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Abstract 

As it is well known, the single-nucleonic levels in a nucleus manifest either the 
Kramers degeneracy d = 2, or, if a nucleus is spherical, a trivial "magnetic" degeneracy 
d 2j + 1. It will be shown using the results of the realistic total nuclear energy 
calculations that a possibility of a four-fold degenerate levels exists in a number of N I"V 

136 isotones due to their high intrinsic symmetry. Those exotic states are predicted 
to be isomeric; they lie only a few hundreds of ke V above the ground state. Other 
possible nuclear regions where the same mechanism may take place are indicated. 

1 




The classical concept of a nuclear deformation and that of a geometrical form of 
a nucleus have become important theoretical tools in testing various quantum mech­
anisms in nuclear structure. For example if there exists a symmetry of the nuclear 
field, consisting in its invariance with respect to Rx exp(i7r)x) operation (rotation 
of a coordinate frame through an angle of 7r around an axis, say Ox axis), it results 
in a conservation of the signature[l] quantum number, r. Such a symmetry implies 
the existence of two families of rotational bands characterised by I = 0, 2, 4, ... 
and I = 1, 3, 5, ... for an even-even nucleus (similarly I 1/2, 5/2, 9/2 ... and 
I = 3/2,7/2,11/2, ... for an odd-A case). Conversely, by observing manifestations 
of those two types of bands in experiment the existence of the Rx-symmetry can be 
deemed. 

In this article we suggest the possible existence of highly-symmetric shape-isomeric 
states in several isotones with N 136. The underlying symmetry group is the spinor­"'-t 

group Td • It has an attractive feature of implying the existence of three families of 
nucleonic multiplets: two of them double and one quadruple degenerate. It is pre­
cisely the latter degeneracy which is "unusual" or "exotic" in the nuclear context, the 
"usual" one, characteristic of deformed nuclear orbitals being the double (Kramers) 
degeneracy. 

To introduce the mathematical arguments let us first present the results of the 
realistic nuclear total energy calculations performed by using Strutinsky method[2] 
with the Woods-Saxon Hamiltonian. The latter has been generalised (with respect 
to ref. [3] from which we take the "universal" set of parameters of the potential) to 
include spherical harmonics Y,xJ.L with A 3, 4, 5, ... and -A ::; fl S +A in the nuclear 
shape definition. The spherical harmonics define the nuclear surface ~ and therefore 
the underlying geometrical symmetry of the average field hamiltonian 'Via the standard 
expansion (for details see e.g. ref.[3]) 

+,x 

E: R(fJ,cp) = Roc({a}) [1 + L L aA,x;,,(fJ,cp)]. (1) 
,x J.L=-,x 

In most of the calculations known in the literature the fl =I 0 components in 
the equation of the nuclear surface ~, for A 2 3, have usually been neglected. Some 
selected combinations of the (A = 3, fl =I 0) components in the nuclear shapes have 
been employed [4] in a search for the octupole correlations in the superdeformed nuclei 
of Hg-Pb region. Another study of fl =f 0 effects using a parametrisation that involves 
a nonaxiality parameter and limits the corresponding highly-dirnensional space to a 
2-dimensional nonlinear projection has been also presented in [5]. The expansion (1) 
using (0::20, 0::3J.L) dependence of the total energy surfaces to predict the existence of 
the 0::3J.L-unstable, superdeformed (SD) isomers was used in (6], while the discussion of 
similar symmetries in the metallic cluster context can be found in [7]. Here we are 
going to present for the first time the calculation results for A ::; 5 with all the fl-values 
included in the total energy cross-sections. 

Figure 1 illustrates the total energy surface for 2~~Rn136 nucleus in function of 0::20 
and 0::32 deformation parameters indicating the coexistence between two minima: the 
ground-state one at 0::20 ~ 0.16 and the excited one at 0::20 A.J 0 and 0::32 c:::: 0.15. The 
results for N "'-t 134 _.. 138 and the neighboring isotones with Z "'" 84 -- 90 are similar. 
This particular 0::3J.L#0 projection has been selected since the corresponding isomeric 
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minimum lies lowest in energy. To present more precisely the total energy behaviour 
around this interesting minimum several energy cross-sections have been done. 

Figure 2 presents the cross-sections of the total energy surface corresponding to 
the 0:3tt, 0:4tt and 0:5tt dependence suggesting that the exotic octupole deformation 
0:32 ~ 0.1.5 remains a dominating deformation component in the 222 Rn. A sinlilar 
result remains true also for several neighboring nuclei. 

Let us consider first an ideal case of a nucleus with 0:32 i=- 0 and all other deforma­
tions vanishing (small deviations of 0:32 from zero will imply possible, small deviations 
from the ideal case prediction). Such a nucleus posesses, as one can easily show, a 
very high geometrical symmetry composed of 24 symmetry elements. They are, besides 
the trivial identity operation: three "signature-type" two-fold rotations about each of 
the principal axes, RxCrr), Ry(1r) and Rz(1r); six four-fold rotary-reflexion operations 

along the three principal axes, denoted sometimes Sx(1r/4) and Sx(31r/4), Sy(1r/4) and 
Sy(31r/4) and, Sz(1r/4) and Sz(31r/4); eight three-fold symmetry axes passing through 
the center of the nucleus and finally six plane-reflexions. 

