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1. l!,lj;Ie;duction. 

.­ In this paper we propose and prove the following point: 

what has traditionally been regarded as the "Dirac algebra" 

in fact refers to three entirely distinct algebras. 

In addition to the Dirac algebra D [1] , we have identi­

fied and named the other two algebras as (i) the "Ma30rana 

algebra ll M [2,3,4] • and (ii) the Clifford algebra [5,6,7] 

. in Minkowski spacetime [3,4,8,9]. These three a)g ebras have 

long b~cn regarded as isomorphic. We demonstrate that they are 

in fact distinct; first by algebraic construction, and secondly 

by comparing the actual matrix representations. 

The Dirac algebra D is the well-known algebra defined by 

all conbinations of the complex 4x4 Dirac matrices [1]. The 

Majorana algebra M is that algebra defined by all combinations 

of the real 4x4 rna trices given by Majol'ana [2]. We construct 

both a~Gebras as Clifford algebras, [5,6,7] utilieing the tlvee~ 

product of differential forms introduced previously in [3,4,8] • 

We sho\., that D is isomorphic to the Clifford algebra A2 .:5 in the 

five-dimensional deSitter space with metric g(2,3). 

(-1,-1,-1,+1,+1), while M is isomorphic to the Cl1~ford algebra 

A3,1 in a four-dimensional space with metric g(,,1) • 

(+1,+1,+1,-1). This construction explicitly demonstrates that 

D and ~ are in fact entirely distinct algebras. 

In add! tion, both the Dirac and t-tajorana algebras have 

been assumed to be isomorphic to the Cli~ford algebra in Min­

kowski spacetime A1,:5, since Dirac obtained his matrices after 

factoring the four-dimensional wave operator [1]. In tact, 

the Clifford algebra Al ,3 corresponding to spacetime with the 

Minkowski metric g(1,3) • (~1,-1,-1.+1) i8 n21 well-known to 

physiciats, and is entirely distinct from both the Dirac and 

Majorana algebras. In this paper, we provide for the tirst 

time a 4x4 complex matrix representation ot this algebra, and 

directly contrast it with the matrix representations ot the 

Dirac and Majorana algebras. 

The presentation is as tollows: We begin by reviewing 

our construction ot Clifford algebras in terms ot differential 

torms, duality, and the vee product [3,4,81. We construct all 

the algebras in spaces of four dimensions, and identify these .
algebras with either M, or N4, using the "vee group" structure 

ot reference [41. Then, algebras in spaces ot tive dimensions 

are constructed, among them the Dirac algebra D. Two new 

algebras appear I which arc isomorphic to N4 ti N4 and l' t:P \~. 

respecti vely. lie show how tht, r'elationshi.\-' ClctWf:',.' .J 

D, M and N4 cat! he thought of a.s a cornph'>,:li.l. ~<:(.. ~ 

D. M~ iN • lf4 ED iN4t where j i.A d(Hltjf;'~d ","'t)'J<' l' 

of forms, and possesses the algf'bra.ic prOlJ€l~ ..; f8 cf '1 ; It). 

uni t i. ~-=1 • 

Following this, we construct the matrix representations of 

these algebras, We review the determination (6]Of the represen­

tation space of each Clifford algebra. This fundamental wor~ 

is not yet well-known to physicists, perhaps because the matrix 

representations were not explicitly given. We review and 

combine results on the construction of representation matrices 

[ 13,14,15] , and give the explicit matrix representations of 

N4 , M and D. The matrix representation ot N4 appears here tor 

the first time. It is intimately related to the matrix 

representations of the deSitter group [16,17J • 
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1tic Cil(.tord algebra 1..1 ,3 in Minkowski spacetime has been-'~';;f' tha su~ject of two more ext~nsive studies [a,9] , where the 

applications to physics in spacetime were presented. In that 

work, a matrix representation was n21 introduced, since the 

novelty and utility of the formalism is the representation-tree 

m.ethod of calculation. In reference [9] we show how anti ­

symmetric fields in spacetime can be multiplied and divided 

associatively, using the notation of traditional vector algebra. 

lor related, but distinct studies of 14, see [10,11] • 
There exists a related algebra constructed by Eddington 

(12] in terms of his liE-numbers". This algebra has tradition­

ally been regarded as distinct from the Dirac algebra. We show 

that they are in fact isomorphic. 

In SUJn:ij:~nr we: show that the Dirac, Majorana, and the 

OJ i !'¥'(I ,ti Q 1 ; ;•.' :'..!I Mi.nkowBl< 1 spa.cetime wh lch trad1.tionally 

hC'<,lt' 	 'Jl..:en :r'f.e,'·/ '~,-d. <I.E .isomorphic, al"( in fa,ct distinct. The 

Eda,i.!lt;ton >I'~numberslt traditionally regarded as distinct to the 

Dirac aleebra, are shown to be isomorphic to it. 

The ultimate aim of our study is to clarify precisely 

that algebraic structure which possesses an intrinsic relation­

ship to physics in spacetime [a,9,18]. A necessary first step 

is the clearing up of the relationship between the various 

algebras traditionally used for the description of physics in 

spacetime. We believe that this is accomplished in the present 

cOClUunication. 

