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Introduction 

Wavelets and related multiscale representations pervade all areas of signal processing. The re­
cent inclusion of wavelet algorithms in JPEG 2000, the new still-picture compression standard, 
testifies to this lasting and significant impact. The most used wavelet transform algorithm is 
certainly the decimated bi-orthogonal wavelet transform (OWT). Using the OWT, a signal s 
can be decomposed by: 

J 

s(l) = L cJ,k4>J,z(k) + L L 7jJj,z(k)Wj,k (1) 
k k j=l 

j jwith 4>j,z(x) 2- 4>(2- x -l) and 7jJj,z(x) == 2-i 7jJ(2- j x -l), where 4> and 7jJ are respectively 
the scaling function and the wavelet function. J is the number of resolutions used in the 
decomposition, Wj the wavelet (or details) coefficients at scale j, and CJ is a coarse or smooth 
version of the original signal s. Thus? the algorithm outputs J + 1 subband arrays. The 
indexing is such that, here, j = 1 corresponds to the finest scale (high frequencies). 

The application of the OWT to image compression, using the 7-9 filters [2] and the zerotree 
coding [45, 44] has lead to impressive results, compared to previous methods like JPEG. 

A series of recent papers [7, 6], however, argued that wavelets and related classical mul­
tiresolution ideas are playing with a limited dictionary made up of roughly isotropic elements 
occurring at all scales and locations. We view as a limitation the facts that those dictionaries 
do not exhibit highly anisotropic elements and that there is only a fixed number of direc­
tional elements, independent of scale. Despite the success of the classical wavelet viewpoint, 
there are objects, e.g. images that do not exhibit isotropic scaling and thus call for other 
kinds of multiscale representation. In short, the theme of this line of research is to show that 
classical multiresolution ideas only address a portion of the whole range of interesting multi­
scale phenomena and that there is an opportunity to develop a whole new range of multiscale 
transforms. 

Following on this theme, Candes and Donoho introduced new multiscale systems like 
curvelets [6] and ridgelets [5] which are very different from wavelet-like systems. Curvelets 
and ridgelets take the form of basis elements which exhibit very high directional sensitivity 
and are highly anisotropic. In two-dimensions, for instance, curvelets are localized along 
curves, in three dimensions along sheets, etc. Continuing at this informal level of discussion 
we will rely on an example to illustrat~ the fundamental difference between the wavelet and 
ridgelet approaches -postponing the mathematical description of these new systems. 

We investigate in this technical report the best way to implement the ridgelet and the 
curvelet transform for the purpose of image restoration. Second and third sections describe 
respectively the ridgelet transform and the curvelet transform. Section four shows how a the 
ridgelet and the wavelet coefficients can be thresholded in order to filter an image. Compar­
isons with other methods are presented. Instruction for using the programs are given in the 
last section. 

Consider an image which contains a vertical band embedded in white noise with relatively 
large amplitude. Figure 1 (top left) represents such an image. The parameters are as follows: 
the pixel width of the band is 20 and the SNR is set to be 0.1. Note that it is not possible 
to distinguish the band by eye. The wavelet transform (undecimated wavelet transform) is 
also incapable of detecting the presence of this object; roughly speaking, wavelet coefficients 
correspond to averages over approximately isotropic neighborhoods (at different scales) and 
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Figure 1: Top, original image containing lines and gaussians. Bottom left, reconstructed 
image for the it trous wavelet coefficient, bottom right, reconstructed image from the ridgelet 
coefficients. 

those wavelets clearly do not correlate very well with the the very elongated structure (pattern) 
of the object to be detected. 

We now turn our attention towards. procedures of a very different nature which are based 
on line measurements. To be more specific, consider an ideal procedure which consists in 
integrating the image intensity over columns; that is, along the orientation of our object. We 
use the adjective "ideal" to emphasize the important fact that this method of integration 
requires a priori knowledge about the structure of our object. This method of analysis gives 
of course an improved signal to noise ratio for our linear functional better correlate the object 
in question, see the top right panel of Figure 1. 

This example will make our point. Unlike wavelet transforms, the ridgelet transform pro­
cesses data by first computing integrals over lines with all kinds of orientations and locations. 
We will explain in the next section how the ridgelet transform further processes those line 
integrals. For now, we apply naive thresholding of the ridgelet coefficients and "invert" the 
ridgelet transform; the bottom right panel of Figure 1 shows the reconstructed image. The 

5 



2 

qualitative difference with the wavelet approach is striking. We observe that this method 
allows the detection of our object even in situations where the noise level (standard deviation 
of the white noise) is five times superior to the object intensity. 

Continuous Ridgelet Transform 

The two-dimensional continuous ridgelet transform in R 2 can be defined as follows [5]. We pick 
a smooth univariate function 'l/J : R -+ R with sufficient decay and satisfying the admissibility 
condition 

(2) 

which holds if, say, 'l/J has a vanishing mean J'l/J(t)dt = O. We will suppose that 'l/J is normalized 

so that J I~(~) 12~-2d~ = 1. 
For each a > 0, each b E R and each (} E [0, 21r), we define the bivariate ridgelet'l/Ja,b,e : 

R2 -+ R2 by 
(3) 

this function is constant along lines Xl cos 8 + X2 sin 8 = const. Transverse to these ridges it 
is a wavelet. 

Figure' 2: A Few Ridgelets 

Figure 2 graphs a few ridgelets with different parameter values. The top right, bottom left 
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and right panels are obtained after simple geometric manipulations of the upper left ridgelet, 
namely rotation, rescaling, and shifting. 

Given an integrable bivariate function f (x), we define its ridgelet coefficients by 

nJ(a, b, IJ) = J.pa,b,O(x)J(x)dx. 

We have the exact reconstruction formula 

(4) 

valid a.e. for functions which are both integrable and square integrable. Furthermore, this 
formula is stable as one has a Parseval relation 

JIJ(xWdx (5) 

Hence, much like the wavelet or Fourier transforms, the identity (4) expresses the fact that 
one can represent any arbitrary function as a continuous superposition of ridgelets. Discrete 
analogs of (4)-(5) exist, see [5], or [26] for a slightly different approach. 

2.1 The Radon Transform 

A basic tool for calculating ridgelet coefficients is to view ridgelet analysis as a form of wavelet 
analysis in the Radon domain. We recall that the Radon transform of an object f is the 
collection of line integrals indexed by (O,t) E [O,21r) X R given by 

(6) 

where 8 is the Dirac distribution. The ridgelet coefficients nj(a, b, 0) of an object f are given 
by analysis of the Radon transform via 

nJ(a, b, IJ) = JRJ(IJ, t)a- 1
/ 

2 .p((t - b)/a) dt. 

Hence the ridgelet transform is precisely the application of a I-dimensional wavelet transform 
to the slices of the Radon transform where the angular variable 0 is constant and t is varying. 

2.2 Ridgelet Pyramids 

Let Q denote a dyadic square Q [k 1/2 s , (kl + 1)/28 
) X [k2/28 

, (k2 + 1)/28 
) and let Q be the 

collection of all such dyadic squares. We write Q s for the collection of all dyadic squares of 
scale s. Associated to the squares Q E Qs we construct a partition of energy as follows. With 
W a nice smooth window obeying i:k ,k2 W 2(Xl k 1 ,X2 k 2) = 1, we dilate and transport

1 

w to all squares Q at scale s, producing a collection of windows (wQ) such that the w~ 's, 
Q E Qs, make up a partition of unity. We also let TQ denote the transport operator acting 
on functions 9 via . 

(TQg)(Xl' X2) 2Sg(2SXl - kI, 2sX2 - k2)' 
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With these notations, it is not hard to see that 

and, therefore, summing the above equality across squares at a given scale gives 

(7) 

The identity (7) expresses the fact that one can represent any function as a superposition of 
elements of the form wQTQ'l/Ja,b,(J; that is, of ridgelet elements localized near the squares Q. 
For the function TQ'l/Ja,b,(J is the ridgelet 'l/JaQ,(JQ,bQ (3) with parameters obeying 

OQ = 0, 

and thus wQTQ'l/Ja,b,(J is a windowed ridgelet, supported near the square Q, hence the name 
local ridgelet transform. 

The previous paragraph discussed the construction of local ridgelets of fixed length, 
roughly 2-S (s fixed). Letting the scale s vary defines the multiscale ridgelet dictionary 
{'l/Jab(J: s 2:: so,Q E Qs,a > O,b E R,O E [O,2?r)} by, , 

'l/J~, , b (J = wQ TQ'l/Ja,b,(J; 

that is, a whole pyramid of local ridgelets at various lengths and locations. This is, of course, 
a massively overcomplete representation system and no formula like (7) is available for this 
multiscale ridgelet pyramid, because it is highly overcomplete. 

3 Digital Ridgelet Transform 

So a basic strategy for calculating the continuous ridgelet transform is first to compute the 
Radon transform Rf(t,O) and second, to apply a one-dimensional wavelet transform to the 
slices Rf(', 0). 

Several digital ridgelet transform have been proposed, and we will described three of them 
in this section, based on different implementations of the Radon transform. 

3.1 The RectoPolar Ridgelet transform 

In this section we develop a digital procedure which is inspired by this viewpoint, and is 
realizable on n by n numerical arrays. 

A fundamental fact about the Radon transform is the projection-slice formula [16]: 

j(>, cosO,), sin 0) JRf(t, O)e-;).tdt. 

This says that the Radon transform can be obtained by applying the one-dimensional inverse 
Fourier transform to the two-dimensional Fourier transform restricted to radial lines going 
through the origin. 

This of course suggests that approximate Radon transforms for digital data can be based 
on discrete fast Fourier transforms. This is a widely used approach, in the literature of medical 
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imaging and synthetic aperture radar imaging, for which the key approximation errors and 
artifacts have been widely discussed. In outline, one simply does the following, for gridded 
data (f(i b i2)), 0 ~ iI, i2 < n - l. 

1. 	2D-FFT. Compute the two-dimensional FFT of f giving the array (j(kl' k2)), -n/2 ~ 
kl, k2 ~ n/2 - 1. 

2. 	 Cartesian to Polar Conversion. Using an interpolation scheme, substitute the sampled 
values of the Fourier transform obtained on the square lattice with sampled values of j 
on a polar lattice: that is, on a lattice where the points fall on lines going through the 
origin. 

3. 	 lD-IFFT. Compute the one-dimensional IFFT on each line, i.e. for each value of the 
angular parameter. 

The use of this strategy in connection with ridgelet transforms has been discussed in the 
articles [23, 22, 54]. 

3.1.1 A Polar Sampling Scheme for Digital Data 

For our implementation of the Cartesian-to-polar conversion, we have used a pseudo-polar 
grid, in which the pseudo-radial variable has level sets which are squares rather than circles. 
Starting with Oppenheim and Mersereau [40] this grid has often been called the concentric 
squares grid in the signal processing literature; in the medical tomography literature it is 
associated with the linogram [28, 29), while in [3] it is called the rectopolar grid; see this 
last reference for a complete bibliographic treatment. The geometry of the rectopolar grid 
is illustrated on Figure 3. We select 2n radial lines in the frequency plane obtained by 
connecting the origin to the vertices (kl' k2) lying on the boundary of the array (kl' k2) , 

i.e. such that kl or k2 E {-n/2, n/2}. The polar grid el,m (f serves to index a given radial 
line while the position of the point on that line is indexed by m) that we shall use is the 
intersection between the set of radial lines and that of Cartesian lines parallel to the axes. 
To be more specific, the sample points along a radial line £, whose angle with the vertical 
axis is less or equal to 7r /4 are obtained by intersecting £, with the set of horizontal lines 
{X2 = k2' k2 = -n/2, -n/2 + 1, ... , n/2}. Similarly, the intersection with the vertical lines 
{Xl = kI, kl = -n/2, -n/2 + 1, ... , n/2} defines our sample points whenever the angle 
between £, and the horizontal axis is less or equal to 7r /4. The cardinality of the rectopolar 
grid is equal to 2n2 as there are 2n radial lines and n sampled values on each of these lines. As 
a result, data structures associated with this grid will have a rectangular format. We observe 
that this choice corresponds to irregularly spaced values of the angular variable 8. 

3.1.2 Interpolation to rectopolar Grid 

To obtain samples on the recto polar grid, we should, in general, interpolate from nearby 
samples at the Cartesian grid. In principle, compare [3, 20], the interpolation of Fourier 
transforms is a very delicate matter because of the well-known fact that the Fourier transform 
of an image is highly oscillatory, and the phase contains crucial information about the image. 
In our approach, however, we use a crude interpolation method: we simply impute for j(el,m) 
the value of the Fourier transform taken at the point on the Cartesian grid nearest to ~l,m' 

There are, of course, more sophisticated ways to realize the Cartesian-to-polar conver­
sion; even simple bilinear interpolation would offer better theoretical accuracy. A very high 
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of the OFRT is nothing like a ridge function. 

r---­

Figure 5: Left, backprojection of a ridgelet coefficient by the FFT-based ridgelet transform, 
and right, back projection of a finite ridgelet coefficient. 

