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(Abstract) 

. The finite temperature behaviour ofa 

relativ;istic "field. with a renorma.l1sable ,6' self interact

ion exhibi,ting spo.ptaneous symmetry breaking is studied in 

one space-one time dimension. Uei1{¥S functional diagrammatic 
methods the temperature-dependent effective potential and 

the, c~~tical-, temperature upto two loops are calculated. The 

nature of phase tra~sition ~s also investigated and is 

clarified to be a first ord,r one. E=:::~'}.=r--..
, , 't "',.f:~ \ 
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1.:IntliOduc tion 
II r ,_~IIIU•• 

Recently considerable interest has been shown on 

the effect of finite temp~ra1ur,eonrelativi~stic· "f1eld theories 
, ' • J 

that exhibit spontaneous symmetry breaking. This is due to the 

growing conviction among physi,ci.ete that weak, electromagnetic 

and strong interactions ~l.'~¥e1 ,~)1eir 'Origin to spontaneously 
',' . ,',;' 

broken gauge symmetr~e~ of a b~~ig ~agrangian. The correspond

ing hamiltonian system is in many ways similar to a super

conductor. So, arguing in analogy withauperconductivity, 

Kirzhnits and Linde (1972) suggested that a spontaneously 

broken symmetry in a relativistic field theory coupled to a 

finite temperature heat bath would be restored above some 

critical temperature. Later studies (Dolan and.·:eJackiw 1974, 

\veinberg 1974) ·have e~t'~?iiShed .this fact on a 'quantitative 

basis. Funct~ona~, diagramtuatic m~thodsfor<E3'vaiuati?g 

effe-C-P;'vepotent'1:als<{O'o~~fian and· We:f.nb,erg 1;973, Illiopoulo's 

et al~975, Jackiw 1974)"can be useq. t'o :'stud~"the effect' o'f 
(-. ,-~ 

temperature on ~:r~4t1vist1c· field system:': Dolan and .Jac~iw 

(1974) employed this method to evaluate the temperature

dependent effective potential and demonstrated that the 

symmetry behaviour in ,4 theory could be restored above a 

certain temperature. 

In this paper we present our calculations on the 

effect of finite temperature on a model field system exhibiting 

spontaneous symmetry breaking. We have chosen a general cp6 
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field model in 1 + 1 dimensions such that the classical 

potential possesses three absolute minima. The lagrangian 

enjoys ~~ -~ internal symmetry, so that the vacuum around 

anyone absolute minimum would correspond to spontaneous 

symmetry breaking. The model chosen by us has positive mass 

square and exhibits kink and antikink solutions (Lohe 1979). 

Using lattice approximation and block-spin renormalisation 

group method Boyanovsky and Masperi (1980) have shown that the 

nature of phase transition associated with such a field system 

may be second order or first order depending on the relative 

depths of the wells and the interaite coupling. Besides its 

importance in partiole physics as a model scalar field theory 

the ,6 self interacting model with a 'specific form' of the 

potential finds applications in soiid state physics also, 

where it has been used to explain the first order phase 

transition from the ferroelectric to the paraelectric state 

and the structural phase transitions observed in crystals 

(Behers and Xhare 1980, Lines and Glass 1977, Kittel 1977). 

We have employed the functional diagrammatic method 

to study the temperature effect on the ,6 field system. The 

paper is organised in the following way. In seotion 2 we 

formulate the effective potential for the model under 

consideration at zero temperature-and show that ~r model 

.. 
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is renormalisable. Section 3 deals with the detailed 

calculation of the effective potential at finite temperature 

and the calculations are done upto two loops level•. It is 

shown that the broken symmetry originally present in the 

model .can be removed, and the critical temperature is also 

evaluated in the high temperature limit. In section 4 we 

examine the nature of the phase transition. When the system 

is coupled to a heat bath, the vacuum expectation value 

~ol~l~ = a is replaced by the thermal average ~)T = aT 

taken with respect to a Gibbs ensemble (Kirzhnits and 

Linde 1976, Linde 1979). The order parameter of the ,theory 

thus becomes temperature-dependent and vanishes at the, 

critical temperature. The nature of the phase transition 

is clarified to be a first order one. 

