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ABSTRACT 

Inter-band wavelet correlation provides one approach to defining edges in an image. Inter-band wavelet 
products follow long-tailed density distributions, and in such a context thresholding is very difficult. We 
show how segmentation using a Markov field spatial dependency model is a more appropriate approach to 
demarcating edge and non-edge regions. A key part of this work is quantitative assessment of goodness of 
edge versus non-edge fit. We introduce a formal assessment framework based on Bayes factors. A detailed 
example is used to illustrate these results. 

Subject terms: wavelet transform; edge detection; segmentation; Bayes factor; BIC, Bayes information 
criterion; PLIC, pseudo-likelihood information criterion; likelihood; heavy-tailed distribution. 

1. INTRODUCTION 

Wavelet transforms of images provide localized detail signal, which is in general related to edge information. 
Hence taking the product of wavelet resolution scales can help to emphasize edge information. In practice 
a symmetric wavelet function is best for this purpose, and a redundant wavelet transform algorithm avoids 
aliasing difficulties. 

Inter-band wavelet correlation provides one approach to defining edges in an image. Inter-band wavelet 
products follow long-tailed distributions, and therefore single or multiple thresholding is very difficult to 
achieve. 

In section 2, we review previous work using wavelet transforms for edge-finding. This includes taking 
products of detail signal, a practice which goes at least as far back as 1970. 

Section 3 overviews longtailed distributions, and indicates the problem of image thresholding alter­
native viewed as scalar quantization - which we are addressing. 

Section 4 introduces and discusses (i) Gaussian mixture modeling of one-dimensional data distributions, 
(ii) Gaussian modeling in the case of a Markov spatial dependency model, and (iii) figures of merit, or 
goodness of fit, in both of these contexts. We 'use a Bayes factor goodness of fit assessment approach, leading 
to approximations tenned the Bayes information criterion, BIC, and the pseudo-likelihood infornlation 
criterion, PLIC, in the 1D and spatial cases, respectively. 

Section 5 presents experimental results illustrating how this methodology works in practice. 
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2. WAVELET SCALE EVOLUTION AND WAVELET SCALE CORRELATION 

Malfait et aL 18 distinguish implicitly between wavelet coefficient evolution and wavelet coefficient corre­
lation, in b~th cases o~er the sequence of resolution scales. The former includes wavelet filtering through 
hard and soft thresholdmg. More generally, this is characterized by Malfait et al. as starting with a measure 
of local regularity, and then dividing wavelet coefficients into those that are sufficiently "clean" according 
to the regularity criterion, and those that are "noisy". 

An example of wavelet scale evolution is the modulus maxima approach of Mallat and Zhong,21 who 
show that use of local maxima of a wavelet transform is equivalent to the Canny edge detector. Another 
example of wavelet scale evolution is the zero-crossings approach of Mallat,19 which is related to the 
Laplacian of Gaussian (LoG) operator originally proposed by Marr and Hildreth. 

The practice of taking multiscale pointwise products for determining edges goes at least as far back as 
Rosenfeld. 29 

For white Gaussian noise, the average number of local maxima at scale 2j +1 is half the number at scale 
2j

. Hence increasing scales tend to smooth out noise. (See Sadler and Swami,30 and Mallat and Hwang20). 

The product of wavelet scales provides edge information. Chen and Tao9 study this with decimation. 
Using a redundant wavelet transform avoids problems of feature aliasing and also leads to straightforward 
implementation. Problems of the edge's spatial resolution scale and shift in location from one resolution 
scale to the next are reviewed in Xu et al.40 and Lee and Kozaitis. 17 

A variation on the theme of edge finding using wavelet scale products is used in Olivo-Marin.25 His 
objective is to find peaks in molecular biology images. 

3. HEAVY TAILED DENSITIES OF WAVELET PRODUCTS 

In this section we find that wavelet products are heavy-tailed, and that there is no fully satisfactory way 
to quantize this (in order to define edges, for example). 