2. 	 Confltruction of Clifford Algebras as "Vee"-Groups. 

In our analysis, we will employ the differential torm 

realisation of Clifford algebras introduced in references 

[3,4,8J. This enables uS.to compare the structure of the 

three algebras of immediate interest without resorting to 

~pecific matrix representations, which will be introduced 

later. We review here the basic definitions of the "vee"­

structure necessary 1n the analysis of this paper. 

Consider the d1fferential basis onetorms. 0~ • dx-,of 

any tlat space ot dimension n. There are 2n basis forms of 

all ranks, which are construoted using the exterio~ product A 

[19J 	 . 

{ 1 ) 6"\ ()~"cr' J ' •• , L.)rt ~ ~::" .. ,n)~l~ 
(1 ) 


; 


We have labelled the volume element in n dimensions 

as ~)n. 

., I I"il. n
vJ ::(fA, 1\"'/\(1' • (2) 

Define a metric scalar form ~a~, which is diagonal, and 

3as entries either +1 or -1 [19}. 

rad. f -_ (fSrJ )J ~ ) 
(3 ~~I 

Define a multiplication v, calle~ "vee", [,,4.a] between 

~ oasiS r-form and a basis (s-r)-form as the sum ot permutat!onE 

·,t basis forms in (1) with successive contractions (3). 

~eflnition: (0- AlA •. "6~'()V (cr)r... ,/\ .. -I\t) ~)) :. 

t or- I t ,:\"fI )TT~-t' L )OS
;,!--- L L L (-I) l-' ,I ­

r · (s· r ) '. IT iT• '(' "~.( J{ ... 1'-:'0 {,,, 
II. • fA ,,,.,. ... ~'). 2k -I f.2l 0 ').-u. t f 1\ .... ,,6 ').~. . .~. 
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TTV' 
acre t (-1) is the sign of the permutation 

( I l. 

\ ,.~. A).. (5);J 
Definition (4) is in practioe quite simple to use; aee 

the examples in references [3.4.9]. In references [3,4) 
w~ have shown that the algebra of forms defined by (1) and (4) 

is in fact isomorphic to the real Clifford algebra correspond­

ing to the space defined hy the metric (3). 

By direct. calculation, one can tabulate the vee product 

between all the distinct basis forms in (1). Each basis fora 

in (1) possesses a unique inverse which is the form itself, 

up to a sign; hence the set of forms (1) form a finite group 

under "vee ll This group is called the "vee--group (3,4].• 

and is of order 2n+1 (since we must count the forms in (1) 

along wj th the) (. oegaii Y~f. as separate elemE:t1ts) c We can 

Jtie:r dry ';':et: t 
< gl'llUl' of 101'ntt-; (i) J.n the space (3) with 

~ 1(1I n ,,,. !. r, 'i.t,.; t:,J"tHA}". 'rb lL.Ctb ('foHn I oonl::" for all dlbtlnct 

space;:; (3) in [3,4J • ami serves to pro\,lde a classification 

of all Clifford algebras in terms of the corresponding "vee"­

groups. All the interesting properties of the Clifford 

algebras follo\lll essentially from this group structure. 

A key result of our work is the following IIduality 

theorem", which reduces the notion of duality from. the 

traditional index operation (19J to a purely algebraic 

manipulatIon. Duality in our framework i8 achieved by 

multiplication by an element in the algebra. Thi8 i. 

eXJI"essed in the "duality theorem" [3.4] 
Theorem 1: The dual of any form t i8 the vee product or that 

torm with the volume element. 

(~ f) ~ ± W" V f (6) 

The sign depends on r, on the Signature and dimenSion n 

of the base space, and on the rank of f. (Note that r ~ n). 

The r-dimensional dual is accomplished by vee multiplying a 

form with the r-volume element. 

What is novel in this formalism is the fact that we can 

take duals of the 8ame form in different dimensions, inter­

change them, combine them, and separate them into their 

corresponding subspaces, just by simple algebraic manipulation. 

This utility is of particular importance in separating the 

space dual in three dimensions from the spacetime dual when 

working in four-dimensional spacetime. For examples on the 

application of the duality thp0 r em. see [3_4,9]. 
As an applicatlor' of the r!'~4d 1t.Y' t '>'Ie can label an the 

higher rank forms in terms of tfH:! duals of corre..,pow';;,tit, 
I I'r),' ~ 

10't/cr rank forms. l!'Ol' ins iance jo 0 I", .\ 0' 1(; jUli; ,( 

~ ,

four-dual of the form (f , which car· iJe«iiUt'IJ ·j,i" ty,,,,<., '., 

I ~ ... u 3>
(6) as 6" 1\6 ,,(S ::. W V IS • 

The algebraic manipulation of duals using the dualit.y 

theorem (equation 6) depends on the algebraic properties of 

the volume elements. These were originally given by Cliffo~ 

[ 5 ]. 'r/e recall them here as theorems? and 3. 