2. Evaluation of effective potential at T =0. 

The model considered by us consists of a real, self 

interacting Bose field ~(x) in 1 + 1 dimensions, described 

by the lagrangian density 

1 ('~ .. ) 2 -21 '12(02 (m 2_ ~) 2 ( 1)
2' 0 11~ - " T T " 

when m, ~ ). O. It is evident that the above lagrangian (1) 

enj oye q> r> -~internal symmetry. The classical 'potential 

corresponding to this' lagrangian is given by 
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such that V(cp) = V(-cp) II The potential has three absolute 
1 

minima: one at cp = 0 and the other two at cp = .:t( ~ .. ) 2' = (j .. 

Hence the vacuum around ~ = ~ (m/A)t would correspond to 

spontaneous symmetry bre.a~ing. On shifting the field from 

cp ~ q>+o, where (j is the classical constant scalar field, 

the lagrangian \( 1) become-s· 

The potential in this case is given by 

The propagator corresponding to the shifted lagrangian can 

be written as 

(5) 


The zero-loop (tree approximation) contribution to 

the effective potential comes from figure 1 and can be 

written as 

(6) 
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The one-loop approximation to the effective potential 

(figure 2) is given by 

= _ 2 (7)~ (.,n..d In(k2+M2)
)( 2T~) 2 

On rotating this integral into Euclidean space we find 

· () 1 f d 2 k (2 . - 2 ) .. ' .'V 0 = 2' ...... --,..-.- In k '+l~C' ( 8)
.1 .. '( 21t ) 2 

This int egral is ultl:aviolet qivergent;, to evaluate i t ~ we 

cut off the integral at k 2 = ,,2, and thus we have 

(9) 


The diveligence in (9) in the lowest order perturbation theory 

is caused hy"the grap'h:s shown i'n figure 3, while there are n:

6infinities associated lwith the 0 term; for instance the 

graph X:x is finite 

Hence we may wri te the effective potential as 

M2 /{ 4
V( rr) = 1 '\.2rr2(rr2 :lJ\ 2+ 1 ( )+0 + 0 rr2 + C rr 

v 2" '" v v - ,,;"! 8n n M2 1 2 v . .3 v 

(10) 
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the following normalisation conditi,ons, viz., 

V(o) 

d 2V'1 = 4m 2 
, ( 11)

do 2 r;;:; 
o = r/" 

0; 

= 156 (\ m 

Imposing the condit-ions (11) on (10), we find that 

2 

C = 12)\ m 1n(~) _ 777 Am (12)2 Ib1t8n 4m 2 

2 
2 2 

C = 12 A In(~) + 1257 ,\
3 - 8n 161t4m2 

Thus the renormalised effective potential, at zero temperature, 

for the model chosen by us can be written as 

(13) 
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This is the f:inal expression for the effective potential at 

zero temperature in the one-loop, approximation and it does 

not show any dependence on the cut off. Since this procedure 

may be extended straightforwardly to higher loops·, the theory 

is seen to be renormalisable. 

3. Effective potential at finite temperature 

In this section we may evaluate the effective 

potential at finite temperature and show that the symmetry 

breaking present in the model can be removed if the tempera

ture is raised above a certain value called the critical 

temperature. We may denote. the temperature....dependent 

effective potential by VT(cr). At zero temperature VT(cr) = VI 
o 

k . 1 t· H (1 V ( cr) - 0 f .-.possesses symme t ry brea ~ng so u lons. _ence ."6 cr - OJ. 

cr f. O. If the finite temperature contribution can eliminate 
aVT ( cr) 'b_vT ( cr)symmetry breaking, then - - = 2cr - - - = 0 only if cr = r

'0 cr '0 cr 2 

oVT ( cr)For large - is assumed to be positive. Writingocr 2 

= 

we have 

01; T(cr) o+ '0 ('12 
cr=O 
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This implies that 