Because of this specific definition of a line, the thresholding of the OFRT coefficients 
produces strong artefacts. Figure 6 left shows a part of the original standard Lena image, and 
Figure 6 right shows the reconstruction after the hard thresholding of the OFRT. A kind of 
noise has been added to the noise-free image! Finally, the OFRT presents another limitation: 
the image size must be a prime number. This last point is however not too restrictive, because 
we generally use a partitionning when denoising the data, and a prime number block size can 
be used. The OFTR is interesting from the conceptual point of view, but will certainly be of 
no help for real applications. 

3.3 The Slant Stack Ridgelet Transform 

The Fast Slant Stack [3] is geometrically more accurate than the previously decribed methods. 
The backprojection of a point in Rado~ space is exactly a ridge function in the spatial domain 
(see figure 7). The transformation of a n X n image is a 2n x 2n image. n line integrals with 
angle between [-'i, 'i] are calculated fr"om the zero padded image on the y-axis, and n line 
integrals with angle between [~, 3;] It is computed by zero padding the image on the x-axis. 
For a given angle inside [- ~, ~], 2n line integrals are calculated by first shearing the zero­
padded image, and then integrating the pixels values along all horizontal lines (resp. vertical 
lines for angles in ['i, 3;]). The shearing is performed column per column (resp. line per 
line) by using the 1D FFT. Figure 8 shows an example of the image shearing step with two 
different angles (5~ and ~). A ridgelet transform based on the Fast Slant Stack transform 
has been proposed in [20]. Connection between the Fast Slant Stack and the linogram has been 
investigated in [3], and a Fast Slant Stack is proposed, based on the 2D Fourier Transform. 
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Figure 6: Left, part of Lena image, and right, reconstruction after finite ridgelet coefficient 
thresholding. 

Local Ridgelet Transforms 

A digital version of the ideas presented in section 2.2 decomposes the original n by n image 
into smoothly overlapping blocks of sidelength b pixels in such a way that the overlap between 
two vertically adjacent blocks is a rectangular array of size b by bj2; we use overlap to avoid 
blocking artifacts. For an n by n image, we count 2njb such blocks in each direction. 

The partitioning introduces redundancy, as a pixel belongs to 4 neighboring blocks. We 
present two competing strategies to perform the analysis and synthesis: 

1. 	The block values are weighted (analysis) in such a way that the co-addition of all blocks 
reproduce exactly the original pixel value (synthesis). 

2. 	 The block values are those of the image pixel values (analysis) but are weighted when 
the image is reconstructed (synthesis). 

Of course, there are intermediate strategies and one could apply smooth windowing at both the 
analysis and synthesis stage as discussed in Section 2.2, for example. In the first approach, the 
data are smoothly windowed and this presents the advantage to limit the analysis artifacts 
traditionally associated with boundaries. The drawback, however, is a loss of sensitivity. 
Indeed, suppose for sake of simplicity that a vertical line with intensity level L intersects a 
given block of size b. Without loss of generality assume that the noise standard deviation is 
equal to 1. When the angular parameter of the Radon transform coincides with that of the line, 
we obtain a measurement with a signal intensity equal to bL while the noise standard deviation 
is equal to v'b (in this case, the value of the Signal to Noise Ratio (SNR) is VbL). If weights 

are applied at the an,alysis stage, the SNR is roughly equal to L I:~=1 wij JI:~=l w; < v'bL. 
Experiments have shown that this sensitivity loss may have substantial effects in filtering 
applications and, therefore, the second approach seems more appropriate since our goal is 
image restoration. 
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Figure 7: Backproject of a point at four ~ifferent locations in the Radon sp'ace. 

We calculate a pixel value, I( i, j) from its four corresponding block values of half-size 
l = b/2, namely, B1 (i},jl), B2(i2,jl), B3 (it,j2) and B4 (i2,j2) with i!,jl > b/2 and i2 = 
ZI l, j2 = jl - l, in the following way: 

11 W(i2/l)Bdit,jl) + w(l- i2/l)B2(i2,jl) 

12 w(i2/l)B3 (i1 ,j2) + w(l i2/l)B4 (i2,j2) 

I(i,j) w(j2/l)/t + w(l- j2/i)/2 (9) 

with w(x) = cos2 (7rx/2). Of course, one might select any other smooth, nonincreasing function 
satisfying, w(O) = 1, w(l) = 0, w'(O) = 0 and obeying the symmetry property w(x) + w(l ­
x) = l. 

It is worth mentioning that the spatial partitioning introduces a redundancy factor equal 
to 4. 

Finally, we note that in order to be in better agreement with the theory one should of 
course introduce a normalizing factor depending upon the block-size. However, since we are 
concerned about de-noising and the thresholding of individual coefficients, the normalization is 
a non-issue. Renormalizing coefficients automatically renormalizes corresponding thresholds 
in the exact same way, see section 6. . 

5 Digital Curvelet Transform 

5.1 Discrete Curvelet Transform of Continuum FUnctions 

We now briefly return to the continuum viewpoint of Section 2.2. Suppose we set an initial 
goal to produce a decomposition using the multiscale ridgelet pyramid. The hope is that this 
would allow us to use thin 'brushstrokes' to reconstruct the image, with all lengths and widths 
available to us. In particular, this would seem allow us to trace sharp edges precisely using a 
few elongated elements with very narrow widths. 

As mentioned in Section 2.2, the full multiscale ridge let pyramid is highly overcomplete. 
As a consequence, convenient algorithms like simple thresholding will not find sparse de­
compositions when such good decompositions exist. An important ingredient of the curvelet 
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Shearing 

Figure 8: Slant Stack Transform of an image. 

transform is to restore sparsity by reducing redundancy across scales. In detail, one intro­
duces interscale orthogonality by means of subband filtering. Roughly speaking, different 
levels of the multiscale ridgelet pyramid are used to represent different subbands of a filter 
bank output. At the same time, this subband decomposition imposes a relationship between 
the width and length of the important frame elements so that they are anisotropic and obey 
width = length2 • 

The discrete curvelet transform of a continuum function !(Xl, X2) makes use of a dyadic se­
quence of scales, and a bank of filters (Po!, ~l!' ~2!' ...) with the property that the passband 
filter ~8 is concentrated near the frequencies [22s, 228+2], e.g. 

In wavelet theory, one uses a decomposition into dyadic subbands [2 S ,28 +1]. In contrast, the 
subbands used in the discrete curvelet transform of continuum functions have the nonstandard 
form [228 , 228+2]. This is nonstandard feature of the discrete curvelet transform well worth 
remembering. 

With the notations of section 2.2, the curvelet decomposition is the sequence of the fol­
lowing steps: 
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• 	 Subband Decomposition. The object f is decomposed into subbands: 

• 	 Smooth Partitioning. Each subband is smoothly windowed into "squares" of an appro­
priate scale (of sidelength rv 2-8 

): 

• 	 Renormalization. Each resulting square is renormalized to unit scale 

(10) 

• 	 Ridgelet Analysis. Each square is analyzed via the discrete ridgelet transform. 

In this definition, the two dyadic subbands [228,228+1] and [228+1,228+2] are merged before 
applying the ridgelet transform. 

5.2 Digital Realization 

In developing a transform for digital n by n data which is analogous to the discrete curvelet 
transform of a continuous function f(X11 X2), we replace each of the continuum concepts with 
the appropriate digital concept mentioned in sections above. In general, the translation is 
rather obvious and direct. However, experience shows that one modification is essential; we 
found that, rather than merging the two the two dyadic subbands [228,228+1] and [228+1,228+2] 
as in the theoretical work, in the digital application, leaving these subbands separate, applying 
spatial partitioning to each subband and applying the ridgelet transform on each subband 
separately led to improved visual and numerical results. 

We believe that the "a trous" subband filtering algorithm is especially well-adapted to the 
needs of the digital curvelet transform. The algorithm decomposes an n by n image J as a 
superposition of the form 

J 

J(x, y) cJ(x, y) + E Wj(x, y), 
j=1 

where CJ is a coarse or smooth version of the original image I and Wj represents 'the details 
of J' at scale 2-i , see [57] for more information. Thus, the algorithm outputs J + 1 subband 
arrays of size n X n. (The indexing is such that, here, j 1 corresponds to the finest scale 
(high frequencies).) 

5.3 Algorithm 

We now present a sketch of the discrete curvelet transform algorithm: 

1. 	apply the a trous algorithm with J scales, 

2. 	set B1 = Bmin, 

3. for j = 1, ... , J do, 

(a) 	partition the subband Wj with a block size Bj and apply the digital ridgelet trans­
form to each block, 
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Figure 9: Curvelet transform flowgraph. The figure illustrates the decomposition of the 
original image into subbands followed by the spatial partitioning of each subband. The ridgelet 
transform is then applied to each block. 

(b) if j modulo 2 = 1 then Bi+l 2Bi' 

(c) else Bi+l = Bi' 

The sidelength of the localizing windows is doubled at every other dyadic subband, hence 
maintaining the fundamental property of the curvelet transform which says that elements of 
length about 2-i/2 serve for the analysis and synthesis of the j-th subband [2i,2i+l]. Note 
also that the coarse description of the image CJ is not processed. Finally, Figure 9 gives an 
overview of the organization of the algorithm. 

This implementation of the curvelet transform is also redundant. The redundancy factor 
is equal to 16J + 1 whenever J scales-are employed. Finally, the method enjoys exact re­
construction and stability, because this invertibility holds for each element of the processing 
chain. 

Figure 10 shows a few curvelets at different scales, orientations and locations. 
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Figure 10: A few curvelets. 
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6 Filtering 

We now apply our digital transforms for removing noise from image data. The methodology 
is standard and is outlined mainly for the sake of clarity and self-containedness. 

Suppose that one is given noisy data of the form 

Xi,j = f( i, j) + UZi,j, 

where f is the image to be recovered and Z is white noise, i.e. Zi,j i.i~:...,d. N(O, 1). Unlike FFT's or 
FWT's, our discrete ridgelet (resp. curvelet) transform is not norm-preserving and, therefore, 
the variance of the noisy ridgelet (resp. curvelet) coefficients will depend on the ridgelet (resp. 
curvelet) index A. For instance, letting F denote the discrete curvelet transform matrix, we 

have Fz i,.~d. N(O, FFT). Because the computation of FFT is prohibitively expensive, we 
calculated an approximate value u~ of the individual variances using Monte-Carlo simula­
tions where the diagonal elements of FFT are simply estimated by evaluating the curvelet 
transforms of a few standard white noise images. 

Let y>.. be the noisy curvelet coefficients (y = Fx). We use the following hard-thresholding 
rule for estimating the unknown curvelet coefficients: 

Y>.. y>.. if ly>..l/u ~ kG->.. (11) 

Y>.. 0 if /y>..l/u <: kif>.. .. (12) 

In our experiments, we actually chose a scale-dependent value for kj we have k 4 for the 
first scale (j = 1) while k = 3 for the others (j > 1). 

6.1 Poisson Observations 

Assume now that we have Poisson data xi"j with unknown mean f(i,j). The Anscombe 
transformation [1] 

(13) 


stabilizes the variance and we have x 20+ {; where {; is a vector with independent and ap­
proximately standard normal components. In practice, this is a good approximation whenever 
the number of counts is large enough, greater than 30 per pixel, say. 

For small number of counts, a possibility is to compute the Radon transform of the image, 
and then to apply the Anscombe transformation to the Radon data. The rationale being 
t,hat~ roughly sp~aking, the Radon transform corresponds to a summation of pixel values 
over lines and that the sum of independent Poisson random variables is a Poisson' random 
variable with intensity equal to the sum of the individual intensities. Hence, the intensity of 
the sum may be quite large (hence validating the Gaussian approximation) even though the 
individual intensities may be small. This might be viewed as an interesting feature as unlike 
wavelet transforms, the ridgelet and curvelet transforms tend to average data over elongated 
and rather large neighborhoods. 

6.2 Filtering Experiments 

6.2.1 Lenna Image 

In our first example, a Gaussian noise with a standard deviation equal to 20 was added to the 
classical Lenna image (512 by 512). Several methods were used to filter the noisy image: 
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1. 	Thresholding of Monoscale ridgelet transforms with scale (== block size) (8, 16, 32 and 
64), 

2. Thresholding of Curvelet transform, and 

3. Wavelet de-noising methods in the following four families: 

(a) Bi-orthogonal wavelet transform using the Dauchechies-Antonini 7/9 filters (FWT­
7/9) and hard thresholding. . 

(b) Undecimated bi-orthogonal wavelet transform 	(UWT-7/9) with hard thresholding; 
we used k == 4 for the finest scale, and 3 for the others. 

(c) Multiscale entropy processing using 	the undecimated wavelet transform. This 
method is discussed in [59, 56]. 

(d) Wavelet-domain Hidden Markov Models (WHMM) using Daubechies orthonormal 
wavelets of length 8. This method [13] attempts to model the joint probability 
density of the wavelet coefficients and derives the filtered coefficients using an 
empirical Bayesian' approach. We used this rather than a competing method of 
Simoncelli [46] owing to availability of a convenient software implementation. 