Theorem 2: The volume element commutes with all the elements 

of the vee-group in that space if the dimension or the space 

n is odd; and anticommutea when n is even. If ~ i8 anJ member 

ot (1), then 

"'.., 
\I,j'(\ "fS -:. (- I) 0" tA) " 

(7) 



.' 1 

... 
;:':l;'orl~m 2,: The squat'e ot a volume element in the vee 


nru!tillication is g1v4:n''''' by: 1 .

II . 
."("-')/l.. , 

twlfl)2. -:: W'(\VVI'" :. (-\) ~t.t,. = 'i.l 
(8) 

HeTe, g is the metric ot the base space (3). !he proots 

a.re direct. 

The implications of theorem 2 are far reaching in terms 

of representation theory, Since that theorem can be utilised 

to give the following structural result: 

Theorem i: Clifford algebras in n dimensions are generated 

by n mutually anticommuting elements when n is odd; and by 

n+1 mutually anticommuting elements when n is even. 

~l , .., \ger.r>:cct tor::.: 
( 

~ t'j .! n-odd; t. (f , .• }(f, W n j n-even. (9) 

'~' tt ( .. ("j 4. ," fL 
') 1.!W /"::H.: ..... thatt rl e'\lell~·dimeJ'l8ional 

f o • "'1;_ ,.11,(. ('11':'" \. ,'Iuf: ~ ne <~('\!ii~·t:'d an,oub the gent'::rato?s., 

r. J ;tllr:;.l. ,,(In the ..·)',)' tl1~ geort.c t Ji\.:d.l .1nf'(IJ.·mation it; 

"'" ,,~; i. i the vc.'lume element is indistinguif.<hable froT/it-he onE':­

form gen~r~tors after they are represented as matrices. This 

point has implications which are discussed at length in the 

subsequent sections. 

ti 

~. QJJ,fford Algchl'aB 1n Four Dimensions • 

We proceed to construct the Clifford algebras l~ to~r 

dimenDions using the differential form realisat10n ot thp 

preceeding section. 
' a. \ .. ' In four dimensions, the one-form basis 1s 1(( ,t[ It! »« j 

and from these, we construct all higher rank forms via the 

exterior product. There are 24 • 16 such forms ot ranks O,1,i. 

3, and 4 respectively [8,9, 19J. It is possible to display all 

these forms in the following manner, which illustrates the 

three-dimensional subalgeora explicitly. 

{ 1 0'\ ,. .. 5~AG"i (5"t,,<fi1 w' O~I\()lM:rlf wit \ 
1 ,V, , ) ') , J 

i • 1,2,3; i ~ j. ( 10) 

Here there are two volume elements distinctly labelled 

as such; that 1n three space W'!,) , and that iTl fouT' dimens i \lne 

W't. 

By l1l?k i ng us£' qf the dualJty t:heO!('ii, 1, wb ~ :,r, e. !,l·~f::~.,el' 

:.j g}u~r raId forms ~s tl--,e vet; pl'tlf:iuI;t ,-.t .i (>" .i.'d.!':. 

the two V{U.lAme element8 I.AJ;' and i.A.,'" t Wf:' can tJ.t., " 't•.·\.· 

(10) more compactly in terms of ta~ vee )J!'(,dU(i a~: 

~ 1 () t (f 't w\ " (r ~ 6' "v C) ~ IN" IN ot V6' L wAt J'
1 l)} l " , (11 ) 

EaC!l element of this set (11) is directly equivalent to 
.';; 

~hr ~orr~sponding element in the above set (10). 

!'!le underlying vee group structure can be determined "~H ~. 

:.. :'!~ 'tie choose a specific me'tri'.:. (3). In four dimensionf .. 

',,-('I:'e are five distinct metr!.cs, designated by their 8ig""6"'~'!"'! 

~ ~(p,q). These are explicitly g(4,O), g(3,1), g(2,2}. g/. J 

~ ~~~.4). In gen~J.al, 

http:gen~J.al
http:metr!.cs
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g(p,q} • (~1.*1t*1.~1) (12) 

where there are p positive and q negative entries, and 

p+q-4. The order of the signs is immaterial. 

There is no a priori reason tha~ spaces of the same 

dimension but with different metric signature g(p,q) should 

have isomorphic Clifford algebras. It turns out th~t there 

are in fact isomorphisms among the Cliftord algebras in a 

base space of the same dimens10n, but distinct signature • .. 
These isomorphisms have been determined in [3,4,6] . 

The result is that there are only ~ nonisomorphiC 

algebra~ in a base space of four dimensions, and these are 

the Hajorana algebra tol, and the Clifford alg~bra in Minkowski 

spacetime H4 [3,4]. Their correspondence to the four­

dimentiinnaJ ['l)a(~';>G (if' dlstinct signature is as fo110w8 < 

DeT·"~·!;le ,.•!Jl"q 'che G~jff(J:rd A.lgf:r,r~-;\ 

:,f' ;:>l~",il c ~.l;:.{l~. the 3'1p,l'hraR h~ 

A4.0 N A~t' ~ .2,2 u = 4 i -I"' f·1\ =1"1 t 

In a spac-E'l w:5t;h metrf(, 

tou,.. dil'[l€'n~jonfl a.t:'p.~ 

£1,} N 4 0 ,4 N 
ft • 4. A • 4 

(13) 

This illustrates the isomorphisms between Clifford 


algebras in four dimensional spaces with distinct Signature. 


