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q-Anharmonic oscillator with quartic interaction
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The first order perturbative correction to the

energy levels of a .. boson. . realization of a

g-oscillator due to a quartic term in the potential

energy is evaluated. We also discuss the statistical P ﬁ“"*
ay fes b
mechanics of g-anharmonic oscillators in the case (7
where the parameter q deviates slightly from unity.
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1. Introduction

During the very recent years quantum groups and Quantum

algebras have attracted considerable attention among both
physicists and mathematicians (see for example Jimbo 1989
Majid 1990). Though a large number of works based on the

mathematical aspects of quantum algebras have appeared,

direct applications of quantum or g-symmetry to real

physical systems are limited. Quantum groups and non-

commutative geometry are of relevance to the problem of
quantisation of space-time (Ya. Aref'eva and Volovich
1991). It has been argued that physics at the Planck
scale may be understood only with the help of noncommuta-

tive geometry (Folkert-Muller-Hoissen 1991, Ya.Aref'eva
1991).

The quantum algebras can be viewed as deformations
of classical Lie algebras (Drinfeld 1985, Jimbo 1986},
They have also been linked to geometries that have non-

commutative structures (Wess and Zumino 1990,
1991).

Zumino
The representation theory of the quantum algebras
with a single deformation parameter g has led to the
development of g-deformed oscillator algebra (Biedenharn

1989, Macfarlane 1989). The g-oscillators may lead to

a new kind of field theory wherein small violations of

the Pauli exclusion principle may occur (Greenberg 1991).
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If a and a* satisfy the commutation relation
[a,a*] =1 . (3)
and
+ ]
N=aa; - (4)

then H can be put as
H = hu(N + £). (s)

The operator N is the number operator. This theory
describes what is sometimes called a boson harmenic
oscillator (BHO).

The concept of g-deformation can be broﬁght in by
introducing the q-creation operator 5+ and the
q—annihilatién operator a such that they satisfy the

following g-commutation relation:
+ T ~N

- -t - -

[a,a ]q =aa -=qa a=gq (6)
where the number operator N is required to satisfy

(3, §] = a

(3 Nl=-3 o

- =t - -
In this representation, N £ a a. The action of a and

+ -
3 on the Hilbert space with the basis {in%ﬁ
(f = 0,1,2,...), is described as follows:

»
N

Recently various implications of g-deformed algebraic
structures in some concrete physical models such as
squeezed states in quantum 6ptics (Chaichian et al 1990,
Celeghini et al 1991) and molecular vibrations {Zhe Chang
and Hong Yan 1991a,1991b,1991c) have been investigated.

As mentioned above, . the g-deformation of harmanic
oscillator algebra is a well stddied topic, but we know
that in real physical systems one cannot dismiss the role
of anharmonicity. Here we consider the problem of
g-deformations of an anharmonic oscillator in first orxder
perturbation theory and evaluate the correction to energy.
The statistical mechanics of gq-deformed anharmonic

oscillators is also discussed.

2. g-Harmonic oscillator

In order to establish the notation, we summarise here
the formulation of the theory of the g-hammonic eoscillator
(Biedenharn 1989, Macfarlane 1989)., The Hamiltonian of

a harmonic oscillator is

2 mw2q2 ' ‘ (1)

5

H = +

I
N

In terms of the creation and annihilation operators a and

at, (1) reads

H =-Eg(aa+ + ata) . (2)
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alo> = 0, |n> = __E:__!Q_?_ The Hamiltonian H is diagonal in the eigenstates |[n>
1
Vin]: and the eigenvalue equation reads
+ -

»
—
3
v
i

Vin+1] [n+l> RPN __,*._“2"(3 3++§+3)lﬁ>

3R> = IR) |A-1> _Bam e ) RD 18 (12)
Nin> =1([n]]n> -
This implies that the Hamiltonian H can be put as
where - - -
H =h‘i’([N+l] + [N]) (13)
x -X 2 .
9" - q
[x] = q q-l (8) The eigenvalues and eigenstates of H are g-dependent.
Let us look for a situation in which the eigenstates of
where%efo,l] or is a pure phase. A are g-independent (Polychronakos 1990), ie |R> = |n>
It is readily seen that as q~> 1, these relations where |n> are the eigenstates of the BHO Hamiltonian
coincide with those of the bosoh oscillator algebra. and in this situation N = N. The correspanding creation

and annihilation operators are related to those of the
The g-analogue harmonic oscillator Hamiltonian !