We use the PSNR as an 'objective' measure of performance. In addition, we used our 
own visual capabilities to identify artifacts whose effects may not be well-quantified by the 
PSNR value. The sort of artifacts we are particularly concerned about may be seen on display 
in the upper right panel of Figure 11, which displays a wavelet reconstruction. This image 
has a number of problems near edges. In reconstructing some edges which should follow 
smooth curves one gets edges which are poorly defined and very choppy in reconstruction (for 
example in the crown of the hat); also some edges which are accurately reconstructed exhibit 
oscillatory structure along the edge which is not present in the underlying image (for example 
in the shoulder and the hat brim). We refer to all such effects as artifacts. 

Method 	 PSNR Comments 

Noisy image 22.13 
FWT7-9 + Universal Hard thresh. 28.35 many artifacts 
UWT7-9 + ksigma Hard thresh. 31.94 very few artifact 
UWT7-9 ,+ Multiscale entropy 32.10 very few a.rtifact 
WHMM 30.80 some noise remains 
Local ridgelets (B == 8) 29.99 artifacts 
Local ridgelets (B == 16) 30.87 few artifacts 
Local ridgelets (B == 32) 30.97 few artifacts 
Local ridgelets (B == 64) 30.79 few artifacts 
Curvelets 31.95 few artifact 

Table 1: Table of PSNR values after filtering the noisy image (Lanna + Gaussian white noise 
(sigma == 20)). 

Our experiments are reported on Figures 11 and 12. The la.tter figure represents a detail 
of the original image and helps the reader observe the qualitative differences between the 
different methods. We observe that: 
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• 	 The curvelet transform enjoys superior performance over local ridgelet ,transforms, re­
gardless of the the block size, and 

• 	 The undecimated wavelet transform approach outputs a PSNR comparable to that ob­
tained via the curvelet transform (the PSNR is slightly better for the multiscale entropy 
method). 

• 	 The curvelet reconstruction does not contain the quantity of disturbing artifacts along 
edges that one sees in wavelet reconstructions. An examination of the details of the re­
stored images (Figure 12) is instructive. One notices that the decimated wavelet trans­
form exhibits distortions of the boundaries and suffers substantial loss of important 
detail. The undecimated wavelet transform gives better boundaries, but completely 
omits to reconstruct certain ridges in the hatband. In addition, it exhibits numer­
ous small-scale embedded blemishes; setting higher thresholds to avoid these blemishes 
would cause even more of the intrinsic structure to be missed. 

• 	 The curvelet reconstructions display higher sensitivity than the wavelet-based recon­
structions. In fact both wavelet reconstructions obscure structure in the hatband which 
was visually detectable in the noisy panel at upper left. In comparison, every structure 
in the image which is visually detectable in the noisy image is clearly displayed in the 
curvelet reconstruction. 

These observations are not limited to the particular experiment displayed here. We have 
observed similar characteristics in many other experiments; see Figure 17 for another example. 

To study the dependency of the curvelet denoising procedure on the noise level, we gener­
ated a set of noisy images (the noise standard deviation varies from 5 to 100) from both Lenna 
and Barbara. We then compared the three different filtering procedures based respectively on 
the curvelet transform and on the undecimated/decimated wavelet transforms. This series of 
experiments is summarized in Figure 13 which displays the PSNR versus the noise standard 
deviation. These experimental results show that the curvelet transform outperforms wavelets 
for removing noise from those images, as the curvelet PSNR is systematically higher than the 
wavelet PSNR's and this, across a broad range of noise levels. Other experiments with color 
images led to similar results. 

6.2.2 Recovery of Linear Features 

The next experiment (Figure 14) consists of an artificial image containing a few bars, lines 
and a square. The intensity is constant along each individual bar; from left to right, the 
intensities of the ten vertical bars (these are in fact thin rectangles which are 4 pixels wide 
and 170 pixels long) are equal to ~:, i = 0, ... 9. The intensity along all the other lines is equal 
to 1, and the noise standard deviation is 1/2. Displayed images have been log-transformed in 
order to better see the results at low signal to noise ratio. 

The curvelet reconstruction of the nonvertical lines is obviously sharper than that ob­
tained using wavelets. The curvelet transform also seems to go one step further as far as the 
reconstruction of the vertical lines is concerned. Roughly speaking, for those templates, the. 
wavelet transforms stops detecting signal at a SNR equal to 1 (we defined here the SNR as 
the intensity level of the pixels on the line, divided by the noise standard deviation of the 
noise) while the cut-off value equals 0.5 for the curvelet approach. It is important to note that 
the horizontal and vertical lines correspond to privileged directions. for the wavelet transform, 
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because the underlying basis functions are direct products of functions varying solely in the 
horizontal and vertical directions. Wavelet methods will given even poorer results on lines 
of the same intensity but tilting substantially away from the Cartesian axes. Compare the 
reconstructions of the faint diagonal lines in the image. 

6.2.3 Recovery of Curves 

In this experiment (Figure 15), we have added a Gaussian noise to "War and Peace," a 
drawing from Picasso which contains many curved features. Fig.15 bottom left and right 
shows respectively the restored images by the undecimated wavelet transform and the curvelet 
transform. Curves are more sharply recovered with the curvelet transform. 

The authors are working on new methods (some of which will be based on the curvelet 
transform) to extract and recover curves from noisy data with greater accuracy and, therefore, 
this example is merely to be taken for illustrative purposes. 

6.2.4 Denoising of a Color Image 

In a wavelet based denoising scenario, color RGB images are generally ~apped into the YUV 
space, and each YUV band is then filtered independently from the others. The goal here to see 
whether the curvelet transform would give improved results. We used four of the classical color 
images, namely Lenna, Peppers, Baboon, and Barbara (all images except perhaps Barbara 
are available from the USC-SIPI Image Database [14]. We performed the series of experiments 
described in section 6.2.1 and summarized our findings on Figure 16 which again displays the 
PSNR versus the noise standard deviation for the four images. 

In all cases, the curvelet transform outperforms the wavelet transforms in terms of PSNR 
at least for moderate and large values of the noise level. In addition, the curvelet transform 

outputs images that are visually more pleasant. Figure 17 illustrates this last point. 

6.2.5 Saturn Rings 

A Gaussian white noise with a standard deviation fixed to 20 was added to the Saturn image. 
We employed several methods to filter the noisy image: 

1. Thresholding of the Curvelet transform. 

2. 	Bi~orthogonal undecimated wavelet de-noising methods using the Dauchechles-Antonini 
7/9 filters (FWT-7/9) and hard thresholding. 

3. 	a trous wavelet transform algorithm and hard thresholding. 

Our experiments are reported on Figure 18. The curvelet reconstruction does not contain 
the quantity of disturbing artifacts along edges that one sees in wavelet reconstructions. 
An examination of the details of the restored images is instructive. One notices that the 
decimated wavelet transform exhibits distortions of the boundaries and suffers substantial loss 
of important detail. The a trous wavelet transform gives better boundaries, but completely 
omits to reconstruct certain ridges. In addition, it exhibits numerous small-scale embedded 
blemishes; setting higher thresholds to avoid these blemishes would cause even more of the 
intrinsic structure to be missed. 
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Figure 11: Noisy image (top left) and filtered images using the decimated wavelet transform 
(top right), the undecimated wavelet transform (bottom left) and the curvelet transform 
(bottom right). 
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6.2.6 Supernova with Poisson noise 

Figure 19 shows an example of an X-ray image filtering by the ridgelet transform using such an 
approach. Figure 19 left and right shows respectively the XMM/Newton image of the Kepler 
SN1604 supernova and the ridgelet filtered image (using a five sigma hard thresholding). 
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Figure 12: The figure displays the noisy image (top left), and the restored images after 
denoising by means of the DWT (top right), UWT (bottom left), and the curvelet transform 
(bottom right). The diagonal lines of the hat have been recovered with much greater fidelity 
in the curvelet approach. 
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Figure 13: PSNR versus noise standard deviation for different denoising methods. The three 
methods based on the curvelet, undecimated and decimated wavelet transforms are repre­
sented with a continuous, dashed, and dotted line respectively. The left panel corresponds to 
Lanna, and the right to Barbara. 
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Figure 14: The top panels display a geometric image and that same image contaminated with 
a Gaussian white noise. The bottom left and right panels display the restored images using 
the undecimated wavelet transform and the curvelet transform respectively. 
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Figure 15: The top panels display a Picasso picture (War and Peace) and that same image con­
taminated with a Gaussian white noise. The bottom left and right panels display the restored 
images using the undecimated wavelet transform and the curvelet transform respectively. 
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Figure 16: PSNR versus noise standard deviation using different filtering methods. YUV and 
curvelet, YUV and undecimated wavelet, and YUV and decimated wavelet transforms are 
represented respectively with a continuous, dashed, and dotted line. The upper left panel 

•. ", .... <"', ~~. "correspond'S'-to- I.-mml! {RGB),~iglf:t..t6·wpeppe'r (RG&~ reMrmrft 'lef~ ~fi·---­
(RGB), and the bottom right to Barbara (RGB). 

31 



Figure 17: Upper left: noisy Barbara image. Upper right: restored image after applying 
the curvelet transform. Details of the restored images are shown on the bottom left panel 
(undecimated wavelet transform) and right (curvelet transform) panel. 
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Figure 18: Top left, part of Saturn image with a Gaussian noise. Top right, filtered image 
using the undecimated hi-orthogonal wavelet transform. Bottom left and right, filtered image 
by the it trous wavelet transform algorithm and the curvelet transform. 
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Figure 19: Left, XMM/Newton image of the Kepler SN1604 supernova. Right, ridgelet filtered 
image. 
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7 The Combined Filtering Method 

7.1 Introduction 

Figure 20: Residual for thresholding of the undecimated wavelet transform and thresholding 
of the curvelet transform. 

Although the results obtained by simply thresholding curvelet expansion are encouraging, 
there is of course ample room for further improvement. A quick inspection of the residual 
images for both the wavelet and curvelet transforms shown on figure 20 reveals the existence 
of very different, features. For instance, wavelets do not restore long edges with high fidelity 
while curvelets are challenged with small features such as Lenna's eyes. Loosely speaking, each 
transform has its own area of expertise and this complementarity may be of great potential. 
This section will develop a denoising strategy based on the idea of combining both transforms. 

In general, suppose that we are given K linear transforms T1 , ..• , TK and let Ok be the 
coefficient sequence of an object x after applying the transform Tk, i.e. Ok TkX. We will 
$Upp<>&~, t,b~t for~a~h tr,an,~form Tk we' have availab~e a r.e~o:t;lstn~~tj9.n rul~,,(l~~t, we,~ill p.enote 
by Ti: 1 although this is clearly an abuse of notations. Finally, T will denote the block diagonal 
matrix with the Tk'S as building blocks and ° the amalgamation of the Ok'S. . 

A hard thresholding rule associated with the transform Tk synthesizes an estimate Sk via 
the formula 

(14) 


where 8 is a rule that sets to zero all the coordinates of Ok whose absolute value falls below 
given a sequence of thresholds (such coordinates are said to be nonsignificant). 

In practice, a widely used approach is to compute the average of the Sk'S giving a recon­
struction of the form 

s= ESk/K. (15) 
k 

For instance, in the literature of image processing it is common to average reconstructions ob­
tained after thresholding the wavelet coefficients of translated versions of the original dataset 
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(cycle-spinning), i.e. the Tk'S are obtained by composing translations and the wavelet trans­
form. In our setup, we do not find this solution very appealing as this creates th~ opportunity 
to average high-quality and low-quality reconstructions. 

7.2 The Combined Filtering Principle 

Given data y of the form y = s+uz, where s is the image we wish to recover and z is standard 
white noise, we propose solving the following optimization problem [55]: 

min IITslIl l , subject tos E C, (16) 

where C is the set of vectors s which obey the linear constraints 

{ 
s 2: 0, 
ITs- Tyl :::; e; 

(17) 

here, the second inequality constraint only concerns the set ofsignificant coefficients, Le. those 
:--,' --:·-~indices'·I'-stieh--th-at-'aJ£:=!: (TY}j:i.-exceeds(inabsolut-e-::llalue-}.-a.thr-esh6Idc-t-~:,.:-·Givena vector of 

tolerance (eJ.'J, we seeka solution whose coefficients ,(Ts)j:i.are '\Vithin e,.,,6f the noisy empirical 
i~"s~' :Tliink of riJ.' as being-given by , ,.' -~.:;:::: ,;";'-.-::~:.~::..-~~ - '-." . - -, 

y = (y, <PJ.')' 

so that O!wis normally distributed with mean (1, <pJ.') and variance u! = u211<pJJ.II~. In practice, 
the threshold values range typically between three and four times the noise level uJJ. and 
in our experiments we will put eJJ. u JJ./2. In short, our constraints guarantees that the 
reconstruction will take into account any pattern which is detected as significant by a any of 
the K transforms. 