For details on the determination of these isomorphisms, see 


[;,4] . 

4. Clifford Ale;ebras in Five Dimensions: The Dirac Alge2£!.. 

In five dimensions, we follow essentially the same 

construction of Clifford algebras employed in the case ot tour 

dimensions,in the previous section. The number ot basis 

elements is now 25.32, which 1s double that i~ tour dimenaions. 

'r}le basis one-forms are I (IJ 61,O'\, ~MI cr~ 1.lollOWing our general 

construction, the complete set ot basis forms can be explicitly 

written as tollows: 

21,0'I',lSs/rsr,,(5)1/ rsl',,~ ~ cr1',,6'lIa~, al'"G""A6" \ w • , 0-".(5""/1 r~" r~J to ~J 
r.V,A -::: l,t,1,if j }'1 V 1/\ . <'14) 

This is a rather cumbersome set to deal with. However, 

just as in the preceeding case, the duality theorem simplifies 

the labelling considerably, since we can express the five-duals 

of forms as the vee product wj th the five-djrnenaictnal volume 

element. We obtain the followirlg equival~nt eet. to (14), 

11 I (J"" )<S C; J rsrAiS 11 , 6 ~,,6 S) i.N"'vt5 ~.\ o/~" 6'~\ 6~ ,vS"\ w'L.;(5IA, VI/' } 

(15) 
5The manipulations with the five-volume element W are 

almost trivial. since from theorem (2). wS commutes with all 

the basis forms in (15). Theorem (3) gives the square of W~ 

in the vee multiplication as either +1, or -1, depending o~the 

particular signature of the base space. In the case ~f the 

Dirac algebra A2,3 it is equal to -1, therefore the volume 

element WC; can be manipulated just like the complex unit 

i. ~. This is a very important pOint,. whose consequences 

are examined further below. 
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It appears that there are !hI!! distinct algebras 1n 

five d.ifll'msions. one of which is isomorphic to the familiar 

Dirac al~ebra D [3,41. The other two are isomorphic to a 
• i: 
~-!£ double copy of the Majorana algebra M, and a double copy ot 

the Clifford algebra in Minkowski spacetime N4 [,,4]. We 

can identify these alsebras with each particular metric as 

tallows. In the five dimensional spaces with metric g(p,q), 

the corresponding Clifford algebras AP,q are: 

,
A"O.N ~ N

4
, i 4,1.D, A,,2.M$ M, A2".D, A ,4.R4 $ I., AO,5.D• 

~ 4 
(16) 

Thus, the Dirac algebra is shown to be isoll;lorphic to the 

Clifford algebras in the spaces with metric g(4,1), g(2.3), 

and g(O,'»). 

011(' ,;.~. m<l' (' the ObtH~YVa tlon tha.t the ]H T.'ac algebra is 

j oenti j "'1 .t:r, prN~.i se ly thosE' spaces exp€'ctp.d f:r:om theorem 

:~. Th~ r:'ntir,Jc:ation t • .vlil:-IJ> i js va] 1d only when (1J)5 )2._1, 

and t,.'i t·fll:l')l't':lD 3. thi,; is only true in the spaces (4,1). (2,'> 

and (O.~). In subsequent discussion, D will be geometrically 

idcntifi(ld with the algebra A2•3• Even though the other two 

algebras A4 ,1 and AO,5 are isomorphic to A,2", the multipli­

c.ation rules for the individual forms (15) are distinct in 

each case. 

We now give the relationship of the Dirac algebra to the 

Clifford algebras in four dimensions. That is achieved via 

an identity easily verified with the vee-product rules in 42". 

w14 vw 5 .:::: _ (S"S 
(17) 

Using this identity, we oan rewrite the~elements (15) ot 

the virac algcura as the collection ot two similar sets, 88 

tollows: 

S1i ,15"\ cl',,15v, 1"~v6r, wY} -t W 1/Ii,<S'I', (J"...... (J"~ w~ ,,(1'.1", LoJ' ~ 

r,JI ": "~I)'''t j ff V (18) 

The elements in each set of braokets are precisely the 

elements (11) of the algebra in four dimensions. We have 

remarked that the properties of the volume element W
S 

are 

analogous to the complex unit, hence this rewriting appears 

as nothing more than a complexif1cation. Since the algebras 

1n four dimensions are either N4 or M, the Dirac algebra can 

therefore be thought of as a fteomplexification" of either the 

algebra N4 or the algebra i'1. 

This analysis has determined the relatlont;hip between 

tne three algeurao to be the following: 

D • M ,fl l....) 5vM ... iJ 4 (Q W5 vN 4 (19 ) 

w~i: c~n De written as a complexjftcatloh~ 

(20)j) • ~! S H1 • N4 e H14 

Note that, while M ~ N4, the "comp1exification" of each 

~~g~~;.ra ~.:::Jduces new elcrne!"'.ts in such a way that the sets 

",' • :'" a!ld N4 G iN4 are equivalent. 4 

http:elcrne!"'.ts
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5. The Construction of Matrix lteprescntations. 

