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Abstract 

A particle identification method for RICH's is presented. This method computes 
the probabilities for the known charged particles (e, j.L, 1r, K, p) and provides also an 
unbiased mean Cherenkov angle. A maximum likelihood binning procedure is used 
taking into account the measured Cherenkov angle for each detected photoelectron 
and their local density inside the detector. The space in which the method is 
applied is separated into cells, the number of observed photoelectrons in each cell is 
compared to the expected one and a global probability for all the cells is computed. 
The method can easily take into account local problems in the detector and thus it 
can be well adapted to the experimental reality. 



1 Introduction 

In the Ring Imaging Cherenkov detectors [1] very often the background contribution is not 
negligible [2] compared to the number of Cherenkov photoelectrons. This is mainly due 
to the fact that the charged particles to be identified cross also the sensitive parts of the 
detector producing secondary effects as ionization electrons and 0 rays. Furthermore, these 
detectors must be able to detect single electrons requiring high chamber gain inducing 
feedback electrons [3]. Neighbouring Cherenkov rings also contribute to the background. 
For these reasons, the search of the Cherenkov ring position for each studied charged 
particle and thus identify it becomes difficult. 

All the information coming from the detector and the characteristics of the Cherenkov 
phenomenon have to be used in order to maximize the particle identification efficiency. 
We present here a method to extract the mean Cherenkov angle of a Cherenkov ring using 
only the Cherenkov effect lows without taking into account the known particle masses that 
could bias the result. 

2 Cherenkov effect 

The Cherenkov light emitted by the passage of a charged particle through a transparent 
medium (radiator) forms a cone around the particle direction. The angle Bc of the cone 
(Cherenkov angle) is related to the particle velocity {3 by the formula: 

1 
cosBc = - (1)

{3n 

where n is the refractive index of the radiator. For {3 --t 1 the Cherenkov angle saturates 
to the value Bsat = arccos(l/n) while for {3 < lIn there is not Cherenkov light emission 
(Cherenkov threshold). Figure 1 presents the Cherenkov angle versus the momentum 
for electrons, muon, pions, kaons and protons for a liquid (C6 F14' n = 1.276) and a gas 
(C5 F12' n = 1.0019) radiator. 

The Ring Imaging Cherenkov technic uses two methods to detect the Cherenkov light, 
the "proximity" focussing and the focussing by mirrors [2]. The Cherenkov images, pro­
jected on a sphere having its centre on the track at the middle of the radiator, are circles 
(Cherenkov rings). The radius of the ring is proportional to sinBc • Circles with radius 
proportional to tan Bc are also obtained when the Cherenkov images are projected on a 
plane perpendicular to the track. 

The number of detected photoelectrons (electrons created by the Cherenkov photons) 
is given by the relation [1]: 

(2) 


where No is the detector quality factor and 1 is the radiator length. 
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Figure 1: Cherenkov angle versus the particle momentum for electrons, muons, pions, kaons 
and protons for a liquid (CaF14) and a gas (CSF12) radiator. 

The RICH, for each photoelectron, detects its conversion point, i.e. the location where 
the Cherenkov photon has been converted into electron in order to be observed. Using 
this location and the particle direction, given by the tracking detectors of the experiment, 
a Cherenkov angle Be is reconstructed for each detected electron (signal and background). 

The Cherenkov angle resolution depends on the chromatic dispersion of the radiator 
and the experimental device (width of the radiator, spatial resolution etc... ) and can be 
calculated for each particle and each location in the detector [4]. 

The background behaviour, specific to each detector and experiment, has to be studied 
carefully in order to correctly take it into account during the probability evaluation for 
each Cherenkov ring candidate. For a uniform background electron population inside the 
detector, in first approximation, the background increases linearly with the Cherenkov 
angle. 

All the above characteristics can be used in order to find the right Cherenkov ring 
position. For cases free of background, a single weighted mean Cherenkov angle for all 
the detected photoelectrons is enough. For particles below the threshold, the role of the 
background is very important because in this case the probability evaluation relies only on 
the absence or not of signal. A high background contribution or a detector malfunctioning 
could favor the hypotheses where no Cherenkov light is expected. 
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3 Identification Method 

If Gi is the probability to detect one photoelectron (coming from Cherenkov light) at 
location i (cell having finite dimensions), for a particle where the expected number of 
photoelectrons is N h, the mean number of photoelectrons detected at cell i is NhGi_ If 
Kh is the total expected number of electrons coming from the background and Bi is the 
probability to detect one background electron at cell i, the mean number of background 
electrons per particle detected at cell i is Kh B i • The probability to detect ni electrons 
coming from both signal and background is given by the poissonian distribution (see 
appendix): 