We use an i1 penalty on the coefficient sequence because we are interested in low complexity 
reconstructions. There are other possible choices of complexity penalties; for'instance, an 
alternative to (16) would be 

min IIsIITv, subject to sEC. 

where II . IITV is the Total Variation norm, i.e. the discrete equivalent of the integral of the 
euclidian norm of the gradient. 

7.3 The Minimization Method 

We propose solving (16) using the method of hybrid steepest descent (HSD) [62]. HSD consists 
in building the sequence 

(18) 

here, P is the i2 projection operator onto the feasible set C, V J is the gradient of equation 16, 
and (.An)n>l is a sequence obeying (.An)n>l E [0, 1] and limn-++oo .An = 0. 

Unfort~nately, the projection operatOr P is not easily determined and in practice we will 
use the following proxy; compute Ts and replace those coefficients which do not obey the 
constraints ITs - Tyl :::; e (those which fall outside of the prescribed interval) by those of y; 
apply the inverse transform. 

The combined filtering algorithm (CFA) is: 

36 

http:u211<pJJ.II


1. Initialize Lmax == 1, the number of iterations Ni, and 8>. == LJe'~x. 

2. 	Estimate the noise standard deviation (1, and set ek == ~. 

3. for k == 1, ." K calculate the transform: a~8) == TkS, 

4. Set A == L max , n == 0, and sn to O. 

5. While A >== 0 do 

• 	 U == sn. 
• 	 for k 1, ." K do 

-	 Calculate the transform ak == TkU. 

For all coefficients ak,l do 

* 	Calculate the residual rk,l a~:l ak,l 

* 	if a~:l is significant and I rk,l I> ek,l then ak,l == a~:l 
* 	ak,l sgn(ak,J) (I ak,l I -A)+. 

-	 U == T;lak 

• 	 Threshold negative ,values in 'It,'andsn+1 =='lL. 

• 	 n==n+1, A==A-8>.,andgot05. 

7.4 Experiments 

Method 	 PSNR Comments 

Noisy image 22.13 
OWT7-9 + ksigma Hard thresh. 28.35 many artifact 
UWT7-9 + ksigma Hard thresh. 31.94 very few artifact 
Curvelet (B==16) 31.95 no artifact 
Combined 32.72 no artifact 

Table 2: PSNR after filtering the simulated image (Lena + Gaussian noise (sigma==20)), In 
the combined filtering, a curvelet and an undecimated wavelet transform have been used. 

The noisy Lenna image (the noise standard deviation being equal 20) has been filtered by 
the undecimated wavelet transform, the curvelet transform, and by our combined transform 
approach (curvelet and undecimated wavelet transforms). The results are reported in Table 2, 
Figure 21 displays the noisy image (top left), and the restored image after denoising by the 
combined transforms (bottom right). Details are displayed on Figure 21 bottom left. Figure 21 
bottom right shows the full residual image, and can be compared to the residual images shown 
in Figure 20. The residual is much better when the combined filtering is applied, and no feature 
can anymore be detected by eye. This was not the case for both the wavelet and the curvelet 
filtering. 

Figure 22 displays the PSNR of the solution versus the number of iterations. On this 
example, the algorithm is shown to converge rapidly. From a practical viewpoint only four 
or five iterations are truly needed. Note that the result obtained after a single iteration is 
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Method PSNR PSNR 
(coeff. it norm minim.) (TV minim.) 

U ndecimated Wavelet only 32.00 32.43 
Curvelet only 32.03 32.40 
Wavelet + Curvelet 32.72 32.77 
(Combined Filtering) 

T~ble 3: PSNR after filtering the simulated image (Lena + Gaussian noise (sigma=20)). In 
the combined filtering, a curvelet and an undecimated wavelet transform have been used. 

already superior than those available using methods based on the thresholding of wavelet or 
curvelet coefficients alone. 

Several papers have been recently published, based on the concept of minimizing the total 
variation under constraints in the wavelet domain [21,_17~__ 3.619r. inthecurv.~letgQrn~I!_ [9]. 
Our combined approach can be seen as a generalization of these methods. We made a set of 

- - experiments in order- to estimate (i) if the total variation·is better than the 11 norm of the 
multiscale coefficients, and (ii) if the combined approach improves the results compared to a 
single transform based method. 

In our example, a Gaussian noise with a standard deviation equal to 20 was added to the 
classical Lenna image (512 by 512). Several methods were used to filter the noisy image: 

1. 	TV + constraint in the Wavelet Domain. 

2. 	TV + constraint in the Curvelet Domain. 

3. Wavelet h norm minimization + wavelet constraints. 

4. Curvelet 11 norm minimization + curvelet constraints. 

5. Combined filtering method using multiscale coefficients h norm minimization. 

6. Combined filtering method using TV minimization. 

-Weu'sEftne PSNR as an: "objectiVe" measure of petforma:iice: Tn-e'rioisy'Tmage PSNR is 22.13. 
PSNR results from the different tested methods are reported in Table 3. 

We observe that the combined filtering leads to a significant improvement when compared 
to a single transform based method. The TV penalization gives better results when a single 
transform is used, while it seems not to have too much importance for the combined filtering 
approach. We will see in the following that the latter is not true for the deconvolution problem. 

7.5 Discussion 

We believe that the denoising experiments presented in this paper are of very high quality; 

1. 	The combined filtering leads to a real improvement both in terms of PSNR and visual 
appearance. 
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2. 	The combined approach arguably challenges the eye to distinguish structure/features 
from residual images on real image data (at least for the range of noise levels that was 
considered here). Single transforms cannot manage such a feat. 

We also note that the combined reconstruction may tend to be free of major artifacts which 
is very much unlike typical thresholding rules. Although the ease of im plementation is clear 
we did not address the computational issues associated with our method. In a nutshell, the 
algorithms we described requires calculating each transform and its inverse only a limited 
number of times. 

In our examples, we constructed a combined transform from linear transforms (wavelets, 
ridgelets and curvelets) but our paradigm extends to any kind of nonlinear transform such as 
the Pyramidal Median Transform [57] or morphological multiscale transforms [30]. 
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Figure 21: Noisy image (top left), and filtered image the combined transforms (top right). 
Bottom left panel shows a detail of the filtered image. The full residual image is displayed on 
the bottom right. 
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Figure 22: PSNR versus the number of iterations. 
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8 Deconvolution 

8.1 Wavelet and Deconvolution 

Consider an image characterized by its intensity distribution I, corresponding to the obser­
vation of a "real image" 0 through an optical system. If the imaging system is linear and 
shift-invariant, the relation between the data and the image in the same coordinate frame is 
a convolution: I(x, y) = (P *O)(x, y) + N(x', y), where P is the point spread function (PSF) 
of the imaging system, and N is an additive noise. We want to determine O(x, y) knowing 1 
and P. This inverse problem has led to a large amount of work, the main difficulties being the 
existence of: (i) a cut-off frequency of the point spread function, and (ii) the additive noise 
(see for example [4]). . 

The wavelet based non-iterative algorithm, the Wavelet-Vaguelette decomposition [25], 
consists in first applying an inverse filtering (F = p-1*1+p-1*N = O+Z where p-l(v) = 
P~II))' The noise Z = p-l *N is not white but remains Gaussian. It is amplified when the 

deconvolution problem is unstable. Then, a wavelet transform is applied on F, the wavelet 
coefficients are soft orhardthresholded [24], and the.inyerse.: wayelet._J!,J;tll.§fQr.mfl.\rni~hes the 
solution. The method has been refined by adapting the wavelet basis to the frequency response 
of the inverse of:P· [34]~ Irleadsa- special basis, this Mlrror~:Wa"'f£lef:;BiJ.sisi: whiCh'~ftas~atime­
frequency tiling structure different from conventional wavelets one, and isolates the frequency 
Vs where P is close to zero, because a singularity in P-l (vs ) influences the noise variance 
'in the wavelet scale corresponding the frequency band which includes VS' Because it may 
not be possible to isolate all singularities, Neelamani [42] has advocated an hybrid approach, 
and propose to still use the Fourier domain to restrict excessive noise amplification. These 
approaches are fast and competitive compared to linear methods, andthe wavelet thresholding 
removes the Gibbs oscillations. It presents however several drawbacks: (i) the first step 
(division in the Fourier space by the Point Spread Function) cannot always be done properly, 
(ii) the positivity a priori is not used, (iii) it is not trivial to consider non Gaussian noise. As 
an alternative, several wavelet based iterative algorithms has been proposed [57], especially 
in the astronomical domain where the positivity a priori is known to improve significantly the 
result. The simplest method consists in first estimating the multireso.lutio.n supPo.rt M (i,e. 
M(j, x, y) = 1 if the wavelet transfo.rm o.f the data presents a significant co.efficient at band j 
and at pixel Po.sitio.n (x, y), and 0 o.therwise), and to. apply the fo.llo.wing iterative scheme: 

. where W is the wavelet transfo.rm o.perato.r. At each iteratio.n, info.rmatio.n is extracted fro.m 
the residual o.nly at scales and positio.ns defined by the multiresolutio.n supPo.rt. M is esti­
mated fro.m the input data and the co.rrect noise mo.deling can easily be considered. 

9 The Combined Deconvolution Method 

As fo.r the filtering, we expect that the co.mbinatio.n o.f different transforms improve the quality 
o.f the result. The co.mbined appro.ach fo.r the deco.nvolutio.n leads to. two different metho.ds. 
Indeed, if the noise is Gaussian and if the divisio.n by the PSF in the Fo.urier space can be do.ne 
properly, then the deconvo.lutio.n pro.blem beco.mes a filtering pro.blem where the noise is still 
Gaussian, but no.t white. The Co.mbined Filtering Algo.rithm can then be applied using the 
curvelet transfo.rm and the wavelet transform, but by estimating first the correct thresho.lds 
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in the different bands of both transforms. As the mirror wavelet basis is known to produce 
better results than the wavelet basis, it is recommended to use it instead of the standard 
undecimated wavelet transform. 

An iterative deconvolution method is more general and can always be applied. Further­
more, the correct noise modeling can much more easily be taken into account. The method 
consists in detecting first all the significant coefficients with all used multiscale transforms. If 
we use K transforms T I , ... , TK, we derive K multiresolution supports M l , .. " MK from the 
input image I using a noise modeling. 

For instance, in case of Poisson noise, we apply the Anscombe transform to the data 

(Le. A(I) 2JI + ~). Then we detect the significant coefficients with the kth transform 

Tk, assuming a Gaussian noise with standard deviation equals to 1, in Tk..A(I) instead of TkI. 
Mk(j, x, y) = 1 if a coefficient in band j at pixel position (x, y) is detected, and Mk(j, x, y) = 0 
otherwise. For the band J which corresponds to the smooth array in transforms such as the 
wavelet or the curvelet transform, we force Mk(J, x, y) = 1 for all (x, y). 

Then, we propose to solve the following optimization problem: 

minS(O), subject to 0 E C, ,(20) 

where S is an edge preservation penalization term defined by: 

8(6) JII v6 II", 

with p = 1.1. C is the set of images 0 which obey the two constraints: 

1. 02:0 (positivity). 

2. MkTkI = MkTk[P *0], for all k. 

The second constraint impose the fidelity to the data, or more exactly, to the data significant 
coefficients, obtained by the different transforms, Non-significant (Le. noisy) coefficients are 
not taken into account, preventing any noise amplification in the final algorithm. 

The solution is computed by using the projected Landweber method [4]: 

(21)
.J'li .':' " 

where Pc is the projection operator which enforces the positivity (Le. set to 0 all negative 
values), fln is the significant residual which is obtained using the following algorithm: 

• Set 10 = In = P *on. 

• For k = 1, ... , K do rr: = I'k-l +Ti: 1 [Mk(Tk I - TkIk_l)] 

• The significant residual fln is obtained by: fln = IK In. 

a ~s a convergence parameter and Ais the regularization hyperparameter. As the noise is 
controlled by the multiscale transforms, the regularization parameter does not have the same 
importance as in standard deconvolution methods. A much lower value is enough to remove 
the artifacts relative to the use of the wavelets and the curvelets. The positivity constraint 
can be applied at each iteration. 
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Figure 23 top shows the Logan-Shepp Phantom and the simulated data, i.e. original 
image convolved by a Gaussian point spread function (FWHM=3.2) and Poisson noise. Fig­
ure 23 bottom shows the deconvolution with (left) a pure wavelet deconvolution method (no 
penalization term) and (right) the cOlnbined deconvolution method (parameter A = 0.4). 
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Figure 23: Top, original image (Phantom) and' simulated data (i.e. convolved image plus 
Poisson noise). Bottom, deconvolved image by the wavelet based method and the combined 
approach. 
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10 Contrast Enhancement 

10.1 Introduction 

Because some features are hardly detectable by eye in an image, we often transform it before 
display. Histogram equalization is one the most well-known methods for contrast enhance­
ment. Such an approach is generally useful for images with a poor intensity distribution. Since 
edges play a fundamental role in image understanding, a way to enhance the contrast is to 
enhance the edges. For example, we can add to the original image its Laplacian (1' = I +iA1, 
where i is a parameter). Only features at the finest scale are enhanced (linearly). For a high 
i value, only the high frequencies are visible. Multiscale edge enhancement [61] can be seen 
as a generalization of this approach to all resolution levels. 