Hence the critical temperature can bed:efined by the relation 

( 14) 

a=O 

The effective potential at finite temperature to all 

loops can be written as (Dolan and Jackiw 1974) 

Here vo(a) is the classical potential - the zero-loop contri 

bution to the effective potential. The zero-loop contribution 

is temperature-independent. vi(a) gives the one-loop 

approximation. Higher loops are given by ~xp( ij d3x iff-{ a, rp) »
the sum of all the one particle irreducible vacuum graphs, 

In our case, the zero·-loop contribution to the effective 

pot~ntial is given "by 

(16) 


Now we may evaluate the contribution from the one-loop to 

the effective potential at finite temperature. The procedure 
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is to replace the time integral by the sum 

...."1 ;\....._,rdW = i T 
-

(17)) 21t 
n= _c:-O 

,where (, is periodic such that c.) n = 21tiTn (bosons) where 

Accordingly, (7) may be rewritten as 

where 

f 
( dkI = iT··;k n ) 21t 

so that 

vi(cr) = 

I '-. (dk ( 2 2 2 . 2)= ~_ !21t In 41t n T + EI1 (19) 
2 n' 

where E~ = k 2 + M2. The evaluation of (19) is done by 

performing the summation first. Writing 

v(E) = / In(41t 2n 2T2 + E2) 
n 
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we have 

dv(E) = (____2;.o;;;.E~-)

dE 
 41t 2n 2T ~ + E 2n 

Using the identity 

(20) 


we find that 

dv(E) = 
dE 

This leads to the result: 

2 E -E/T
veE) = T( 2 + T ln(l - e )) 

Hence (19) becomes 

T ( dk EM -EMIT 
Vl(O) = J 21t(2 + T ln(l - e )) 

(21) 

V~(O) gives the usual zero temperature one-loop approximation 

to the effective potential. This may be compared vlith the 

expression (7) obtained in section 2~ and 
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= 

o 

gives the temperature-depen~ent one-loop correction term. 

2Introducing x as 

we have 
':'...(:

/ M2 1 

= J dx In(1 - e-'.( x 2+ T2) 2" ) (22) 
..... 
o 

-TThis integral may be evaluated by expanding Vl as a 

Taylor series and in the high temperature region we find 

that 

(23) 

Invoking (14) we can find that the critical temperature 

correct to one-loop order is 

= (24) 

which is indeed large in the weak-coupling limit. 
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We shall now proceed to evaluate the two loops 

contribution to VT( a)., Our motivation for doing this is 

to inve'stigate the effect of higher order loops in deter

mining the critical temperature in a more precise manner. 

The two loops contributions come from the two graphs 

(figures -4{a) and 4( b) ) . The contribution from figure 4( a) 

with proper combinatorial factor can be put as 

= (25) 


Since we are interested only on the temperature dependent 

terms, we find that 

vT (0) = 

2a 


= - It (26) 

The contribution from figure 4(b) can be expressed as 

= 

= -48 
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q2',+' if > 0From these relations it is seen that . 
4 27 

which is the condition to be satisfied by (33) that it has 

one real root, so that the critical temperature is determined 

uniquely. The critical temper~ture correct to two loops 

level is then given by 

= 
p2. " --L 
~ 12827 

(35) 

This completes our calculation of the critical temperature 

correct to two loops order. 

4. Nature of phase transition 

The above calculations reveal that the spontaneou~ 
6symmetry breaking present in the cp model can be removed by 

raising the temperature above a critical value. In ,the 

language of superconductivity, we may restate this in terms 

of a phase transition from the ordered phase characterised 

by (cp) F 0 to a disordered phase characterised by (cp> ~ 0, 

as the temperature of the system is raised. We may follow 

the method of Linde (1979) to st~y the nature of' the phase 

transition. We replace the vacuum expectation value 

(ol~lo) = a by its thermal average (CP)T = aT taken with 

respect to a Gibbs ensemble so that the or~e:t' para.meter of 



the theQry.~ecomes explicitly temperature-dependent. ~he 

ensemble average of finite temperature Green's function is 

where :a is the Hamiltonian governing the system.... The 


parameter characterising the thermodynamic equilibr.ium 


state of the ~ particles of the system is given by the 


density of the particles in momentum spaceg 


1/ (e (v..,; 
'kiT 

_ 1) where = <a~ ak );nk 

6J = (k 2 + m2)t ; a~ and are the usual creation andk ak 


annihilation operators .. 


