive noise (see for exam­
ple [10]). 

The wavelet based non-iterative algorithm, the wavelet­
vaguelette decomposition [11], consists of first applying an 
inverse filtering (F =p-l *1 + p-l *N =0 + Z where 
P-l(v) = ptV»)' The noise Z =p-l * N is not white ~ut 
remains Gaussian. It is amplified when the deconvolutlOn 
problem is unstable. Then, a wavelet transform is applied on 
F, the wavelet coefficients are soft or hard thresholded [12], 
and the inverse wavelet transform furnishes the solution. 

The method has been refined by adapting the wavelet 
basis to the frequency response of the inverse of P [13]. 
This leads to a special basis, the Mirror Wavelet Basis. This 
basis has a time-frequency tiling structure different from 
the conventional wavelets one. It isolates the frequency v It 

where P is close to zero, because a singularity in P-l(vlt ) 

influences the noise variance in the wavelet scale correspond­
ing to the frequency band which includes Vlt. Because it 
may not be possible to isolate all singUlarities, Neelamani 
[14] has advocated a hybrid approach, and proposes to still 
use the Fourier domain to restrict excessive noise amplifica­
tion. These approaches are fast and competitive compared 
to linear methods, and the wavelet thresholding removes 
the Gibbs oscillations. This presents however several draw­
backs: (i) the first step (division in the Fourier space by the 
PSF) cannot always be done properly, (ii) the positivity a 
priori is not used, and (iii) it is not trivial to consider non­
Gaussian noise. 

As an alternative, several wavelet-based iterative algo­
rithms have been proposed [15], especially in the astronomi­
cal domain where the positivity a priori is known to improve 
significantly the result. The simplest method consists of first 
estimating the multiresolution support M (Le. M (j) x, y) = 
1 if the wavelet transform of the data presents a significant 
coefficient at band j and at pixel position (x) y), and °oth­
erwise), and to apply the following iterative scheme: 

where W is the wavelet transform operator. At each it­
eration, information is extracted from the residual only at 
scales and positions defined by the multiresolution support. 
M is estimated from the input data and the correct noise 
modeling can easily be considered. 

3. THE CURVELET TRANSFORM 

The Local Ridgelet Transform 

The two-dimensional continuous ridgelet transform of a func­
tion is defined by: 

where the ridgelet function 'l/Ja,b,e is given by 

'l/Ja,b,e(X) =a-1
!2 ·'I/J((XI cos(} +X2sin(}-b)/a); (2) 

with f 'I/J(t)dt =0, a > 0, b E R and each (} E [0, 27!'). 
It has been shown [16] that the ridgelet transform is pre­

cisely the application of a I-dimensional wavelet transform 
to the slices of the Radon transform where the angular vari­
able (} is constant and t is varying. 

The ridgelet transform is optimal to find only lines of 
the size of the image. To detect line segments, a parti­
tioning must be introduced [17]. The image is decomposed 
into smoothly overlapping blocks of side-length b pixels in 
such a way that the overlap between two vertically adja­
cent blocks is a rectangular array of size b x b/2; we use 
overlap to avoid blocking artifacts. For a n x n image, we 
count 2n/b such blocks in each direction. The partitioning 
introduces redundancy, as a pixel belongs to 4 neighboring 
blocks. 

More details on the implementation of the digital ridgelet 
transform can be found in [3]. The ridgelet transform is 
therefore optimal to detect lines of a given size, which is the 
block size. 

The Curvelet Transform. 

The curvelet transform, proposed by Donoho [18, 1], opens 
us the possibility to analyses an image with different block 
sizes, but with a single transform. The idea is to first decom­
pose the image into a set of wavelet bands, and to analyze 
each band with a local ridgelet transform. The block size 
can be changed at each scale level. Roughly speaking, dif­
ferent levels of the multi-scale ridgelet pyramid are used to 
represent different sub-bands of a filter bank output. 

The side-length of the localizing windows is doubled at 
every other dyadic sub-band, hence maintaining the funda­
mental property of the curvelet transform which says that 
elements of length about 2-i !2 serve for the analysis and 
synthesis of the j-th sub-band [2i I 2i+l]. Note also that the 
coarse description of the image CJ is not processed. We 
used the default value Bmin = 16 pixels (1.5 arcminute 
aside per pixel) in our implementation. This implementa­
tion of the curvelet transform is also redundant. The re­
dundancy factor is equal to 16J + 1 whenever J scales are 
employed. 