In color images, objects can exhibit variations in color saturation with little or no corre­
spondence in luminance variation. Several methods have been proposed in the past for color 
image enhancement [60]. The retinex concept was introduced by Land [35] as a model for 
human color constitancy. The single scale retinex (SSR) method [33] consists of applying the 
following transform to each band i of the color image: 

(22) 

where Ri(x, y) is the retinex output, Ii(x, y) is the image distribution in the ith spectral band, 
and F is a Gaussian function. A gain/offset is applied to the retinex output which clips the 
highest and lowest signal excursions. This can be done by a k-sigma clipping. The retinex 
method is efficient for dynamic range compression, but does not provide good tonal rendition 
[43]. The Multiscale Retinex (MSR) combines several SSR outputs to produce a single output 
image which has both good dynamic range compression and color constancy, and good tonal 
rendition [32]. The MSR can be defined by: 

N 

RMSRi =L WjRi,j (23) 
j=l 

with 

(24) 

'Nis the number"ofscaleS, R;,j is the ~th spectral component of the MSR output, and Wj is 
the weight associated with the scale j. The Gaussian Fj is given by: 

(25) 

'Cj defines the width of the Gaussian. In [32], three scales were recommended with Cj values 
equal respectively to 15,80,250, and all weights Wj fixed to j.,. The Multiscale Retinex in­
troduces the concept of multi resolution for contrast enhancement. Velde [61] has explicitly 
introduced the wavelet transform and has proposed an algorithm which modifies the wavelet 
coefficients in order to amplify faint features. The idea is to first transform the image using 
the dyadic wavelet transform (two directions per scale). The gradient G j,k at scale j and at 

pixel location k is calculated at each scale j from the wavelet coefficients w;~2 and wt2 rela­

tive to the horizontal and vertical wavelet bands: G· k = (w~h»)2 + (w~V»)2. Then the two
j, j,k j,k 
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wavelet coefficients at scale j and at position k are multiplied by y(Gj,k); where y is defined 
by: 

y(x) - (m)p if I x 1< c 
c 

y(x) - ( I : I)P if c ~ I x 1< m 

y(x) - 1 if I x I~ m (26) 

Three parameters are needed: p, m and c. p determines the degree of non-linearity in. the 

Figure 24: Enhanced coefficients versus original coefficients. Parameters are m=30,c=3 and 
p=0.5. 

nonlinear rescaling of the luminance, and must be in ]0, 1[. Coefficients larger than mare 
not modified by the algorithm. The c parameter corresponds to the noise level. Figure 24 
shows the modified wavelet coefficients versus the original wavelet coefficients for a given set 
of parameters (m = 30, c = 3 and p 0.5). Finally, the enhanced image is obtained by the 
inverse wavelet transform from the modified wavelet coefficients. For color images, a similar 
method can be used, but by calculating the multiscale gradient fj,k from the multiscale 

gradient of the three L, u, v components: fj(i) V" Gr,k IP + II Gj,k 112 + II Gj,k 112. All 

wavelet coefficients at scale j and at position k are multiplied by y(fj,k), the enhanced £, u, 
v components are reconstructed from the modified wavelet coefficients, and the (£,u,v) image 
is transformed into an RGB image. More details can be found in [61]. 

~~",-_.",..~~f!9<pJ;.e.sJm.t....sQJ;P.e Jiwitatiops,~b.ecauae...tJt~ i};te. not Ad ?:pt~.!JJA.d.~tUul,-Qf 
highly anisotropic elements, such as alignments in an image., or sheets in a cube. Recently, 
other multisca:Ie systems like ridgelets [5] and curvelets [6, 54] which are very different from 
wavelet-like systems have been developed. Curvelets and ridgelets take the form of basis ele­
ments which exhibit very high directional sensitivity and are highly anisotropic. The curvelet 
transform uses the ridgelet transform in its . digital implementation. We first describe the 
ridgelet and the curvelet transform, then we show how contrast enhancement can be obtained 
from the curvelet coefficients. 

10.2 Contrast Enhancement using the Curvelet Transform 

Since the curvelet transform is well-adapted to represent images containing edges, it is a 
good candidate for edge enhancement [49, 58]. Curvelet coefficients can be modified in order 
to enhance edges in an image. A function Yc must be defined which modifies the values of 
the curvelet coefficients. It could be a function similar to the one defined for the wavelet 
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coefficients [61] (see equation 26). This function presents however the drawback to amplify 
the noise (linearly) as well as the signal of interest. We introduce explicitly the noise standard 
deviation U in the equation: 

yc(x, u) 	 1 if x < cu 

x - cu ( m )P 2cu - x 'f'Yc(x, u) - + lx<2cu 
cu cu cu 

Yc(x, u) (m)p if2cu:::; x < m 
x 

Yc(x, u) (m)8 if x ~ m (27) 
x 

" 

50'-'--'--'-~-'--~~~~~~ 

40 	 40 

o 10 	 20 30 40 50 o 10 20 30 40 50 

Figure 25: Enhanced coefficients versus original coefficients. Left, parameters are 
m=30,c=0.5,s=0, and p=0.5. Right, parameters are m=30,c=0.5,s=0.7,p=0.9. 

We have fixed m = c = p = 0.5 and s = O· in all our experiments. p determines the 
degree of non-linearity and s introduces a saturation. c becomes a normalized parameter, 
and a c value larger than 3 guaranties that the noise will not be amplified. The m parameter 
can be defined either from the noise standard deviation (m = Kmu) or from the maximum 
curvelet coefficient Me of the relative band (m = 1Me, with 1 < 1). The first choice allows the 
user to define the coefficients to amplify as a function of their signal to noise ratio, while the 
second one gives an easy and general way to fix the m parameter independently of the range 
of the pixel values. Figure 25 shows the curve representing the enhanced coefficients versus 
the original coefficients for two sets o( parameters. In the second case, a saturation is added. 

00'''-'''1' Ii<' •• ,. ··The'"curvelet'-enhaftcementumethod for graysca.leimages consists of the following steps: 

1. 	Estimate the noise standard deviation u in the input image I. 

2. 	Calculate the curvelet transform of the input image. We get a set of bands wj, each 
band Wj contains Nj coefficients and corresponds to a given resolution level. 

3. 	Calculate the noise standard deviation Uj for each band j of the curvelet transform (see 
[54] more details on this step). 

4. 	For each band j do 

• Calculate the maximum Mj of the band. 

• Multiply each curvelet coefficient Wj,k by Ye(l Wj,k I, Uj). 

5. Reconstruct the enhanced image from the modified curvelet coefficients. 
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For color images, we apply first the curvelet transform on the three components L, U, v'. For 

each curvelet coefficient, we calculate e JCl + c~ + c~, where (CL, Cu., cv ) are respectively 
the curvelet coefficients of the three components, and the modified coefficients are obtained 
by: (CL, Cu., cv ) = (yc(e, U)CL' yc(e, u)cu., yc(e, u)cv ). 

Values in the enhanced components can be larger than the authorized upper limit (in 
general 255), and we found it necessary to add a final step to our method, which is a sigma­
clipping saturation. 

Examples 


Saturn Image 


Figure 26 shows respectively from left to right and from top to bottom the Saturn image, 
the histogram equalized image, the wavelet multiscale edge enhanced image and the curvelet 
multiscale edge enhanced image (parameters were s = 0, p = 0.5, C = 3, and I = 0.5). The 
curvelet multiscale edge enhanced image shows clearly better the rings and edges of Saturn. 

Satellite Image 

Figure 27 shows the results for the enhancement of a grayscale satellite image, and Figure 28 
shows the results for the enhancement of a color image (Kodak image of the day 14/05/01) 
by the retinex, the multiscale retinex and the curvelet multiscale edge enhancement methods. 
Figures 29 shows the results for the enhancement of a color image (Kodak image of the day 
11/12/01). 

10.3 Discussion 

A number of properties, respected by the curvelet filtering described here, are important for 
contrast stretching: 

1. 	Noise must not be amplified in enhancing edges. 

2. Colors should 	not be unduly modified. In multiscale retinex, for example, a tendance 
towards increased grityness is seen. This is not the case using curvelet . 

• ~ . , .• " .. ! •.••.• ·3."'·It!\i8·Ve-ry··..;a.d-Wltlltageoll&rif,bI9~k effects do not occur,. ·,Block·overlappiHg is-,usually nt}1; ·.,n 

necessary in curvelet-based contrast enhancement, unlike in the case of noise filtering. 

49 




Figure 26: Top, Saturn image and its histogram equalization. Bottom, enhancement image 
by the wavelet transform and the curvelet transform. 
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Figure 27: Top, grayscale image, and bottom, curvelet enhanced image. 
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Figure 28: Top, color image (Kodak picture of the day 14/05/02) and retinex method. Bottom, 
multiscale retinex method and multiscale edge enhancement. 
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Figure 29: Left, color image (Kodak picture of the day 11/12/01), and right, curvelet enhanced 
image. 
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11 Morphological Component Analysis 

11.1 Introduction 

The content of an image is often complex, and there is not a single transform which is optimal 
to represent all the contained features. For exam pIe, the Fourier transform better represents 
some textures, while the wavelet transform better represents singularities. Even if we limit 
our class. of transforms to the wavelet one, decision have to be taken between an isotropic 
wavelet transform which produce good results for isotropic objects (such starsand galaxies in 
astronomical images, cells in biological images, etc), or an orthogonal wavelet transform, which 
is better for images with edges. This has motivat~ the development of different methods 
[11, 41, 31], and the two most frequently discussed approaches are the Matching Pursuit 
(MP) [38] and the Basis pursuit (BP) [11]. A dictionary V being defined as a. collection of 
waveforms ('P'Y)'YEr; the general principe consists in rep.resenting a signal s as a"~parse" linear 
combination of a small number of basis such that: 

(28) 


_~_ ....... ~ ......." "" '«'M ". __ •
. or an approximate. decomposition - ".>-- ----,--- ­

m 

S 	 l:: a'Yi'P'Yi +R(m). (29) 
i=1 

Matching pursuit [38, 37] method (MP) uses a greedy algorithm which adaptively refines 
the signal approximation with an iterative procedure: 

• Set sO = 0 and RD =o. 
• Find the element O!k'P'Y1c which best correlates with the residual. 

• Update sand R: 

(30) 


In case of non orthogonal dictionaries, it has been shown [11] that MP may spend most of 
tlietl~e~"C<rrrectfi'lg ·n;lstakes~·made tri th'~l1rsi rew~terms;"an'a."t1iererorei';subQPtimaThl"term 
of sparsity. 

Basis pursuit method [11] (BP) is a global procedure which synthesizes an approximation 
s to s by minimizing a functional of the type 

(31) 


Between all possible solutions, the chosen one has the minimum 11 norm. This choice of It 
norm is very important. A 12 norm, as used in the method of frames [15], does not preserve 
the sparsity [11]. 

In many cases, BP or MP synthesis algorithms are computationally very expensive. We 
present in the following an alternative approach, that we call Morphological Component Anal­
ysis (MeA), which combines the different available transforms in order to benefit of the 
advantages of each of them. 
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11.2 The Combined Transformation 

Depending on the content of the data, several transforms can be combined in order to get an 
optimal representation of all features contained in our data set. In addition to the ridgelet and 
the curvelet transform, we may want to use the it trous algorithm which is very well suited 
to astronomical data, or the undecimated wavelet transform which is commonly used in the 
signal processing domain. 

Other transform such wavelet packets, the Fourier transform, the Pyramidal median trans­
form [57], or other multiscale morphological transforms, could also be considered. However, 
we found that in practice, these four transforms (Le. curvelet, ridgelet, it trous algorithm, and 
undecimated wavelet transform) furnishes a very large panel of waveforms which is generally 
large enough to well represents all features contained in the data. 

In general, suppose that we are given K linear transforms T1, .•• , TK and let ak be the 
coefficient sequence of an object x after applying the'transform Tk, i.e. ak == TkX. We <wil,l 
suppose that for each transform Tk we have available a reconstruction rule that we will denpte 
by Tk'1 although this'is clearly an abuse of notations. 

Therefore, we search a vectQra aI, . ~ ., aK su~h_<.that_ 

8 CPa' 

where q)a == 2:[:"==1 Tk'l ak . As our dictionary is overcomplete, there is an infinity of vectors 
verifing this condition, and we need to solve the following optimization problem: 

min 118 - </>a 112 +C(a) (33) 

where C is a penalty term. We easily see that chosing C(a) ==11 a lilt leads to the BP method, 
where the dictionary V is only composed of the basis elements of the chosen transforms. 

Two iterative methods, 8oft-MCA and hard-MCA, allowing us to realize such a combined 
transform, are described in this section. 