The equation of motion corresponding to. the 


lagrangian (1) is given by 


o <p - m2 q> + 4 >- mq> 3 - 3 r-2 ~5 
= 0 (36) 

On shifting the field from <p to q>+o and taking the Gibbs 

average of the corr8sponding equation,. 

(37) 
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Using standard finite temperature Green's function methods 

(Abrikosov et a1 1964) we may find that in the high 

temperature limit 

.?<J 
1 = 	 1 f dk 

2n 
..; 

l 
1 (k 2+m2)2" 

f~-

-;)() (k2+m2)~(je 'II _ .1) 

L~ p = 	 . (38)oJ... 2m 

By similar calculations we may also find that 

", 0; o (39) 

Thus (37) becomes 

-(40) 

Assuming that 0T is constant we obtain 

12. ).2 T2] = 0-15 ,,2 ~ O~ 	 ( 41) 4 /'- 2 
m 
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This equation has three solutions: 

aT = 0 

4 )-.m 2 -15 ,x2T :!:. j4 ~ 2m 2T =~ 
6 r2m 

Each solution of these equations defines a possible phase 

of the field system with its characteristic excitations. 

On heating the field system from absolute zero, the two 

branches of O'i given by (43) can coincide at a temperature 

0.lOm2 yielding a common value for aT' viz., 
}t. 

= f2 ~. Nevertheless, this is not a phase transition, 

. and as temperature increases further the two branches of 

o'~ will again separate. The existence of the separate 

branches of aT implies that the phase transition at the 

critical temperature To is of first order. 

The mass of the excitations may be found by making 

the shift 0' -) 0'+00' in' (40) • Retaining only terms linear 

in 60' and using (40) 

(44) 
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from which the excitation mass is given by 

A2T22M2 = m -6 ')'T + f ~- 12).. mo~ + cp m 


2 4
45 A2 
'II 

0 + 15 A20 (45)m T T 

The disordered phase is associated with excitations of mass 

= (46) 


However this mass does not vanish at the critical temperaturE 


The mass obtained from the effective potential V(o), defined 


, can be easily shown to vanish at the 

0=0 

transition point. For the disordered phase we find 

+ (47) 

The existence of distinct solutions for aT as 

given by (42) and (43) may be indicative of a domain 

structure of the vacuumb In the C0se of the Higgs model 

such a domain structure has been speculated upon (Linde 1979), 

wherein adjacent domains are associgted with opposite signs 

of aT- The domains are separated by kinks, but this is not 

a stable configuration because they define degenerate minima 

of the effective potential. The situation is different in 
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the ~6 case. There is a five-fold multiplicity of values 

of aT ~hiCh can be associated with different domains in the 

vacuum. Eventhough domains carrying condensate values, aT' 

which differ only in sign may jOin,together due to the 

collapse of kink walls, there still may be some domains with 

different absolute values of aT- These latter configurations 

may be assumed to be stable. It is worth mentioning in this 

context that the existence of a domain wall structure has 

been very well established experimentally in the case of 

ferroelectrics which are described by a ~6 coupled phenomeno

logical model defined in terms of polarisation as the order 

parameter (Lines and Glass 1977, Kittel 1977). 
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Figure Captions 

Figure 1. The zero-loop approximation for the effective 

potential. 

Figure 2. The one-loop approximation for the effective 

potential. 

Figure 3. Divergent graphs in the one-loop approximation. 

Figure 4. The two-loop approximation for the effective 

potential. 
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