Heavy tailed probability distributions, examples of which include long memory or 11f processes (ap­
propriate for financial time series, telecommunications traffic flows, etc.) can be modeled as a generalized 
Gaussian distribution (GGD, also known as power exponential, a-Gaussian distribution, or generalized 
Laplacian distribution): 

# #f(x) 2ar(11#) exp -(I x I/a) 

where 

- scale parameter, <l, represents the standard deviation, 

- the gamma function, r(a) J~ xa-1e-xdx, and 

shape parameter, #, is the rate of exponential decay, j3 > O. 

A value of # = 2 gives us a Gaussian distribution. A value of j3 1 gives a double exponential or 
Laplace distribution. For 0 < j3 < 2, the distribution is heavy tailed. For # > 2, the distribution is light 
tailed. 

Sadler and Swami30 show that (i) multiscale products generally reduce correlation in the noise, and that 
(U) they are heavy tailed distributions. Sadler and Swami develop a closed form PDF (probability density 
function) for the product z YIY2 where Yl and Y2 are both zero-mean Gaussian. Correlation coefficients 
are tabulated for products at scales 1 through 7, with use made of the l\1allat-Zhong wavelet transform. 
PDFs are given for products of scales 1 and 2, and of scales 1, 2 and 3, in the case of white Gaussian input, 
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and heavy-tailed behavior is exemplified. With iid unit-variance Gaussian and iid unit-variance Laplace 
input, pronounced skewness for an even number of products is shown. An even number of products account 
for absolute gradient, whereas uneven scale products are bipolar. 

Gaussian mixture modeling of heavy tailed noise distributions is feasible: a solution is provided by a 
weighted sum of Gaussian densities often with decreasing weights corresponding to increasing variances. 
Mixing proportions for small (tight) variance components are large (e.g., 0.15 to 0.3) whereas very large 

3ovariance components have small mixing proportions. A signal detection test is proposed based on absolute 
values of a 3-scale product exceeding a threshold. Location estimation of step change is also carried out, 

based on a Cramer-Rao bound. 

Heavy tailed noise can be modeled by a Gaussian mixture model with enough terms (Blum et aL3). 
Similarly, in speech and audio processing, low-probability and large-valued noise events can be modeled 
as Gaussian components in the tail of the distribution. A fit of this fat tail distribution by a Gaussian 
mixture model is commonly carried out (Wang and Zhao39 ). As in Wang and Zhao, one can allow Gaussian 
component PDFs to recombine to provide the clusters which are sought. These authors also found that 
using priors with heavy tails, rather than using standard Gaussian priors, gave more robust results. But 
the benefit appears to be very smalL 

Chen and Karim8 explore wavelet correlation using the Mallat scheme, often used in the context of 
image compression. 

Tsakalides et aL38 use a range of tests to exemplify long-tailed densities. They present considerable 
evidence for wavelet coefficients themselves (in their case using a 2D Haar transform) being long-tailed. In 
the case of the Cauchy distribution, they derive quantization levels. Related work with a similar perspective 
is presented in Buccigrossi and Simoncelli4 (using the 9/7 biorthogonal wavelet transform) and elsewhere. 
We will not pursue the modeling of wavelet spaces further here, since our interest is related more to the 
behavior of wavelet product spaces. 

We conclude the following: a mixture of genuine signal and flicker or pink noise constituting a heavy tail 
in the density implies practical difficulty in disentangling them. It may be feasible to have Gaussian com­
ponents in the heavy tail corresponding to signal, and other Gaussian components in the tail corresponding 
to noise. However this remains an imprecise and approximate approach. 

Figs. 1 and 2 illustrate long-tailed behavior and show an aspect of the the marginal density Gaus­
sian model fitting (to be used below: the quality of this fit is given in the upper right panel of Fig. 3, 
corresponding to the 3-class case). 