This section collects and extends certain ceneral 

results from representation theory needed to construct the 

matrix representations o~ the algebras D, Mand N4• 

We begin by identifying the smallest Clifford algebras 

'With knovm associative algebras. By direct construction 

'using the vee-groups [3,4J ' it 1s easy to verify that the 

first few Clifford algebras are isomorphic to the toilowing 

associative algebras, (see also [6,7] ). 

!O,O.R, ,0,1.C, AO,2.H (21) 

These three algebras R (Reals), C (Complex) and H 

Quatcrnions) ar~ all associative, normed. 

These prope:rtie~j ident ify these algebras 

By vs I,t' tlw ve~-oglO1Jp st.ructurf:! f .1t 

ve',; r.l!~hf' 1;'i0';i).;.g ·:(;f:II;,~h.eb !'e) a.., lip,. 

division algebras .. 

as ~. 

.18 possible t·o 

oi:fip).~nt (:)iff(')rd 

I:f)g.,..~.: ',~ 	 Wf;"f' f~Xl •.i'ir'itj.y g:iV!>,; :tlJ lc...tarEHh~(' [4'] .. 
It('.]) 1f1.,. 1o'i.0 ArH/0'01 Ji. a: . ~ . 

AnrO ® AO,? • AO•n+2 
(22) 

Over any field K, we can define a matrix algebra, 

denoting as K(n) the nxn matrices with values from the field 

X. This matrix algebra can be used to construct matrix 

representations of some associative algebra. Since all 

Clifford algebras are associative, they possess matrix 

representations. 

A result of considerable importance is the determination 

of the representation space ot each Clifford algebra; i.e. 

what matrix field K(n) (or co~binations thereot) correspondS 

14 

to the lowest irreducible representation ot a ,iYe" Cll...ttord 

algebra. This has been done tor the Cliftordalgebras AO,n 

n O


and A • in the 	classic paper of Atiyah, Batt and Shapiro [6] • 

Their result indicates that one can construct all Clifford >' 

algebras as matrix algebras over the fields R. 0, and H. A 

method of obtaining the representation matrices was not 

however given. 

By successive application ot identities (22), and the 

elementary properties of matrix algebras, one can construct 

all Clifford algebras as matr1x algebras over R, C, ~d H[6J. 
The results are written as follows: 

A1,O.n e a, A2'O.a(2). A3'°.c(2), A4,0.H(2), A5,0.H(2) • H(2) 

,0,1.C, AO,2.u, 	AO,3.n $ H, AO,4_U(2), AO•5.c(4) 
(23) 

It 1s p(lS~".11 f' to use sini i.1ar m('>t.hoda t" dett:l'mine th~ 

special 	noncompact casp 

A3t~ .. R(4). 
C. ~/t) 

This (;ompl f'\'(~~ tn.e dH,(;!H!:;i (Jr· of i;he ,.'esul ~!;5 •.1 l'..' J ..{CI.rl. 

Bott. and Shapiro L6 J. \~e atop at five (Ulirt'rl,,,;(·,IJ~ Lii,.I"!; 

that is sufficient for this paVer, but it should be pOinted 

out that this process can be extended indefinitely to derive 

the periodicity of eight dimensions (see [4,6]). 

By comparing the above results to the classification Q( 

Clifford algebras in references [3,4Jl. we obtain an 

identification between thp. Clifford algebras constructed as 

vee-groups, and the present construction as matrix algebras 

over R. C, and H. For the algebras ot interest, compare (13) 

and (16) with (2}) and (24) to obtain the result: 

M-R(4). N4-H(2), D-C(4) 	 (25) 

http:p(lS~".11
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The impol'taut point is that we have thus determined the 

representation space of the Clifford algebras of interest. 

From (25) we see that the Majorana algebra can be represented 

by 4x.4 real matrices; the Clifford algebra in Millkowski space­

time N4 by 2x2 Quaternion-valued matrices, and the Dirac 

algebra tJy 4x4 Complex matrices. The first and last cases 

are confirmed by the representations that are well known in 

Physics. 

Matrix r&presentations ot the Clifford algebras An,a in 

even-dimensional spaces were first discussed by Jordan and 

Wigner [14J. Pauli gave his celebrated theorems for the 

special case of the Dirac matrices in [151. He utilized 

earlier ~ork of Schur [13]. 
'rle pref;cn there D.nalogues of those Pauli theorems that 

a:r~ RC~ ")' :,(:!(; an), CJlffard algehra. 'J'he fundamentalt.(! 

~"ilt.::().t ,. ,;, 

,!H'('l 11,'11 " W(l se ts oj antJ ,~omrrjnt1ng wa. t,clces representing 

u \:Uff, a; gelua in th~~ ~.. spa(~~ (and signa ture) are 

relateci':Jj a simJlal'ity tra.nsformatlon, 

This statement is equivalent to the Universality theorem 

of ClifforJ algebras [6]. 
Theorem 7: All the representation matrices have zero trace, 

except the unit. 

The proof is given in Pauli l15]. See also Good [20J. 
Theorem 8: (a) In spaces of even dimension, any matrix that 

commutes with all the representation matrices must be the unit 

matrix (up to a constant). 