These symmetry elements form a classical group traditionally denoted Td • To 
insure that the fernlion transformation properties are satisfied in the quantum case, 
one usually introduces[8] a special "symmetry" element Q such that Q2 1. With 
the help of this special elernent one requires that e.g. n-fold symmetry operation 
Rn(21r /n) Q and R2n(21r /n) :II. The corresponding extended group composed 
of 25 elements is called "fermion Td" or TP (cf. ref. [8]). The TP group posesses 
3 irreducible representations (irreps), one 4-dimensional and two non-equivalent two 
dimensional ones. 

To illustrate the differences in the intrinsic structure of the nucleonic wave func­
tions corresponding to those three irreducible representations and therefore also three 
distinct symmetries, let us schematize a construction of the related irreps using the 
{In f j m >} basis, one of the most standard ones in nuclear structure physics. For 
that purpose we define a coordinate system in such a way that the z-axis coincides 
with one of the three-fold axes and remains at the same time the m-projection axis 
for the {In f j m >} basis. We see immediately that the corresponding R~(21r /3) 
exp(i(21r/3)3~] operation reduces to a multiplication by the phase-factor exp[i(21r/3 )m]. 
After some transformations, and using the above phases, we arrive at distinguish­
ing three subsets of the whole {Infjm >} ensemble: (set 1) {Infj f + 1/2, m = 
1/2,5/2,7/2,11/2,13/2, ...}; (set 2): {Infj = f-1/2, m 1/2,5/2,7/2, 11/2,13/2, ...} 
and (set 3): {Infj, m = 3/2,9/2,15/2, ... >}. The ensembles (1) and (2) span the 
bases of two non-equivalent two-dimensional representations denoted E and E* while 
some special combinations of all of them contribute to the G (four-dimensional) rep­
resent a tiona 

The results of the diagonalisation of the deformed Woods-Saxon hamiltonian are 
presented in Figure 3 for the neutrons where the single-particle levels are plotted in 
function of the 0:32 deformation. A similar illustration for the protons is presented 
in Figure 4. Both figures suggest that the isomerism of the O:32-type illustrated in 
the present article may repeat itself for the proton-neutron (Z-vs ..-N) combinations 
corresponding to Z ~ 56, 70, 90 and similarly N "-' 70, 90, 112, 136. In addition, the 
shell closures at Z = 50, 64, 82 and 100 and those at N 64, 82, 100 and 126 are 
likely to be unstable or susceptible to the 0:32 deformation thus increasing the chance 
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of observing some manifestations of the TP symmetry in nuclei. The corresponding 
detailed calculations are in progress. 

The figures 3 and 4 illustrate at the same time the content of the irreps of the 
TP group in the nucleonic orbitals which, at the zero deformation, are labelled using 
the traditional spectroscopic notation. One can read for example that the 81/2 and 
P1/2 levels are related to the E and E* representations respectively; the h9/2 and g9/2 
orbitals both contain 2 members of the G-representation (8 states) while the remaining 
two states belong again to E (in h9/ 2) and E* (in g9/2), etc. 

In summary: An existence of an island of low lying nuclear shape isomers mani­
festing (at least approximately) the high-symmetry of the spinor-Td group is predicted 
at 84;SZ ;S90, N rv 136 nuclei. Similarly, a possible instability of the 1::Gd82 with re­
spect to G:32-exotic octupole deformation (which expresses the spinor-Td symmetry) is 
suggested. The isomers of this symmetry should produce (in an ideal case) the single 
particle or quasiparticle spectra with an exact four-fold degeneracy. 
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Figure captions 

Fig. 1 

The total-energy surface calculated for the 222Rn136 nucleus in function of the a20 and 
a32 deformations. (A comparison of the results in Figs. 3 and 4 indicates that a priori 
the best chances for the a32 i- 0 isomeric minimum occur at Z = 90 and N = 136 
and not at Z 88. Indeed, calculations show that the corresponding minima are 
deeper and the corresponding potential barriers are higher in Thorium as compared 
to Radium nuclei. However, those corresponding to the Z = 90 case are unstable with 
respect to the hexadecapole deformation and thus the conditions for the four-fold 
degeneracy of the nucleonic levels will not be optimal there). 

Fig. 2 
The total energy cross-sections in function of the a3~, a4~ and a5~ deformations at 
the a32 0.15 local (isomeric) equilibrium characteristic for several isotopes and iso­
tones of the Rn136 nucleus. Observe that the isomeric minimum in Fig. 2 turns out 
to be stable against any single-multipole distortion. (The couplings between various 
components have been studied and will be published elsewhere. The preliminary re­
sults confirm the tendency to stabilise the isomeric minimum in question.) Calculation 
results for a32 (not displayed) confirm also the stability against this degree of freedom 
as well. 

Fig. 3 
Neutron single-particle levels in function of the octupole a32 deformation. This di­
agram is illustrative for the isomeric minima like the one in Fig. 1 at a20 0 andrv 

a32 i- O. The solutions corresponding to the three irreducible representations are 
marked by G (four-fold degeneracy) - full lines: E (two-fold degeneracy) - dashed 
lines and E* (a two-fold degeneracy related to an irrep. non equivalent to E) - dotted 
lines. Observe the gaps in the spectra corresponding to the strong octupole a32 effects 
at N = 90, 100, 112, 126 and 136. 

Fig. 4 
Similar to Fig. 3 but for the protons. The strong a32-octupole effects are expected at 
Z = 56, 64, 70 and 90. 
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