The ordinates give frequencies. The original data values are offset so that all values are positive, and 
mapped to [0, 255], which explains the abscissa values. In this rescaling of values, the means and standard 
deviations of the three classes are as follows: means 42, 48 and 74; standard deviations- 0.8, 6.3 and 
26.0. Cardinalities are, respectively, 100442, 112728 and 48974. Our initialization algorithm is as follows: 
(i) construct a histogram of 256 bins; and (ii) define approximately equally-sized strictly contiguous class 
regions. Figs. I, 2 and 3 show that we do not find adjacent regions of the marginal density as a solution 
for these classes. A method such as k-means would have provided contiguous regions. 

In the next section, section 4, we describe a more fornlal treatment of the Gaussian model fitting carried 
out on image marginal densities. We also look at Gaussian nIodel fitting which takes spatial dependency 
into account, in the form of a Markov random field. The non-contiguous clusters found in Figs. 1, 2 
and 3, and found also in many other cases relating to similar highly concentrated densities, are not fully 
satisfactory. However, a more important reason for us to favor Gaussian model fitting based on a Markov 
model is that the measures of goodness of fit found in practice are more plausible in the latter case. This 
will be discussed in section 5. 
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Figure 1. Upper left: histogram of marginal density of product of wavelet scales 4 and 5 of a 512 x 512 
Lena image. Upper right, lower left, and lower right: histograms of classes 1, 2 and 3. 
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Figure 2. Overplotting of the histograms presented in Fig. 1. 

4 

http:OL..L....-'--'-.LL


4. MODEL-BASED CLUSTERING 


Our basic framework is that of model-based clustering, as described, for example, by Fraley and Raftery. 14,13 
In the most basic form of this methodology, a finite mixture of Gaussian distributions is fit to the data 
by maximum likelihood estimation using the EM (expectation-maximization) algorithm, the number of 
groups can be chosen using Bayesian model selection, and if hard clustering is desired, each observation is 

assigned to its most likely group a posteriori. 

4.1. Univariate Finite Gaussian Mixture Models 

In the univariate normal finite mixture model, one-dimensional observations Xi are assumed to be drawn 
from G groups, each of which is Gaussian distributed. The g-th group has mean /-lg and variance a~. Given 
observations X = (Xl, ... , xn ), let r be an unobserved n x G cluster assignment matrix, where rig = 1 if 
Xi comes from the g-th group, and rig 0 otherwise. Our goals are to determine the number of clusters 
G, to determine the cluster assignment of each observation, and to estimate the parameters /-lg and O'g of 
each cluster. The probability density for this model is 

G 

!(xiIO, A) = L Ag!g(XiIOg), (1) 
g=l 

where Og = (/-lg, O'~)T, I g('IOg) is a normal density with mean /-lg and variance O'~, 0 = (01, ... , OG), and 

A = (AI"'" AG) is a vector of mixture probabilities such that Ag 2:: 0 (g 1, ... , G) and L:~=l Ag = 1. 

We estimate the parameters by maximum likelihood using the EM (expectation-maximization) algo­
rithmJ2,23 For its application to model-based clustering, see McLachlan and Basford,22 Celeux and 
Govaert7 and Dasgupta and Raftery. 11 

The EM algorithm iterates between the E step and the M step. In the E step, the conditional ex­
pectation, '1, of r given the data and the current estimates of 0 and A are computed, so that '1ig is the 
conditional probability that Xi belongs to the g-th group. In the M step, conditional maximum likelihood 
estimators of 0 and A given the current '1 are computed. 

Although the EM algorithm has some limitations (e.g. it is not guaranteed to converge to a global 
rather than a local maximum of the likelihood, and it requires a starting configuration), it is generally 
efficient and effective for Gaussian clustering problenls. 

4.2. Spatial Segmentation 

Model fitting to the marginal density pays no attention to two-dimensional image spatial information. 
We can take such information into account using a hidden Markov model. Background on the approach 
pursued here can be found in Stanford33 an<-J- Stanford and Raftery.34,35 

We use Bayesian model selection to choose the nmnber of clusters. For a review of Bayesian model 
selection, see Kass and RafterylG and RafterY.27 Pioneering work in this area was due to H. Jeffreys, LJ. 
Good and (according to the latter) A. Turing. The use of the BIC in choosing clusters in a mixture or 
clustering model is discussed by Roeder and Wasserman28 and Dasgupta and Raftery.ll Applications are 
in Campbell et al.,;),(j Mukherjee et a1. 24 and in other articles. 