(b) In spaces of odd dimension, there are two 

inequivalent matrices that commute with all the other matrices; 

thesc are the unit, and the matrix which represents the V01WU8 

element. 

This theorem 1s known under a variety ot guises. In 

reference [4], we determined the center of each vee group 

defining a 01ifford algebra, using theorems 2 ~d ,. The 

matrix representation of the center of each Clifford algebra 

gives a proof of theorem 8. It is interesting to note that 

when a Lie algebra is constructed from a Clifford algebra, 

theorem 8(a) survives in the celebrated Lemma of Schur. For 

the cormection between Clifford and Lie algebras, see [, ,4J . 
A distinct means of discussing the matrix represenlations 

is to use Kroenecker products ot spinors. This method is due 

to Cartan l. 21 ,22] and f3rauer and Weyl [2']. who did not 

however give a method for explicitly writing down the 

representations. An alternate method was provided by Freuden­

thal [ 24].. For a disCU8Sioll of these: methods. ket' [?5), 

The connection betwe£'n t,hese meth(ldf!, and the {;f("thod~ (:j f, Ic~~".' 

hel'e.h; ",,111 be the subject of a sepan,te i.:ommuhicai..lon. 

,*',. 
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i~ 6. r'~atrix Heprcsentatlona of the Mg~orana Algebra.,<.')--~ 

The Majorana algebra Mhas been shown in section 3 to be 

isomorphic to the Clifford algebra A3,1 (13). There£ore, the 

basis oneforms generating Mare <5\ ... ') <rae, with squares equal 

to (+1,+1,+1,-1). However, by theorem 4 , thv total number ot 

~tually anticommuting generators is five, since we must also 

in~lude the volume element W-(9). Hence, the generators ot M 

are: 

5 <s' (5'l. cr'} ($"" vJ" 1,1 J ) ) ) ~ (26) 

From theorem 3 we see that (vJ")2 .. -1 in. this case, 

hence the generators (26) have corresponding squares. 

1+1,+1,+1 ,-1,-1 ~ (27) 

The structure of the Majorana algebra is known from its 

underlying vee-group_ In particular, there exists the volume 

eleme;it W3 , which by theorem ; has square equal to -1. 
. l '..... ). tit' ~ 
'fru 1.~··f'i·;';rl t from. the(»)'f~m " ,W comtJl\1te~' with (f lV I v 

" ; f t" ~) pp"1 j (;Flt h:p "f i h~ VE-t" pr'(ldvr t (4) 8}H'WS that W~ anti""I 

,. It" cr ' and t",) Thj ~ detel"mines that part ot the 

,.i ... ru.c:t.ure thi:it· nf"eds to be reproduced by the 

repre-sufltation. 

The matrix representations of the Majorana algebra can be 

constructed by combining the results of preceeding sections. 

From (25), we know that they must be 4x4 real matrices. Further­

more, there must be ~ mutually anticommuting matrices, with 

squares equal to (27), and in addition, a matrix which commutes 

with those matrices corresponding to 6'1 ff2., (S" "!. and anti­

4commutes wi th those corresponding to (5' It and W" Using 

tbeorems 7 and 8 , it is not ditt.1cu1 t to find 8eta ot 
... 
t' 

matrices which satisfy the above requirements. An1 two such 

sets are by theorem 6 related by a similarit1 transtormationc 

In displaying the matrix representations, use will be made 

ot the familiar Pauli matrices, which are denoted by: 

rei =(0 1) , '1'1. -= (? ­~) )~ \': ( , 0)
lOt. 0 0 -I 

(28) 

Use will also be made of the real symplectic matrix denoted 

by Jf. i 't 2' which has square equal to -1. The unit matrix in 

two dimensions will be denoted as 11. 

Two equivalent matrix representations of the Majorana 

algebra are displayed in table I. Representation (a) is the on~ 

originally given by Majorana in [2J. Representation (b) 

appears here for the first timet and is inc)uded for cOlllpariaott 

purposefi. We have specifJ.cally ltldi{!ated the corrf'spondencc 

between thr:: gener·atol::l (26) al/(1 thl:: Lep' Ii' e!! "a' l..O!~ matr.!.L.f,'-; 
" 

The matrlx (!ol'r·ebpondi.flg t.(· the t:lel\it')i'~ I;.)' Jid8 V<.<f' ide:nt.ifJeu 

for comlJ1eieness 

The representation space R(4) of the Majorana algebra (25) 

is precjsely the real part of (and exactly one-half as large 

as) 0(4), the representation space ot the Dirac algebra. 
~, 
~ 

This provides an independent corroboration of the geometric 

relationship between the Dirac and Majorana algebras DaM 9 1M 

(20), derived in section 4. Note, however, that one ~ 

simply.split the Dirac matrices into real and complex parts to 

obtain representations ot the Majorana algebra. 
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'. t-Jatrix Hepr~sent.ations of the Dirac Algebra. 