(3) 


The total probability for each ring hypothesis h is defined as: 

(4) 


If the cell dimensions are chosen infinitely small, G and B become also infinitely small 
and the probability to detect in one cell more than one electron is negligible. In this case 
the formula (4) can be written: 

Nob' 
ph ~ II {(NhGi1 + KhBil)} II{l- (NhGio + KhBio)} 

il=l io 
Nob, 

~ II {(NhGil + Kh Bil )}e-(Nh+Kh) (5) 
it=1 

using: 

II{l - (NhGio + Kh Bio)} ,...., e-(Nh+Kh)) 

io 

where it is the index of cells having one electron, io is the index of cells without electrons 
and Nob3 is the number of cells with one detected electron. The formula (5) has already 

been proposed in [51· 
In the case where no electrons are observed in the considered region, the probability 

given by the formula (4) becomes: 

(6) 
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If all the detected electrons are projected on the surface of a sphere as explained 
above, called in the following (Oc, CPc) space, the probability G to detect one photoelectron 

at (0, cp) can be written as: 

(7) 


where: 

o the Cherenkov angle of cell i 
cp the azimuthal angle of cell i around the track 

Oh expected Cherenkov angle of hypothesis h 
expected 0 resolution for cell i(J' 

oand cP limits of the (Oc, CPc) space01, O2 , CPh CP2 

sin OdcpdO surface of the cell i. 


In the case where the number of electrons coming from the background is proportional 
to the surface of the cell (in the (Oc,CPc) space) the probability B to detect a background 

electron at (0, cp) is: 

B 0 _ sin OdcpdO (8)
( , cp) - It: sin 0'dO' I::: dcp' 

In practice, the cell dimensions dO and dcp can be chosen according to the detector 
performance. dO can be chosen in order to have dO = tl.0 :5 (J'. The cell dimension in cp 
direction dcp = tl.cp can be chosen in order to check if the electrons are well around the 
track or they just cover a small region as it is very often the case for background electrons. 
In this way, absolute quality criteria for each ring can be established (particles having all 
the associated electrons in a part of the expected ring will have lower probability than 
those where the electrons are uniformly distributed around the track). The cell dimension 
tl.0 and tl.cp can vary from location to location according to the expected resolution and 
the expected number of photoelectrons. 

Using a maximum likelihood method, ph can be maximized for each hypothesis by 
varying the background contribution Kh as in [5]. 

For Fast RICH's [6] only two coordinates are measured (pixel position) for each electron 
while for slow RICH's [2] where the photon conversion is done in a big drift volume, the 
measurement of a third coordinate is necessary (figure 2). This third coordinate allows 
the measurement of the photon penetration length inside the photosensitive gas. For the 
"signal" the probability to observe the photoelectron between A and A +dA is: 

(9) 


where: A is the penetration length for cell i and Ao is the photon mean free path. 
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Figure 2: Measurement of the photon penetration path inside the photosensitive volume. 

If the drift tube limits (photosensitive region) are taken into account, (9) can be 
written: 

(10) 

where A~ is the potential length (maximum available penetration length) of cell i. We can 
consider that the background distribution is uniform in ). direction. 

If the spherical coordinates (8, c.p, r) are considered where r is the radial cell position 
(the origin being the photon emission point) the signal and background probabilities can 
be written as follow: 

(9_9;)2 A 
r sin 8dc.pd8dre- e- ro20' 

G(8,<p,r) ­ (11) 

r sin OdcpdOdr 
(12) 

where). = T - Tl with Tl and T2 the entry and exit points in the drift volume, and T the 
conversion position (figure 2). 

In the case where the expected number of photoelectrons N h for hypothesis h is 
not zero, Ph(N h, Kh) is the probability to have observed signal and bac~ground while 
Ph(O, Kh) is the probability to have observed only background. The quantIty: 
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Figure 3: Projection of the Cherenkov images on a plan: perpendicular to the particle direction 
and extrapolation of the cells of this plane to the detectIon volume. 

hh (signal + background) probability _ ph (N , Kh) (13) 
a = background probability - Ph(O, Kh) 

can be used for each particle as an absolute quality criterion. The probability of particles 
below the Cherenkov threshold (Nh = 0) is also ph(O, Kh) and in this case 0.0 = 1 (h =0 
is defined as the hypothesis where Nh = 0). Finally, ah can replace the probability ph 
in which case all the given probabilities are relative to the probability to have observed 
only background. For particles above the Cherenkov threshold (Nh > 0), for the best 

hhypothesis, an absolute lower value o.min (e.g. >- 1) can be requested for o. • If this 
requirement is not satisfied, the hypothesis Nh =0 can be chosen. If, in this case, for all 
the tested hypotheses, N h is greater than 0, it can be considered that the RICH cannot 
give a reliable information for the current particle. The parameter o.min can be fixed 
according to the desired confidence level using for example known physics channels or a 
Monte Carlo simulation where the background contribution is well simulated. 