We consider an unknown, true pixel state, for pixel i, as .:t'(i E {I, 2, ... K} for K states. The observed 
image pixel is Yi. In this work this is taken as a scalar (and could be taken instead as a vector for color or 
multiband images). Consider an indicator function, leX'i, X.i) = 1 if .Xi = Xj and otherwise O. 

We now use a Markov random field to define spatial structure on X. We take p(X) as being proportional 
to exp(¢ L:i,j l(Xi, ~Yj)). This is a Potts or Ising modeL ¢ is a spatial homogeneity parameter, a small value 
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implying randomness, and a large value implying uniformity. A negative value of ¢ implies dissimilarity 
between neighboring pixels, and is not of interest here. Our model is a hidden Markov model (HMM) 
because the variables X are only known through the observed Y. 

Let N(Xi) be the neighborhood of Xi, e.g. 3 x 3 pixels. Let U(N(Xi)' k) be the number of neighborhood 
pixels with state k. 

From p(X) we have the conditional distribution: 

(2) 


Having looked at the latent space, we now return to the observed data. We assume the following condi­
tional density model connecting the observed and hidden variables: !(Yi I Xi j) is Gaussian with mean 
J.1.j and standard deviation OJ. In the multiband case, where y is a vector, the mean vector is used, and the 
variance-covariance matrix. The Yi are conditionally independent given the Xi or, alternatively expressed, 
dependence among the Yi only occurs via dependence among the Xi. Call Ok the set of parameters, (J.1., ( 2 ) 

for state k. We have f(Y IX) = IId'(Yi I Xd = IIi!(Yi IOxJ. 
Our solution algorithm is as follows. It is based on Besag's2 iterated conditional modes (ICM) algorithm, 

which reconstructs an image based on local properties modeled as an MRF. This iterative algorithm requires 
an initial estimate of X, X, and proceeds to estimate the parameters of p(Yi I Xi), as well as ¢ and X. 
To initialize X, we note that in taking p(Yi I Xi) as Gaussian, then the marginal density of Y is a finite 
mixture of Gaussians. In the multiband case, we typically use a marginal density model on the eigen or 
principal component image. The EM-based modeling of the marginal density discussed in section 4.1 then 
applies. An alternative approach to initialization, based on wavelet products, will be investigated in section 
4. 

Segmentation Algorithm: 

Step 0: Initialize X using a marginal segmentation. 

Step 1: Update {} = argmax f(Y I X) based on maximum likelihood estimates of J.1.j and OJ for each 
class, j. 

Step 2: Update ¢ using the maximum pseudo-likelihood: 1> = argmin¢( -logPL(X I ¢)). The pseudo­

likelihood is given by PL(X I ¢) IIip(J"\\ I N(}(i, ¢)). 

Step 3: Update X: for each pixel i, Xi argmaxjf(Yi I JY.i j)P(Xi j IN(Xi ,1»). 

Implementation details: In step 2, if 1> goes negative, then we reset it to zero. In all calculations, 
we exclude boundary pixels from consideration. Step 1 is one step of Besag's ICM (iterated conditional 
modes) algorithm. 

4.3. Model Selection using Bayes Factors 

We now turn attention to model selection. A Bayesian assessment framework provides an objective and 
generally-applicable approach to classification and related decision-making. The Bayes factor, developed 
by Jefferys in the 1930s, is the posterior odds of one nlodel over another when the prior probabilities of 
the two models are equal. We describe how approximations to the Bayes factor are used in practice. In 
particular, we use the Bayes information criterion or BIC, and the pseudo-likelihood infonnation criterion 
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or PLIC. While we employ both of these criteria with Gaussian model fitting, BIC is used in the non-spatial 

case, and PLIC is used in the spatial case. 