The matrix representations of the Dirac algebra Dare 

too well known to need comment. However, it is only by 

constructing these representations using the formalism of 

thi~ paper that we can display the geometric structure of 

the Dirac algebra. And in this manner we can clear up the 

relationship between the three algebras D, M and H•• 

In section 4 we derived the result that the Dirac algebra 
2D is isomorphic to the Clifford algebra A. , '.. This algebra 

is generated by the set of five anticommuting elements 

~ c:r' ~ '1 cr '\ <f14 0'" ~ 1.'2 ) I I I J (29) 

which have squares in the vee multiplication respectively 

equal to: 

{-1 ,-1 ,-1 ,+1 ,+1l (:~O) :.r. 

The volume element u)5 in this ca~e {:cllUDutes with all• 
the elements of the aleebra. The algebraic properties of the 

volume elements in D have ~een discussed hl detail fn section 

4. 

lo'\rom (25), we Imow t):at the matrix representations of 

the Dirac algebra are 4x4 complex matrices (25). Two such 

equivalent sets are well known, and are listed in Table III. 

Ttte generators ~ f l r · 1, ••• ,5 correspond directly to"the tt 

usual 'I r . Representation (a) is the standard one in use 

l26J ' while reprcoentation (b) is due to Krarners [27 ] and 

is known as the "spinor" representation [28]. 

In particular, we have identified the matrices represent­

'.n~ the volume clements vJ~ w", and wS , thereby 

: _arifyi!lg the geometrical structure. We have identified 1 '> 

tr­



" 

.,." 
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as the g~nd'a tor associated with the f Ifth coordinate x 5 , and 
• 

not as the volume eloment W'" or W5 (pseudoscalar), with 

whIch jt, has tradItIonally been associated. This 1s a very 

important. distinction which has consequences discussed 1n tbe 

fol~~wing 8ection. 

Another matrix repre&entation ot the Dirac algebra was 

given by Sir A. S. Eddington. which he called the liE-numbers" 

[12] .. Eddington apparently did not realise that his -1­

.. 
3 
't" 
.~: 

numbers" "Iere isomorphic to the Dirac algebra. The Eddington 

matrices were given as a representation ot the Clittord 

algebra AO,5. We know that AO,5 is isomorphic to A2." the 

usual Dirac algebra (16); hence, the -E" matrices can be 

utilised to give a representation of the Dirac algebra D. 

It is instructive to show precisely how the Dirac 

~trices, or j r.; na1;.y constructed to descrlbe an algebra in 

to\n. J:; iller' :.i L .... ;tf'ttt&) 1.1 eepl'et,ent an algebra irl L!.!! 
d :,,1,· il.!;". dTig.l i, •.1,) ru~ 't,:d j'('6; of Dirat: \,!] are known a8 

t}·· , i ·-al ';}., .; 'i"e prf"-' t.'J1.1.at .lOTI LIY J, allt'. all haVE squares 

<'»l]U::.<.! t.r·. i, 'those matrj ces provide a representation at the 

blgebra A4 
• 
O ~ FrOA (13) we see that this algebra 1s in tact 

isomorphic to N4 ; however we cannot utilise A4.0 to describe 

vector fields in Minkowski apace. since it does not hav~the 

correct metric. This follows because the group isomorph!e. 

(13) do nQ1 preserve the geometric properties ot each individual 

algebra. 

The traditional method at describing vector tields in 

Minkowskl spacetime is to complexity the algebra ,4,0 ot the 

orIginal Dirac matrices in order to accomodate the Minkowski 

metric. ,'rhis is done in two different ways. 

TAnL~ II • 

Generators 

2~ 

The f"iatrix Representations ot the Dirac Algebra. 

aepresentation (a) Representation (b) 

(fir­ 0 'ttL) (~~ -~)~( -1." 0."-"1..)'; 

0-" (; !)(! -;) 
:)5 -(! _alL).U~) 

, ~ 0 \1),,0 -111.)W ( ( -L 11 0Lll. 0 

wll () .. 1) ( ~1 0 ) ~ 

0- -,11 ff(tl 0 

(,1 0)wS 
( ,1 .0)

o L1 \ 0 il 

/ ., 

.. 
\....._. 
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"~..•.:•.. ' - ~'~ 

~-<:t, 

Pil'ut. one can introduce a pur~ imaginary time component....... 


for each vector, to realise the (complexified) algebra 

A3 ,1 ~ iA,,1. The resulting algebra is just the Dirac 

algebra, since A,·1.M (1')', and M • rM-n (20). This method 

corresponds to the "Dirac-Pauli-ict method" (29]. 

A second method 1s to use imaginary space components. 

.which is equivalent to insertIng a factor ot 1 in the space 

This procedure results in the complexified algebrabases. 
InA1~' & iA1", which is also equal to the Dirac algebra. 

this case, A1 ,3.N4 (13), and B4 • ~N4·D (20). This 1s 

precisely how the "standard representation" (261 1s related 

to the original Dirac matrices [1,29J. 
following section, we discuss how it i8 possibleIn the 
vector fields in Minkowski spacetiDle without 

:> 	 to describe 

pomplexifjjng tbe four-dimensional algebra into the tlYe­

tll1enSl0l,a.: '.Il,·ac algebra. 