11.3 Soft-MCA 

Noting Tl, ... , TK the K transform operators, a solution a is obtained by minimizing a func­

tional of the form: 


, ··""i ...i-."',:·'!,",,,· ~.ftit-.,~·~~~~"'·,··-"~"'.J.·~(tof,.,i' '# ":"-i.~,·K·:~,·.-:.": ~'""",,""t'fr',/':,. ,'...;."..~.~~.- ....~ft'r.-""'*"-.~~~............... --fI"~... ---~~"il~~ ty'~~"'b-"'-::!':~"';'··"··,,-"~",,!·~ ~~
.j:",·,ft" .. 

J(a) ==11 8 - I:Tk' lak IIi +,X:L: II ak III (34) 
k==l k 

where 8 is the original signal, and ak are the coefficients obtained with the transform Tk. 

An simple algorithm to achieve such an solution is [48, 53]: 

1. Initialize L max, the number of iterations Ni, ,X = L max, and ~>. == L»:x. 
2. While ,X >= 0 do 

3. For k = 1, .. , K do 

• Calculate the residual R == 8 - I:kT;;lak' 

• Calculate the transform Tk of the residual: rk == TkR. 

• Add the residual toak: ak ak + rk. 
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• Soft threshold the coefficient ak with the A threshold. 

4. A = A - 8, and goto 2. 

Figure 30 illustrates the result in the case where the input image contains only lines and 
Gaussians. In this experiment, we have initialized Lmax to 20, and 8 to 2 (10 iterations). 
Two transform operators were used, the atrous wavelet transform and the ridgelet transform. 
The first is well adapted to the detection of Gaussian due to the isotropy of the wavelet 
function [57], while the second is optimal to represent line~ [8}. Figure 30 top, bottom left, 
and bottom right represents respectively the original image, the reconstructed image from 
·the atrous wavelet coefficient, and the reconstructed. image from the ridgelet coefficient. The 
addition of both reconstructed images reproduces the originaIone. 

Figure 30: Top, original image containing lines and gaussians~ Botton left, reconstructed 
image for the a trous wavelet coefficient, bottom right, reconstructed image from the ridgelet 
coefficients. 

In some specific cases where the data are sparse in all bases, it has been shown [31, 21] 
that the solution is identical to the solution when using a II . 110 penalty term. This is 
however generally not the case. The problem we met in image restoration applications, when 
minimizing equation 34, is that both the signal and noise are split into the bases. The way 
the noise is distributed in the coefficients ak is not known, and leads to the problem that 
we do not know at which level we should threshold the coefficients. Using the threshold we 
would have used with a single transform makes a strong over-filtering of the data. Using the 
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[1 optimization for data restoration implies to first study how the noise is distributed in the 
coefficients. The hard-MCA method does not present this drawback. 

11.4 Hard-MeA 

The following algorithm consists in hard thresholding the residual successively on the different 
bases [48, 53]. 

1. 	For noise filtering, estimate the noise standard deviation (1, and set Lmin = k q • Other­
wise, set (1 = 1 and Lmin = o. 

Lmax-Lmin2. 	 Initialize Lmax, the number of iterations Ni, A = Lmax and 0).. Ni 

3. 	Set all coefficients o.k to O. 

4. 	While A >= Lmin do 

5. for k = 1, .. , K do 

• Calculate the residual R = s - 2:k T;;lo.k' 

• 	 Calculate the transform Tk of the residual: rk = Ticlt 
• 	 For all coefficients o.k,i do 

- Update the coefficients: if o.k,i i= 0 or I rk,i I> A(1 then o.k,i = o.k,i + rk,i' 

6. 	 A = A - 0).., andgoto 5. 

For an exact representation of the data, kq must be set to O. Choosing kq > 0 introduces a 
filtering. If a single transform is used, it corresponds to the standard k-sigma hard threshold­
ing. 

It seems that starting with a high enough Lmax and a high number of iterations would 
lead to the 1° optimization solution, but this remains to be proved. 

11.5 Experiments 

11.5.1 Experiment 1: Infrared Gemini Data 

f.¥ .." 	 \ " • 
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"Figute:'3t:" ·Upper~left,·gabtxy SBS 033&.052 (lOpinr,c'upper";'middle,"uppet'middle, -and 
bottom left, reconstruction respectively from the ridgelet, the curvelet and wavelet coefficients. 
Bottom middle, residual image. Bottom right, artifact free image. 
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Figure 32: Upper left, galaxy SBS 0335-052 (20 /Lm), upper right, addition of the reconstructed 
images from both the ridgelet and the curvelet coefficients, bottom left, reconstruction from 
the wavelet coefficients, and bottom right, residual image. 
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Fig. 31 upper left shows a compact blue galaxy located at 53 Mpc. The data have been 
obtained on ground with the GEMINI-OSCIR instrument at 10 pm. The pixel field of view is 
0.089/1/pix, and the source was observed during 1500s. The data are contaminated by a noise 
and a stripping artifact due to the instrument electronic. The same kind of artifact pattern 
were observed with the ISOCAM instrument [50]. 

This image, noted D 1O, has been decomposed using wavelets', ridgelets, and curvelets. 
Fig. 31 upper middle, upper right, and bottom left show the three images RIO, CIO, WIO 

reconstructed respectively from the ridgelets, the curvelets, and the wavelets. Image in Fig. 31 
bottom middle shows the residual, i.e. €10 = DIO - (RIO +C lO + WlO). Another interesting 
image is the artifact free one, obtained by subtracting RIO and CIO from the input data (see 
Fig. 31 bottom right). The' galaxy has well been detected in the wavelet space, while all 
stripping artifact have been capted by the ridgelets and curvelets. 

Fig. 32 upper left shows the same galaxy, but at 20 pm. We have applied the same 
decomposition on D20. Fig. 32 upper right shows the coadded image R20 + C20 , and we can 
see bottom left and right the wavelet reconstruction W20 and the residudal €20 = D 20 - (R20+ 

C20 +W20). . 

11.5.2 Experiment 2: A370 

Figure 33 upper left shows the HST A370 image. It contains many anisotropic features 
such the gravitationnal arc, and the arclets. The image has been decomposed using three 
transforms: the ridgelet transform, the curvelet transform, and the atrous wavelet transform. 
Three images have then been reconstructed from the coefficients of the three basis. Figure 33 
upper right shows the coaddition of the ridgelet and curvelet reconstructed images. The 
a trous reconstructed image is displayed in Figure 33 lower left, and the coaddition of the 
three images can be seen in Figure 33 lower right. The gravitational arc and the arclets are 
all represented in the ridgelet and the curvelet basis, while all isotropic features are better 
represented in the wavelet basis. 

We can see that this Morphological Component Analysis (MeA) allows us to separate 
automatically features in an image which have different morphological aspects. It is very 
different from other techniques such as Principal Component Analysis or Independent Com­
ponent Analysis [10] where the separation is performed via statistical properties. 
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Figure 33: Top left, HST image of A370, top right coadded image from the reconstructions 
from the ridgelet and the curvelet coefficients, bottom left reconstruction from the a trous 
wavelet coefficients, and bottom right addition of the three reconstructed images. 
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12 Program 

12.1 Ridgelet transform 

12.1.1 im.-radon 

Program im_radon makes a (inverse-) Radon transform of a square n X n image. The output 
fil~ which contains the transformation has a suffix, .rad. If the output file name given by the 
user does not contain this suffix, it is automatically added. The ".rad" file is a FITS format 
file, and can be manipulated by any package dealing with FITS format, or can be converted 
to another format using theim_convert program. For the two first Radon transform methods, 
the user can change the number of. directions and the resolution. For other methods, the 
number of directions and the resolution are fixed, and the x and y options are not valid. 
Option f, wand s allow the user to perform a filtering-backprojection. They are valid only 
when the selected Radon method is the second one. "w" fixes the width of the filter and the 
"s" is the sigma parameter of the Gaussian filter. 

USAGE: im.-radon options imagejn.trans_Qut 

where options are: 

• 	 [-m type_of.-radon-Dlethod] 

1. 	 Radon transform (resp. backprojection) in spatial domain. 
By default, the output image is 2n x n image. 

2. 	 Radon projection in spatial domain and reconstruction in Fourier domain. By default, the 
output image is 2n x n image. The reconstruction is available only for image with a size n 
being a power of 2. 

3. 	 Radon transformation and reconstruction in Fourier space (i.e. Linogram). 
The output is 2n x n image. The number of lines is multiplied by two. 

4. 	 Finite Radon Transform. 
The. output image is a (n + 1) x n image. The input image size n must be a prime number. 

5. 	 Slant Stack Radon transform. 
The output image has twice the number of lines and twice the same number of columns of 
the input image. The output is a 2n x 2n image. The reconstruction is not available with 
this transform. 

··""·-~·""·""-lr·-··'~D~atrlt·iS"'"Radon··tra;nsformation. andreconstruetit>rritrFotrrier:"Spa;eer" . , .. t;a .. 

• 	 [-y OutputLineNumber] 
For the RADON transform, OutputLineN umber number of projection, and default is 
twice the input image lines number. Only valid for Radon methods 1 and 2. 

• 	 [-x OutputColumnNumber] 
For the RADON transform, OutputLineNumber = number of pixels per projection, and 
default is the input image column number. Only valid for Radon methods 1 and 2. 

• 	 [-r]
Inverse RADON transform. 

• [-f]
Filter each scan of the Radon transform. Only valid for Radon method 2. 
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• [-w FilterWidth] 

Filter width. Only valid for Radon method 2. Default is 100. 


• 	 [-s SigmaParameter 
Sigma parameter for the filtering. Only valid for Radon method 2. Default is 10. 

• [-v]
Verbose. Default is no 

Examples: 

• 	 imJadon image.fits trans 

Apply the Radon transform to an image. 


• 	 imjnfo -r trans.rad rec 

Reconstruct an image from its Radon transform. 


12.1.2 rid_trans 

Program rid_trans makes the ridgelet transform (and' the inverse wh'Em -r optiC)D is- set)~' The 
output file which· contains;the transformation has a suffix, .rid. If the output .file name given by 
the user does not contain this suffix, it is automatically added. The ".rid" file is a FITS format 
file, and can be manipulated by any package dealing with FITS format, or can be converted 
to another format using the im_convert program. The default transform is the second one 
(RectoPolar Ridgelets using a FFT based WT). The two first transform are based on the 
RectoPolar (Le. linogram) radon transform, but the first applies a standard bi-orthogonal 
wavelet transform (WT) on the Radon image lines, while the second one use the Fourier 
based WT which introduces a redundancy of 2. For an n x n, the output has 2n lines and n 
column with the first transform, and is a 2n X 2n image for the second. When the overlapping 
is set, the size is doubled in each direction. 

USAGE: rid_trans options image_in trans-:out 

where options are: 

• 	 [-t type_of-.ridgelet] 

. , ..."... - ..~"".,,~ ...J.....Rect.~olaD.,Ridgelet Thansform using a.standa.td." hi..QJ;thogona.LW.T., .. 
2. 	 RectoPolar Ridgelet Transform using a FFT based Pyramidal WT. 
3. Finite ridgelet transform. 

Default is 2. 

• 	 [-n number..nf..scale] 
N umber of scales used in the wavelet transform. Default is automatically calculated. 

• 	 [-b BlockSize]

Block Size. Default is image size. 


• 	[-i]
Print statistical information about each band. Default is no. 

• 	 [-0]
No block overlapping. Default is no. When this option is set, the number of lines and 
columns is multiplied by two. 
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• 	[-r]
Inverse RIDGELET transform. 

• 	[-x]
Write all bands separately as images in the FITS format with prefix 'band-J' (j being 
the band number). 

• [-v]
Verbose. Default is no 

Examples: 

• 	 rid_transform image.fits trans 

Apply the Ridgelet transform to an image. 


• 	 rid_transform -r trans.rid rec 

Reconstruct an image from its Ridgelet transform. 


12.1.3 rid-Btat 

.Program rid~stat makes the ridgelet transform, and gives statistical information on the ridge let 
coefficients. At each scale, it caculates the standard deviation, the skewness, the kurtosis, the 
minimum, and the maximum. The output file is a fits file containing a two dimensional array 
T[J - 1,5] (J being the number of scales), with the following the syntax: 

• 	T[j, 0] standard deviation of the jth ridgelet band. 

• 	T[j,l] skewness of the jth ridgelet band. 

• 	Tfj,2] = kurtosis of the jth ridgelet band. 

• 	Tfj,3] = minimum of the jth ridgelet band. 

• Tfj,4] = maximum of the jth ridgelet band. 

The last ridgelet scale is not used. If the "-A" option is set, these statistics are calculated 
only the ridgelet coefficients relative the specified angle. 

USAGE: rid-Btat options image_in trans_out 


where options are: 


• 	 [-t type_of1idgelet] 

1. RectoPolar Ridgelet Transform using a standard bi-orthogonal WT. 
2. RectoPolar Ridgelet Transform using a FFT based Pyramidal WT. 
3. Finite ridgelet transform. 