A model MK is the set of parameters estimated for a given number of mixture components, K. Consider 
data D. The posterior probability of model NIK is 

D) _ . p(D I MK)p(MK) 
p(MK I - Lf=lax p(D I ML)p(ML) 

We can ignore p(MK) and the influence of AlL if each model is equi-likely a priori. 

The integrated likelihood, p(DIMK ), is given by 

p(D 1 MK) f p(D I (}K, A1K)p«(}K)d(}K 

where (}K is the set of parameters for model MK, p(D I (}K, MK) is the usual likelihood, and p«(}K) is the 
prior. 

A good approximation to the integrated likelihood is given by 

210gp(D I MK) ~ BIC (Bayes Information Criterion) 

(3) 


where OK is the maximum likelihood estimator of (}K. N is the dimensionality of the observation vectors. 

An alternative derivation of BIC as a minimum description length (NIDL) criterion is described by 
Hansen. 15 

4.4. An Information Criterion with Spatial Interaction, PLIC 

In the spatial (l\1arkov) case, the Bayes factor assessment criterion is developed not for the homogeneity 
parameter, 4>, nor for the neighborhood,32 but rather for the number of segments, k. The likelihood (first 
term) in the BIC, equation (3), is problematic for computational reasons. 

The posterior distribution of X conditional on Y is: J(X I Y) = J(Y I X)J(..:Y)/J(Y) ex: J(Y 1 X)J(X). 
Since there is conditional independence between Y and X, we have that J(Y I X) = IIif(J!i I ..:Yi ) which, 
it has already been noted, is taken as Gaussian. 

The density of x, f(X), is related to all possible states, which is combinatorially explosive. Therefore 
the pseudo-likelihood, PL(X), is taken as a proxy for f(X). The pseudo-likelihood, introduced in Besag,I 
restricts where the integrated likelihood is defined. We have 

II. exp(4)U(N(Xi )) , Xi) 
1 Lk exp(4)U(N(Xi )), k) 

The likelihood is nlade conditional on the neighborhood of pixel i. Previously we had 

L(Yi I ..:Yd = L f(Yi I Xi j)P(Xi j) 
j 

for state or label j. 
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Instead, denoting X -i the neighborhood of Xi not including pixel i, and with X denoting an estimate 
of X, we use: 

L(Yi IN(X_i )) = L f(Yi I Xi = j)P(Xi j IN(Xi)) 
j 

As already noted, the first part of the right hand side term requires evaluation of a Gaussian; and the 
second part uses the conditional distribution defined for p(X) in equation (2). 

From the product of pseudo-likelihoods for all pixels, we arrive at a modified BIC, modifying equation 
(3). This modified criterion is termed the pseudo-likelihood information criterion, PLIC;33-3ti 

5. APPLICATIONS OF WAVELET SCALE CORRELATION TO EDGE 
DETECTION 

We used the well-known Lena test image in view of its properties, i.e. noisy, edge regions, smooth regions. 
Our image was of dimensions 512 x 512 and grayscale. For the wavelet transform we used the it trous 
redundant wavelet transform with a B3 spline scaling function.31,37,36 Redundancy is important to avoid 
aliasing of features. In the work below, we used 5 wavelet or detail resolution scales, which together with 
the smooth continuum provided an additive decomposition of the image: 

y=s+ w·J (4) 
j=l 

where Y is the image, each vVj is an image of wavelet coefficients, and S is the smooth continuum. All of 
Y, Wj and S are of the same image pixel dimensions, in view of the transform's redundancy. Hence the 
product of wavelet scales 2 and 3 is given by the pixelwise product W2 W 3 , and the result is again an image 
of dimensions (in our work, here) 512 x 512. 

Fig. 3 shows results of marginal clustering with use of the BIC goodness of fit criterion, and spatial 
segmenting with use of the PLIC goodness of fit criterion, for the products of wavelet scales 2 and 3, 3 and 
4, and 4 and 5. 