Experimental application of the method 

The method is very flexible for taking into account detector dead regions and all lo­
cal problems as problematic electronic channels, electronic buffer saturations or electron 
attachment during drift. 

For each cell in (Oe, CPe) space the corresponding volume in the photosensitive region 
can be found (figure 3). Each cell i can be characterized by (Oi, cpi) and the corresponding 
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Figure 4: Illustration of the cells affected by possible "experimental" problems. 

volume Vi(x, y, z). All problems affecting the cell i can easily be taken into account 
for the evaluation of the expected number of electrons for this cell. Furthermore, the 
Cherenkov angle reconstruction for each observed electron is not any more necessary. 
Each (x,~,z) electron w~ll be .placed in its volume Vi(x,y,z) to which corresponds the 
cell (0" <pt) choosing 6.0' ~ 0". Of course, some computer time will be spent to find 
the correspondence between cells (Oi, <pi) and volumes Vi(x, y, z) for each particle. For 
that, all points (0, <p) in (Oc, <Pc) space corresponding to the four cell nodes have to be 
propagated (taking into account possible refractions on windows delimiting the different 
volumes and reflections on mirrors) up to the photosensitive volume (figure 3). The 
computing time spent for that must not be much higher than for the case where the 
Cherenkov angles are reconstructed only for the detected electrons. In the majority of 
the RICH's, for each electron, several iterations are necessary in order to reconstruct the 
corresponding Cherenkov angle taking into account all refractions and reflections in the 
detector (analytical solutions to reconstruct the photon trajectory knowing the emission 
and detection points are very complicated). 

To find an unbiased mean Cherenkov angle for each particle, the maximum value of 
ph(O) or o:h(O) can be found by considering continue 0 values varying from Omin to Omax 
(e.g. Omin = 0 and Omax = Osat + lOu with Osat being the saturated Cherenkov angle 
corresponding to cos Osat = lin). The method has been applied on the DELPHI Barrel 
RICH data and allowed the first s-quark asymmetry measurement [7] by identifying fast 
charged kaons. Figure 5 presents the mean Cherenkov angle versus the particle momentum 
using the liquid radiator CS F14 [8] while figure 6 [7] is for gas radiator CS F12 • The mass 
squared distribution (m2 = p2(n2cos2 0-1)) corresponding to figure 6 is shown by figure 7. 
A clear kaon signal is observed. 
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Figure 5: Mean Cherenkov angle versus particle momentum for DELPHI RICH liquid radiator 

CsF14.. 

25 
9 10 20 

p(GeV/cf 

Figure 6: Mean Cherenkov angle versus particle momentum for DELPHI RICH gas radiator 
C5F12 o 

Conclusion 

The particle identification method proposed for RICH detectors is able to use the whole 
information coming from the detector 0 In this way all detector problems can be taken 
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Figure 7: Mass squared distribution using the DELPHI RICH gas radiator CSF12 for all charged 
particles with momentum between 10 GeVIe and 18 GeVIe. 

into account in a natural way. The "blind" application of the method on a continue mass 
hypothesis spectrum can give an unbiased mean Cherenkov angle. The method has been 
applied with success on real data. 
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Appendix 
We consider that we observe a RICH ring (liquid or gas) in a certain space (of one or 

more dimensions) which is subdivided in cells. If we call H the probability to observe 1 
photoelectron in the cell i, the probability to observe j photoelectrons in this cell for a 
total number of k photoelectrons detected in the whole space is: 

'. Ie •
Pj = ClHJ(1 - H) -J (14) 

The probability to observe k photoelectrons following the Poisson distribution with 
mean value M and from these k photoelectrons have j photoelectrons in the cell i is: 

(15) 

==> 


p.
J 

(16) 


If we assume that in our sample we have, m photoelectrons coming from the "signal" 
with a probability distribution G, l photoelectrons coming from the background with a 
probability distribution B and if we assume that the number of photoelectrons for these 
two ca~~gories follow the Poisson distribution with mean values Nand K (resp.), the 
probabIlIty to observe n photoelectrons (signal+background) in the cell i is (l = n - m): 

{NG + K B)n -(NG+KB)-
n.
,e 

(17) 

which is a Poisson distribution with mean value NG + K B. 
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