Default is 2. 


• 	 [-n number_of-Bcale] 
N umber of scales used in the wavelet transform. Default is automatically calculated. 

• 	 [-b BlockSize] 

Block Size. Default is 16. 
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e 	 [-0] 

Use overlapping block. Default is no. 


e 	 [-A Angle] 
Statistic for a given angle. The value must be given in degrees. Default is no, statistics 
are calculated from all coefficients. 

e 	[-v] 

Verbose. Default is no 


Example: 

e 	rid..stat -v image.fits tabstat 

12.1.4 rid.-filter 

Program rid_filter filters an image using the ridgelet transform. 

USAGE: rid-filter options imagejn imag_out 

where options are 

e 	 [-t type_of~idgelet] 

1. 	RectoPolar Ridgelet Transform using a standard bi-orthogonal WT. 
2. RectoPolar Ridgelet Transform using a FFT based Pyramidal WT. 
3. Finite ridgelet transform. 

Default is 2. 

e 	 [-n number.Df-Bcale] 
Number of scales used in the wavelet transform. Default is automatically calculated. 

e 	 [-h) 

Apply the ridgelet transform only on the high frequencies. Default is no. 


e 	 [-b BlockSize] 

Block Size. Default is image size . 


.... "e.. [':"}r-FirstDetectionScale] .·~rl'·. :"'JI'It,t 

First detection scale. Default is I. 

e 	 [-s Nsigma] 

False detection rate. The false detection rate for a detection is given 


f = erfc(NSigma/v'2) 	 (35) 

Nsigma.parameter allows us to express the false detection rate even if it is not Gaussian 
noise. 
Default is 3. 

e 	 [...g sigma] 

Gaussian noise: sigma = noise standard deviation. 

Default is automatically estimated. 


e 	 [-p] 

Poisson noise. 
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• 	[-OJ
Do not apply block overlapping. By default, block overlapping is used. 

• [-v]
Verbose. 

'Examples: 

• 	 rid.Jilter image.fits fima 

.Filter an image using all default options. 


• 	 rid.Jilter -h -s5 image.fits fima 

Five sigma filtering, filtering only the high frequencies. 


12.2 Curvelet transform 

12.2.1 cur_trans 

---'Program CUT:.Jrans :nl-akes-the curvelet transform (and-the. inverse:-woon--".-r"option..isset). The 
output file which contains the transformation has a suffix, .cur. Ifthe output file name given 

-by theus-er-does not contain this' suffix, it is automatiCiliy-added>Lfne-U";cur"--'ftli:ds':a'3D FITS 
format file, and can he manipulated by any package dealing with FITS format. The curvelet 
transform uses the ridgelet transform, and the default ridgelet transform is the RectoPolar 
one with a FFT based Pyramidal WT. 

USAGE: cur_trans options image_in trans_out 

where options are: 

• 	 [-t type_ofJidgelet] 

1. 	RectoPolar Ridgelet Transform using a standard bi-orthogonal WT. 

2. RectoPolar Ridgelet Transform using a FFT based Pyramidal WT. 
3. Finite ridgelet transform. 

Default is 2. 

,..<'-'--··.."'.,·"i~:n.u.mber"'-"g£...scale]., .""". _>o_____."""""~_.""._~_.......... 'lr".....,"'" ~_c~.,_._,......... 
Number of scales used in the.2D 'wavelet transform. Default is 4. 

• 	 [-N number_of-Bcale] 
Number of scales used in the ridgelet transform. Default is automatically calculated. 

• 	 [-b BlockSize] 

Block Size. Default is 16. 


• [-r]
Inverse CURVELET transform. 

• 	 [-i]
Print statistical information about each band. Default is no. 

• 	[-0]
Block overlapping. Default is no. 
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• [-x]
Write all bands separately as images in the FITS format with prefix 'band_j' (j being 
the band number). . 

• [-v]
Verbose. Default is no. 

Examples: 

• 	 cur_trans -i image.fits trans 

Curvelet transform of an image. 


• 	 cur_trans -r trans.cur rec 

Image reconstruction from its curvelet transform. 


12.2.2 cur-stat 

Program cur_stat makes the curvelet transform, and gives statistical information on the 
curvelet coefficients: At each scale, it cactilates the standard "deviation, the skewness, the 
kurtosis, the minimum, and the maximum. The output file is a fits file containing a two 
dimensional array T[J - 1,5] (J being the number of bands), with the following the syntax: 

• 	T[j,O] == standard deviation of the jth ridgelet band. 

• T[j, 1] == skewness of the jth ridgelet band. 

• 	T[j,2] == kurtosis of the jth ridgelet band. 

• 	T[j,3] == minimum of the jth ridgelet band. 

• 	T[j,4] == maximum of the jth ridgelet band. 

USAGE: cur-stat options image.J.n trans_out 

where options are: 

• 	 [-n numberJlf-scale] 
Number of scales used in the w~velet transform. Default is automatically calculated. 

it 	[-1) BlockSize] 

Block Size. Default is 16. 


• 	 [-0]
Use overlapping block. Default is no. 

• [-v]
Verbose. Default is no 

Example: 

• 	 cur....stat -v image.fits tabstat 
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12.2.3 cur..:.filter 


Program cur_filter filters an image using the curvelet transform. 


USAGE: curJilter options image.Jn imag_out 


where options are 


• 	 [-t type":ofJidgelet] 

1. 	RectoPolar Ridgelet Transform using a standard bi-orthogonal WT. 
2. RectoPolar Ridgelet Transform using a FFT based Pyramidal WT. 
3. Finite ridgelet transform. 


Default is 2. 


• 	 [.. n number...of-Bcale] 

Number of scales used in the 2D wavelet transform. Default is 4. 


• 	 [-N number...of-scale] 
Number of scales used in the ridgelet transform. Default is automatically calculated. 

• 	 [-b BlockSize] 

Block Size. Default is 16. 


• 	 [-g sigma]
Gaussian noise: sigma = noise standard deviation. 

Default is automatically estimated. 


• 	 [-s N sigma]
False detection rate. 

Default is 3. 


• [-0]
Do not apply block overlapping. By default, block overlapping is used. 

• [..P]
Supress the positivity constraint. Default is no. 

• 	 [..INoiseFileNarne] 
If the noise is stationary, the program can estimated the correct thresholds from a noise 

.,J. c • .; "'4. ·,.·.,·,,,,,.;r-ealizatieR" .' ., ' .,~." 	 ',. '. ~,' .,,~.,•.. , ...~_.."...-" ,.,,..•.,.• ,... ~.' .,,'~..\..'~". !'~ .. " ../:."; • .. ...\n ; 

• [-v]
Verbose 

Examples: 

• 	curJilter image.fits sol 

Curvelet filtering of an image. 


• 	curjilter -n 5 -s4 image.fits sol 
Curvelet filtering of 'an image, using five resolution levels, and a 4sigma detection. 

68 


http:image.Jn


12.2.4 cur_colfilter 


Program cur_colfilter filters an color image using the curvelet transform. 


USAGE: cur_colfilter options imageJn imag_out­

where options are 

• 	 [-n number...of-scale] 

Number of scales used in the 2D wavelet transform. Default is 4. 


• 	 [-N number...of-scale] 
Number of scales used in the ridgelet transform. Default is automatically calculated. 

• 	 [-b BlockSize] 

Block Size. Default is 16. 


• 	 [-g sigma] 

Ga.ussian noise: sigma = noise standard deviation. 

Default is automatically estimated. 


• 	 [-s N sigma]
False detection rate. 

Default is 3. 


• 	[-0]
Do not apply block overlapping. By default, block overlapping is used. 

• 	 [-v]
Verbose 

Example: 

• cur_colfilter image.fits sol 

Curvelet transform of a color image. 


12.2.5 cur_contrast 


Program cur_contrast filters an color image using the curvelet transform . 


. .. USA,GE: cur_contrast options ima~e~!l_.~~~g=~,~~. _, 

where options are 

• 	 [-n number...of-scales] 

Number of scales used in the wavelet transform. Default is 4. 


• 	 [-N number_of-scales] 
Nurnber of scales used in the ridgelet transform. Default is automatically calculated. 

• 	 [-b BlockSize]

Block size used by the curvelet transform. Default is 16. 


• 	[-0]
Use overlapping block. Default is no. 

• 	 [-g sigma]
Noise standard deviation. Only used when is filtering is performed. Default is automat­
ically estimated. 
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• [-s NSigmalLow] 

Coefficient < NSigmalLow*SigmaNoise are not modified. default is 5. 


• 	 [-S NSigmalUp] 
Coefficient> NSigmalUp*SigmaNoise are not modified. default is 20. 

• 	 [-M. MaxCoeff] 
If MaxBandCoef is the maximum coefficient in a given curvelet band, Coefficient> 
MaxBandCoef*MaxCoeff are not modified. default is 0.5. 

• 	 [-P P _parameter] 
Determine the degree on non-linearity. P must be in ]0,1[. Default is 0.5. 

• 	 [..T P _parameter] 
Curvelet coefficent saturation parameter. T must be in [0,1]. Default is O. 

• 	[-c]
By default a sigma clipping is performed. When this option is set, no sigma clipping is 
performed. 

• 	 [..K ClippingValue] 

Clipping value. Default is 3. 


• 	 [-L Saturation] 
Saturate the reconstructed image. Coeff larger than Saturation*MaxData are set to 
Saturation*MaxData. Default is 1. If L is set to 0, then no saturation is applyied. 

Examples: 

• cur_contrast image.fits image_out.fits 

Enhance the contrast using the curvelet transform. 


• cur_contrast -0 image.fits image_out.fits 

Enhance the contrast using the curvelet transform abd block overlapping. 


• cur_contrast -M 0.8 image.fits image-Dut.fits 

Enhance more the contrast. 


12.2.6 cur_colcontrast 

3T.~e pr?~!a~,}-:oLc~~~ontrast enhances' the contr~t ~~ ~:I~~I~:..~~:.~e~~~~~9, ..~~~,c~rvelet trans­
form. The command line is: ' 

USAGE: cur_colcontrast option in-.image out-.image 


where options are: 


• 	 [-n number-Df-Bcales] 

Number of scales used in the wavelet transform. Default is 4. 


• 	 [-N number..of-Bcales] 
Number of scales used in the ridge let transform. Default is automatically calculated. 

• 	 [-b BlockSize] 

Block size used by the curvelet transform. Default is 16. 


• 	[-0]
Use overlapping block. Default is no. 
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• [-g sigma] 

Noise standard deviation. Default is automatically estimated. 


• 	 [-s N8igmalLow] 
Coefficient < NSigmalLow*SigmaNoise are not modified. default is 5. 

• 	 [-8 N8igmalUp] 
Coefficient> NSigmalUp*SigmaNoise are not modified. default is 20. 

• 	 [-M MaxCoeff] 
If MaxBandCoef is the maximum coefficient in a given curvelet band, Coefficient> 
MaxBandCoef*MaxCoeff are not modified. default is 0.5. 

• 	 [-P P _parameter] 
Determine the degree on non-linearity. P must be in ]0,1[. Default is 0.5. 

• 	 [-T P _parameter] 
Curvelet coefficent saturation parameter. T must be in [0,1]. Default is o~ 

• 	 [-c]
By default a sigma-clipping is performed. When this option is set, no sigma clipping is 
performed. 

• 	 [-K ClippingValue] 

Clipping value. Default is 3. 


• 	 [-L Luminance_Saturation] 
Value in the luminance map which are larger Saturation*MaxData are set to Satura­
tion*MaxData. Default is 1. 

Examples: 

• 	 cur_colcontrast image. tiff image_out.tiff 

Enhance the contrast using the curvelet transform. 


• cur_colcontrast -n 5 image.tiff image_out.tiff 

Ditto, but use five scales instead of four. 


• 	 cur_colcontrast -M 0.9 image. tiff image_out.tiff 

Enhance more the contrast. 


12.3 Combined Filtering 

12.3.1 cb.Jilter 

Program cb_filter filters an image corrupted by Gaussian noise by the comhined filtering 
method. By default, two undecimated bi-orthogonal -WT and the curvelet transform are 
used. The number of iterations is defaulted 10. In general, the algorithm converges with less 
than six iterations. If the "-T" option is set, the total variation is minimized instead of the 
It norm of the multiscale coefficients. A deconvolution can also be performed using the "-P" 
option. In this case, a division is first done in Fourier space between the input image and 
the Point Spread Function. All Fourier component with a norm lower than € (default value is 
10-3 ) are set zero. Then the deconvolved image is filtered by the combined filtering method 
using the new noise properties (still Gaussian, but not white). 

USAGE: cb.Jilter options image.1n trans_out 
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where options are: 

• 	 [-t TransformSelection] 

1. 	A trous algorithm 
2. bi-orthogonal WT with 7/9 filters 
3. Ridgelet transform 
4. Curvelet transform 
5. Mirror Basis WT 

• 	 [-n number-of-scales] 
Number of scales used in the WT, the a trous and the curvelet transform. Default is 4. 