As evidenced in Fig. 3, the BIC value usually increases to an approximate plateau as the numbers of 
classes increase. However, it is also usually the case that the quality of fit can increase indefinitely. The 
greater the BIC value, the better the fit. PLIC values, as seen in the figure, are more diverse in behavior. 
Again a larger value indicates better fit. In the lower left and middle panels of Fig. 3, corresponding 
to the 2 x 3 and 3 x 4 product cases, the best PLIC value corresponds to a number of mixture model 
components equal to 2. In the lower right panel, corresponding to the 4 x 5 product case, the best PLIC 
value corresponds to a number of mixture model components equal to 3. 

We conclude that, here, PLIC gives a better result, for the following reasons. Our earlier results in 
Figs. 1 and 2 have shown that BIC may well be associated with an implausible (but notwithstanding valid) 
non-contiguous Gaussian fit. We also have difficulty knowing where to stop in the sequence of increasing 
BIC values, which is unlike the case for PLIC. PLIC in addition gives us an outcome, namely that the best 
number of segm.ents is 2 or 3, which is quite reasonable given the fact that our inputs consist of wavelet 
product hence edge-emphasizing - images. 

The cases corresponding to these best PLIC values in the lower panels of Fig. 3 are shown, respectively, 
in Figs. 4, 5 and 6. 

We will use the result of the 3 x 4 product case, i.e. Fig. 5, to proceed further to derive a reasonable 
edge map. Fig. 7 shows an edge map derived from Fig. 5. This was done using the difference between Fig. 
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Figure 3. Two panels, up and down, on left: product of wavelet scales 2 and 3. Two panels, up and 
down, in center: product of wavelet scales 3 and 4. Two panels, up and down, on right: product of wavelet 
scales 4 and 5. Top panels: BIC, Bayes information criterion values, for varying numbers of classes, which 
is based on a fit of Gaussians to the image marginal density. Bottom panels: PLIC, pseudo-likelihood 
information criterion, for varying numbers of classes, which is based on a fit of Gaussians to a Markov 
spatial dependency modeL All BIC and PLIC values are scaled by a factor of 10,000, for clarity. 

5 and an eroded version of the same image, psing a square 2 x 2 kerneL Further processing steps could be 
availed of, e.g. deleting connected components of small size. For comparison,. Fig. 8 shows a Canny result 
using the original image. 

6. CONCLUSION 

We mention in concluding some other recent publications, which share certain aspects of our approach but 
which differ in other ways. Crouse et al. iO develop a two-state (high, low wavelet coefficient value) model 
for wavelet correlation. Our objective is more general: as shown with Fig. 6, we cannot assume that a 
2-class (edge versus non-edge) fit is always best. Pizurica et a1. 2G use across-scale wavelet ratios which are 
less easily handled than wavelet products. 

The achievenlents of the work reported here are as follows: 
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Figure 4. Using product of wavelet scales 2 and 3, two-class. solution based on a spatial model. (Cf. 
bottom left panel in Fig. 3, which motivates our choice of a two-class solution.) 
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Figure 5. Using product of wavelet scales 3 and 4, two-class solution based on a spatial model. (Cf. 
bottom middle panel in Fig. 3, which motivates OUf choice of a two-class solution.) 
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Figure 6. Using product of wavelet scales 4 and 5, three-class solution based on a spatial model. (C£'. 
bottom right panel in Fig. 3, which motivates our choice of a three-class solution.) 
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Figure 7. Edge map derived from Fig. 5 by subtracting the image from an eroded version of it: see text 
for details. 
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Figure 8. For comparison with Fig. 7: a Canny edge map, shown histogram-equalized, from the original 
Lena image. 
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• 	 We have demonstrated how objective selection criteria may be applied to wavelet product spaces, in 
order to help in finding edge regions in images. 

• 	 Practical, approximate goodness of fit criteria have been developed, based on Bayes factors. 

• 	 The objective of our approach can be characterized as a methodology for avoiding the difficulties in 
theory and practice which are part and parcel of image (here: wavelet product) thresholding. 

• 	 From the points of view of computational efficiency and experimental results, our approach works 
well. Marginal density mixture modeling takes a few seconds on a Sun SparcStation 10, and spatial 
segmentation takes about 10 minutes, for a specified number of classes, and using a 512 x 512 image. 
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