BHO by
(Biedenharn 1989) is:
2 ' —+ {N+1] .
- 2.2 ‘ = atV(—=)
- 1 a = a
Hz%;+-2-m"’q V (9) N+1 (14)
r et a = aV'(_[.ﬁ.]_
Defining the two operators a and a2 as in the case of - N~
the BHO: This scheme is usually known as the boson realization
- - =t of the g-algebra and the eigenvalue equation (12) becomes
p:if(-n-‘g-‘f) (a-a) (10) a-ete °
- P -
q= ng,,w—) (a+a) H|n> .-.;ﬁﬂ([N-«—l] + [N])|n> (15)

the Hamiltonian H can be rewritten as
3. g-Anharmonic oscillator

- - =t T
H,,t’.“’_(a 3 +3 3) (11) .
With the preliminaries introduced in the preceding section,
we take up the g-analogue anharmonic oscillator described
by the Hamiltonian

2

AP +imf3+ 23 (16)
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I:: the boson realization, the Hamiltonian becomes

’ 2
?Hf‘gg({N+1] + [N]) + %? { ég; {[N+2] IN+1T + [N+1JIN+1]

+ 2[N+1][N] + [N]J[N] + [N] IN-”}*:
(17)

«ere we have indicated by dots those terms that do not
+antribute to <n|HAH|n>. . . : [

then g=-v 1, awbecomes the Hamiltonian of the ordinary
énharmonic oscillator (Parisi 1988). If we introduce a
parameter n such that n = log q where 7m is purely real
or imaginary, then (17) can be put as

s=ho (sinh (Nn) + sinh (N+l)m)

An 2 sinh(n)

e S S %sinn (N+2)n sinh (N+1)n
41 2mw’ (sinh n)

+ sinh (N+1)n sinh(N+1)n + 2sinh{N+1)n sinh(Nn)

+ sinh{Nn) sinh (Nn) + sinh(Nn) sinh (N—l)n}+ .. (18)

When q— 1, ie n—> o, we can regain the usual result, and
therefore we will consider the case of m being very small.
For sufficiently small values of 7, (18) can be further

simplified as
2 3 3
i z'g_“(zmn + 3 22(N+1) 7 N - (2N+1)) +

An 2
A( )2 (en2eenss) + 1

4
A 2 2 2008 2anBes2n?
4% 2mw 3! 2mw

A
re
4+38N+16)+... 19) -

ﬂ2 7'12
= H_ 4o H + H' + ET‘H" + e

o ar 1

: 7

Again one can see that as q—> 1, Eﬂ}s reduced to the
Hamiltonian of the boson anharmonic oscillator (Parisi
1988). The quartic anharmonic corrections(to first
order in A) to the energy levels of the boson realiza-
tion of the g-oscillator follow at once by calculatidg‘

<n[ﬁAH{n> where |n>'s-:are the unperturbed eigenstates.

4, Statistical mephanics of g-anharmonic oscillators

Very recently, Neskovic and Urosevic (1991) have studied
the statistical mechanics of g-deformed harmonic oscilla-
tors. We will discuss below, the statistical mechanics
of g-deformed anharmonic oscillators. The quantity which
is of prime importance in the study of thermodynamics of
systems is the partition function:

BH

Z= Tr e~ (20)

where B = %T and H is the Hamiltonian of the system. In
the case of an assembly of g-anharmonic oscillators, H

is given by egn. (19). We consider a -boson.. realiza-
tion in which the |n> are the ejgenstates of H, - the
Hamiltonian of the unperturbed harmonic oscillator. n and
A will be assumed to be very small. Hence in this
perturbative approach the partition function for the

g-deformed anharmonic oscillators is expressed in the form




..
o
g

: -8H
Z=1L <n| e B h>
" ] 2
= (n[e-§H°(l—§(ﬂ_ H, + H')|n>
n 3t 1.