• 	 [-b BlockSize]

Block Size in the ridgelet transform. Default is image size. 


• [-i 	NbrIter]

Number of iteration. Default is 10. 


• [..F FirstDetectionScale] 
... First detection scale in the ridgelet transform. Default is!. 

• 	 [-k]
Kill the last scale in ridgelet. Default no. 

• 	 [-K]
Kill last scale in the atrous algorithm and the curvelet. Default no. 

• 	 [-L FirstSoftThreshold] 

First soft thresholding value.Default is 0.5. 


• 	 [-1 LastSoftThreshold] 

Last soft thresholding value.Default is 0.5. 


• [-u]
Number of undecimated scales in the WT. Default is 1. 

• 	 [-s Nsigma]

False detection rate. Default is 4. 


• [-g sigma] 

Gaussian noise: sigma = noise standard deviation. 

D~f~l1lt is automatically estimated. "' . _, 


• 	[-0]
No block overlapping. Default is no. 

• [-T]
Minimize the Total Variation instead of the Ll norm. 

• 	 [-P PsfFile]

Apply a deconvolution using the PSF in the file PsfFile. 


• 	 [-e Eps] 

Remove frequencies with IPP*I < f. Default is 10-3. 


• 	 [-C TolCoef] 

Default is 0.5. 


• 	 [-v]
Verbose. Default is no. 
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Example: 

• 	 cbJilter image.fits sol 
Image filtering by the combined filtering method, using both the curvelet and wavelet 
transform. 

12.4 Morphological Component Analysis 

12.4.1 cb_mca 

Program cb_mca decomposes an image on a set of basis. The output image is the coaddition 
of all reconstructed images from the different bases. As ech transform may have a lot of 
parameters, we have decided to fixe many of them, and to let the user select those we consider 
as the most important. Some options are effective for the several transforms. 

USAGE: cb...mca options imageJ.n imag_out 

where options are 

• 	 [-t TransformSelection] 

1. 	A trous algorithm 
2. Ridgelet transform 
3. Multiscale Ridgelet 
4. bi-orthogonal WT with 7/9 filters 
5. Cosinus transform 
6. 	 Curvelet transform 
7. 	Pyramidal Median transform 

• 	 [-n number...of-scales] 
N umber of scales used in the WT, the a trous, the PMT and the curvelet transform. 
Default is 4. Number of ridgelet in the multi-ridgelet transform. 

• 	 [-b BlockSize] 
Block Size in the ridgelet transform. Default is image size. Starting Block Size in the 
multi-ridgelet transform. Defaultis 8. 

• 	 [-i Nbrlter] 

Number of iteration. Default is 10. 


• 	 [-F FirstDetectionScale] 

First detection scale in the (multi-) ridgelet transform. Default is 1. 


• 	 [-k]
Kill last scale in ridgelet, and multiscale ridgelet transform. Default no. 

• [-K]
Kill last scale in the atrous algorithm, the PMT, .and the curvelet. Default no. 

• 	 [-L FirstSoftThreshold] 

First soft thresholding value.Default is 0.5. 
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• 	 [-L LastSoftThreshold] 
Last soft thresholding value.Default is 0.5 . 

.• 	 [-f] 
Apply the noise modeling (filtering). Default is no. 

• 	 [-u] 
Number of undecimated scales in the WT. Default is 1. 

• [-w] 
Write to the disk the reconstructed image from each decomposition. Fil~ names are: 

-	 "xx.-atrou.fits": for the a trous algorithm 

-	 "xx-I'id.fits": for the ridgelet transform 

- "xx-IDrid.fits": for the multiscale ridgelet transform, and "xx-IDrid_rj.fits" for one 
of its ridgelet transform, where j is the transform number. 

-	 "xx.£ur.fi ts": for the curvelet transform 

-	 "xx_cos.fits": for the cosinus transform 

-	 "xx_wt.fits": for the orthogonal wavelet transform 

-	 "xx_pmt.fits": for the pyramidal median transform 

• [-s Nsigma] 
False detection rate. 

Default is 3. 


• [-g sigma] 
Gaussian noise: sigma == noise standard deviation. 
Default is automatically estimated. 

• [-p] 
Poisson Noise. Default is no (Gaussian). 

• 	 [-0] 
No block overlapping. Default is no. 

• [-P] 
Supress the positivity constraint. Default is no. 

• 	 [-v]
Verbose. Default is no. 
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Annex A: Wavelet transform using the Fourier Thansform 

We start with the set of scalar products co(k) =< f(x), 4>(x - k) >. If 4>(x) has a cut-off 
frequency Ve ~ ! ([52, 51, 57]), the data are correctly sampled. The data at resolution j = 1 
are: 

1 X 
Cl (k) =< f(x), 2"4>("2 - k) > (36) 

and we can compute the set cl(k) from co(k) with a discrete filter h(v): 

if v /< Ve1 
(37) 

if Ve ~I v 1< ! 
and 

VII, Vn h(v + n) = h(v) (38) 

where n is an integer. So: 

(39) 

The cut-off frequency is reduced by a factor 2 at each step, allowing a reduction of the number 
of sampIes by this factor. 

The wavelet coefficients at scale j + 1 are: 

(40) 


and they can be computed directly from cj(k) by: 

Wj+l (v) = Cj(v)g(2iv) (41) 

where 9 is the following discrete filter: 

~ if I v 1< Ve
9(V) = { /(v) (42) 

if Ve ~I v \< ! 
and 

VV, Vri g(v + n) = g(v) (43) 

The frequency band is also reduced by a factor 2 at each step. Applying the sampling 
theorem, we can build a pyramid of N + -'i + ... + 1 = 2N elements. For an image analysis 
the number of elements is ~N2. The overdetermination is not very high. 

The B-spline functions are compact in direct space. They correspond to the autoconvolu­
tion of a square function. In Fourier space we have: 

(44) 


B3(X) is a set of 4 polynomials of degree 3. We choose the scaling function 4>(v) which has a 
B3 (x) profile in Fourier space: 

(45) 
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In direct space we get: 

(46) 


This function is quite similar to a Gaussian and converges rapidly to O. For 2-dimensions the 
2scaling function is defined by ¢(u, v) == ~B3(4r), with r == J(u2 + v ). This is an isotropic 

function. 
The wavelet transform algorithm with np scales is the following: 

1. Start with a B3-spline scaling function and derive 1/J, hand 9 numerically. 

2. Compute the corresponding FFT image. Name the resulting complex array To. 

3. Set j to O. Iterate: 

4. Multiply Tj by g(2j u, 2jv). We get the complex array Wj+l. The inverse FFT gives the 
wavelet coefficients at scale 2i; 

5. Multiply Tj by h(2j u, 2i v). We get the array Ti+l. Its inverse FFT gives the image at 
scale 2i+1 • The frequency band is reduced by a factor 2. 

6. Increment j. 

7. If j ~ np , go back to 4. 

8. The set {WI, W2, ... , wnp' cnp } describes the wavelet transform. 

If the wavelet is the difference between two resolutions, i.e. 

;jJ(2v) == ¢(v) - ¢(2v) (47) 

and: 

g(V) == 1 - h(v) (48) 

then the wavelet coefficients Wj(v) ca':l be computed by Cj-l(V) - Cj(v). 

Reconstruction. 

If the wavelet is the difference between two resolutions, an evident reconstruction for a wavelet 
transform W == {WI, ... , Wnp ,cnp } is: 

eo(V) == cnp(v) +E Wj(v) (49) 
i 

But this is a particular case, and other alternative wavelet functions can be chosen. The 
reconstruction can be made step-by-step, starting from the lowest resolution. At each scale, 
we have the relations: 

Ci+l == h(2jv)cj(v) (50) 

Wj+l == g(2i v)cj(v) (51) 
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We look for Cj knowing Cj+b Wj+1, hand g. We restore Cj(v) based on a least mean square 
estimator: 

Ph(2j v) ICj+1 (v) - h(2jv)Cj(V) /2 + 
pg(2j v) / Wj+1(V) - g(2j v)Cj(V) /2 (52) 

is to be minimum. Ph(V) and pg(v) are weight functions which permit a general solution to 
the restoration of Cj(v). From the derivation of Cj(v) we get: 

(53) 

where the conjugate filters have the expression: 

h() - Ph(v)h*(v) (54)v - Ph(v)lh(v)12+pg(v)lg(v)F 
~() _ pg(v)g*(v) (55)9 V - Ph(v)lh(v)F+pg(v)lg(v)F 

In this analysis, the Shannon sampiing condition is always respected and no aliasing exists. 
The denominator is reduced if we choose: 

g(V) = )1- I h(v) 12 

This corresponds to the case where the wavelet is the difference between the square of two 
resol u tions: 

(56) 

The reconstruction algorithm is: 

1. Compute the FFT of the image at the low resolution. 

2. Set j to np' Iterate: 

3. Compute the FFT of the wavelet coefficients at scale j. 

4. Multiply the wavelet coefficients' Wj by g. 

5. Multiply the image at the lower resolution Cj by h. 

6. The inverse Fourier transform of the addition of Wjg and cjh gives the image Cj-1' 

7. Set j = j - 1 and return to 3. 

The use of a scaling function with a cut-off frequency allows a reduction of sampling at 
each scale, and limits the computing time and the memory size. 
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, 
Appendix B: The " A Thons" Wavelet Transform Algorithm 

In a wavelet transform, a series of transformations of an image is generated, providing a 
resolution-related set of "views" of the image. The properties satisfied by a wavelet trans­
form, and in particular the a trous wavelet transform ("with holes", so called because of the 
interlaced convolution used in successive levels: see step 2 of the algorithm below) are further 
discussed in [57]. 

We consider sampled data, {co(k)}, defined as the scalar product at pixels k of the function 
f(x) with a scaling function 4>(x) which corresponds to a low pass band filter: 

co(k) =< f(x), 4>(x - k) > (57) 

The scaling function is chosen to satisfy the dilation equation: 

(58) 

h is a discrete "low pass filter associated with the scaling function 4>. This means that a 
low-pass filtering of the image is, by definition, closely linked to another resol'Q.tion level of 
the image. '" . - - 0" " ". 

The smoothed data cj(k) at a given resolution j and at a position k is the scalar product 

1 x - k 
cj(k) = 2j < f(x), 4>( 21) > (59) 

This is consequently obtained by the convolution: 

Cj(k) =I: h(l) Cj-l (k + 2j 
-

11) (60) 
I 

The signal difference Wj between two consecutive resolutions is: 

(61) 

or: 

1 x-k
wj(k) = -:- < f(x), 'ljJ(-.) > (62)

23 23 

Here, the wavelet function 'ljJ is defined by: 

1 x 1 x 
2'ljJ(2) = 4>(x) - 24>(2) (63) 

For the scaling function, 4>(x), the B-spline of degree 3 was used in our calculations. We 
have derived a simple algorithm in order to compute the associated wavelet transform: 

1. We initialize j to 0 and we start with the data cj(k). 

2. We increment j, and we carry out a discrete convolution of the data Cj-l (k) using the 
filter h. The distance between the central pixel and the adjacent ones is 2j - 1 • 
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3. After 	this smoothing, we obtain the discrete wavelet transform from the difference 
cj_l(k) - cj(k). 

4. 	If j is less than the number p of resolutions we want to compute, then go to step 2. 

5. 	The set W = {WI, ••• , wP' cp } represents the wavelet transform of the data. 

The most general way to handle the boundaries is to consider that c(k + N) = c(N - k). 
But other methods can be used such as periodicity (c(k+N) = c(k)) , or continuity (c(k+N) = 
c(N)). Choosing one of these methods has little influence on our general restoration strategy. 
We used continuity. 

A series expansion of the original signal, Co, in terms of the wavelet coefficients is now 
given as follows. The final smoothed array cp(x) is added to all the differences Wj: 

co(k) = cp(k) +E
p 

wj(k) 	 (64) 
i=1 

This' equation' provides a reconstruction formula for the original signal. 
At each scalej, we obtain a set {Wj}. This has the same.number of pixels as the input 

signal. 
The above atrous algorithm has been discussed in terms of a single index, x, but is easily 

extendable to two-dimensional space. The use of the B3 spline leads to a convolution with a 
mask of 5 x 5: 

I I 3 I I 
2y6 138 2f6¥ ¥ 

16 32 136 64 ~ 3 9 3 
Its 32 64 3? Ir81 3 
64 16 64\6 31I I 1 
256 64 128 64 256 

d' . thO k' (1 1 3 I I)Inone ImenslOn, IS mas IS: 16' 4' 8' 4' 16 ' 
To facilitate computation, a simplification of this wavelet is to assume separability in the 

2-dimensional case. In the case of the B3 spline, this leads to a row by row convolution with 
(116, i, i, i, I~); followed by column by column convolution, 

As for the one dimensional case, an exact reconstruction is obtained by adding all the 
scales and the final smoothed array: 

(65)co(x, y) = cp(x, y) +E
p 

Wj(x, y) 
j=1 
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