This method is therefore optimal to detect anisotropic 
structures of different lengths. 

4. THE COMBINED DECONVOLUTION METHOD 

Similar to the filtering, we expect that the combination of 
different transforms can improve the quality of the result. 
The combined approach for the deconvolution leads to two 
different methods. 



Fig. 1. Top, original image (phantom) and simulated data (i.e. convolved image plus Poisson noise). Bottom, deconvolved 
image by the wavelet based method and the combined approach. 

If the noise is Gaussian and if the division by the PSF in 
the Fourier space can be carried out properly, then the de­
convolution problem becomes a filtering problem where the 
noise is still Gaussian, but not white. The Combined Filter­
ing Algorithm can then be applied using the curvelet trans­
form and the wavelet transform, but by estimating first the 
correct thresholds in the different bands of both transforms. 
Since the mirror wavelet basis is known to produce better 
results than the wavelet basis, it is recommended to use it 
instead of the standard undecimated wavelet transform. 

An iterative deconvolution method is more general and 
can always be applied. Furthermore, the correct noise mod­
eling can much more easily be taken into account. This 
approach consists of detecting, first, all the significant co­
efficients with all multiscale transforms used. If we use f{ 

transforms T1, .•. , TK, we derive f{ multiresolution sup­
ports M1, ... , MK from the input image I using noise mod­
eling. 

For instance, in the case of Poisson noise, we apply the 

Anscombe transform to the data (i.e. A(I) = 2)1+ ~). 
Then we detect the significant coefficients with the kth trans­
form Tk, assuming Gaussian noise with standard deviation 
equal to 1, in TkA(I) instead of TkI. Mk (j, x, y) = 1 if 
a coefficient in band j at pixel position (x, y) is detected , 

and Mk (j, x, y) =0 otherwise. For the band J which corre­
sponds to the smooth array in transforms such as the wavelet 
or the curvelet transform, we force Mk(J, x, y) = 1 for all 
(x, y). 

Following determination of a set of multiresolution sup­
ports, we propose to solve the following optimization prob­
lem: 

minS(O), subject to 0 E C, (3) 

where S is an edge preservation penalization term defined 
by: S(O) = J II vO lip, with p = 1.1. C is the set of 
images 0 which obey the two constraints: 

1. 0 2:: 0 (positivity). 

2. MkTkI = MkTk[P * 0], for all k. 

The second constraint imposes fidelity to the data, or more 
exactly, to the significant coefficients of the data, obtained 
by the different transforms. Non-significant (Le. noisy) co­
efficients are not taken into account, preventing any noise 
amplification in the final algorithm. 

The solution is computed by using the projected Landwe­
ber method [10]: 

on+l = P, [on + a(P' * R" - Aa~~))] (4) 



, . 

where Pc is the projection operator which enforces the pos­ [6] S. Durand and J. Froment, "Reconstruction of wavelet 
itivity (Le. set to 0 all negative values). kn is the significant coefficients using total variation minimization," Tech. 
residual which is obtained using the following algorithm: Rep. 2001-18, CMLA, November 2001. 

• Set 18 = In = p *on. 	 [7] P. Dherete, S. Durand, J. Froment, and B. Rouge, "A 
best wavelet packet basis for joint image deblurring-

Kr d In In +fTT- 1 [M (fTT 1 fTT In )] denoising and compression," in SPIE's 47th Annual • 	 For k = 1)... ) , k = k _ 1 k - k-10 J. k J. k J. k 

• 	 The significant residual kn is obtained by: kn = 
Ii( - In. 

Q' is a convergence parameter and ,\ is the regularization 
hyperparameter. Since the noise is controlled by the multi­
scale transforms, the regularization parameter does not have 
the same importance as in standard deconvolution methods. 
A much lower value is enough to remove the artifacts rela­
tive to the use of the wavelets and the curvelets. The posi­
tivity constraint can be applied at each iteration. 

Figure 1, top, shows the Logan-Shepp Phantom and the 
simulated data, i.e. original image convolved by a Gaussian 
PSF (full width at half maximum, FWHM=3.2) and Poisson 
noise. Figure 1, bottom, shows the deconvolution with (left) 
a pure wavelet deconvolution method (no penalization term) 
and (right) the combined deconvolution method (parameter 
,\ =0.4). 
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