2
= 20(1-5(%!«-!1) + <H">)) . (21)
and. <HD

where Z_ = E<n| e ~fH °’n> and <H > are the thermal
: 9 n 1 A

averages of Hl and H' respectlvely:

<n{H, e‘ﬂHoln>

<H,>
1”7 T <nle-BHg|n>

-»315;»( ml/ 2)

oF Stot

w K (n3+(n+l)3 - (2nel)) e
3 e-Bhw(n+1/2)

ol

.- ?’. B | he (sznn(shw)g(atw) (22)
eﬁﬁm 1

where
eJB‘hq + 4 e2§hw + ep&”

g( 3#\&)) = ~
(eﬂm - 1)4

<n[H’ E“sﬁoln)

<H'> =

L
fi
L <nje~BHol

- -gh :
7\#‘2 nEo[(2(n+l)2- 2n - 1) e 4 m(n+l/2)]

D 32m2y?  § o~Bhu(n+l/2)
n=0

(c th (gh” (23)

2

=

32mw

Thus we find the partition function of the g-deformed

anharmonic oscillators as

"
0
s

+

2 ,
1- 1 g(<hw - =
Zaz'zc( ™ B( hu P,

2 -
Hw sinh (ghuw) g(phw)) - ﬁh’i > {coth (E‘E‘.‘i‘) 37y (24)
’ 2m w 2

In the limit gq—» 1, the expression for Z turns out to be
the sam2 as that of a boson anharmonic oscillatox

(Parisi 1988).

A knowledge of the partition function enablss one to
evaluate other thermodynamic quantities such as tie grand
canonical pdtential.ﬂ. , the internal energy U and the
entropy S which are defined by the following relations
(Feynman 1972):

’-ﬂ‘“= ..

S ( )’ U=‘§+n‘ ) (25)

The partition function given by (24) will b=

rewritten as

2
' n A ‘
Z =z (l+ = BU, + K% u,)

o

where .

u =Y, - hw sinh (ghw) g(ghw)
e e

UQ 2 311 eﬁf\m -1

u, = -y (coth Qshw))



The grand canonical potential .n. is then

.

where

ﬂosai log ZO

[

The entropy S of the system is
2 2

s=s°-§—a9f’.l Z‘. g:z (27)
where
5, = 8 ::'
Uy .‘f‘l’f:«: (e“ﬁ.w ud 3935hw = 3“25% - eﬁm )
¥ 2 (e ghe -’

6U2 coth {Q‘hmz (coscc"\ (Pﬁw))

¥ amle

The internal enexgy U of the system is given by

2
ugu-ﬂ-(pﬁ )“(up ) (28)
[+

5. Concluding Remarks

we have investigated the energy spectrum of a g-quartic
anharmonic oscillator using first order perturbation
theory and a boson realization of the unperturbed
g-oscillator eigenstates. The evaluation of the parti-

tion function and various themmodynamic quantities

carried out in this paper is expected to be of relevance
to investigations of anharmonic effects in g-deformed
versions of molecular and condensed matter systems. It
has been argued that the ag-deformation of the harmonic
oscillator can absorb the anharmonicity effects in
molecular vibrational spectra (Bonatsos et al 1991,
Chang and Yan 1991 a,b,c). The effect of anharmonicity
is well studied both in classical and quantum physics.

" In the present work we have studied the g-version.of the

anharmonic oscillator, but the relevance of such a study
will be clear only when it is applied to some real
physicaf systems. A possible scenario where anharmonicity
considerations might be applicable is lattice dynamics.

This aspect is currently under investigation.
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