• 

~ 

.- - ....-~------~~-.--
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8. 	 Matrix UI!preoentations ot the Clifford A.lgebra in 
Minkowa!<i Spacetime. 

In this section, we isolate for ~he first tiJDethe 4.1:4 V·' 

complex matrix representations of this algebra, which haa been 

traditionally confused with the Dirac algebra. 

The Clifford algebra in Minkowski spacetime 1 1 ,3.14 is 

constructed in a similar manner as the Majorana algebra 

(section 3). N4 is generated by the five anticommutlng 

elements (26). with the important difference that the equares 

ot the corresponding elements are equal to 

{-1.-1,-1,+1,-1\ 	 (3~) 

WlThe volume element retains the same algebraic 

properties as in the Majorana algebra, except that 1n this 

case, its square is equal to +1. 
In section 5, we determined that the matrix representations":'" 

ot the algebra N4 inhabit the space of 2x2 quaternion matrices 

(25). lIe have constructed two (equivalent) representations 

of N4 in terms of quaternions. Hecall the def1nit10rl of the 

quaternion units , • j .k , satisfying the 07c1ic identity 

ij 	-:: - S~} t Lii"" 1<. 
(32) 

It is well known that we can represent the quaterniOns t1 

a8 2x2 complex matrices. 1 complex representation of the 

quatcrnions can be given in terms of the rauli matrices ~k 

k.1,2,3 as: 

• 	 .' to i) • ".,. l«:) I) k . 1-'-'" ), :. 	\1. = to ,J -:..,::.l11= -l () 1 =-"1:1 =\ 0 ~ 

(33) 



,"", 

25 

.. t Hence, our quaternion representations may be presented
"-l 

in a more practical manner as 4x4 complex matrices. These 

are denoted in Table III as representations (a) and (b). 

An examination of either representation (a) or (b) (Table 

III) will confirm the fact that they do not span the repre­

~- sentation space C(4}. 4x4 complex matrices. This follows 

because H(2), the representation space of N4, is only one­

" hal! as large as C(4). Quite independently, ve have shown 

using geometrical methods that the algebra K4 ,i8 one-hal! 

the size of the Dirac algebra D (20). Since D spans C(4} (25), 

we thus have an independent justification of relationship (20) 

in representation space. 

We note that representation (b) (Table III) can be 

related to a representation ot the Clifford algebra AO,4 given 

In L16, 17 ] t via the isomorphism A 0,4.11 ,3.N4 (13). 

An ob~ervation worth making is the tact that the represen­

tations of N4 in Table III can be obtained from the represen­

tatH>W;' \If t!'H' algebra A4tO.N4 in terms of the well-known 

.. l" and r matl'ices",111 a way sucb that one does !!,2.! comp1ex­

ify N4 int:() 1). (01"\mpare the discussion in the preceeding 

section.) In this context, representation (a) can be derived 

from the Kramers representation [27,28], and representation 

(b) from the Dirac-Pauli representation [1,29]. 

In this~paper, a total ot four representations ot the 
1 3

algebra A ' =N4 will be given (and these are by no means all 

the possible representations). By Universality, all the 

representations are related by similarity transformations, and 

are therefore equivalent. 

26 
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'l'AIlLE III • Matrix Jlepresentatlon8 of the 
Clifford Algebra in MinJtowski Sacetime. " 

Representation <a> Representation (b)Generators 

()'" 

~=I)1..,~ 

(J~ 

1w

w" 

! 

. I, 

(Ll~ .0 ) Ci\~)
t1 .. 0o -rrle­

(! -.)(~ !) 
(~ !)(! -1) 
(1 -!)(-1 !) 

~ 

tj 
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Two more representations ot "4 can be obtained trom the re­

presentations ot the Dirac algebra given in Table II, as 

follows. Since the differential form realisation of ,2".0 
preserves the geometric structure ot the four-dimensional sub­

algebra A1 • 3-N4' then the set {(f \ ~ l. ,0'" " (f '\ W't J in either 

representatlon (a) or (~) of Table II provides a representation 

of K • This identification has been utilised in reference 
4 

[a1 to obtain a complete set 01.' trace identities from the 

algebraic structure, which are useful in perturbation theory. 

Comparing Tables II and III, we can make the following 

Simple, yet vital observation: When one treats the i and the 

15 in til!' expression for the volume element vJ":. t1~ (Table 

II) as separate elements, then one necessarily obtains the 

complexifis~ of N4 (which is the Dirac algebra D). By 

using the representations of Table III, one cannot effect such 

a sep;....r~t} or. < 

;.1 ',~.c.'tl.1 "f'n1 undf"rJ', (H~S tOt: f'\u'ch~.JJwTttal point of our 

.. '111; th<:.;,::; thp. tact that we have 1.s01ated and -~\ '% ), 

.tdell1..1 ! ! ,'0 < '1 ;j at< a illlinct element of the algebra... This 

result follows exclusiv~ly from the use of the differential 

S 


torm basis, which singles out the volume element w as the 1 

in the Dirac algebra. In the traditional use ot complex 

matrix representations, one cannot distinguish between an i 

which is an element of the algebra, and any other i appearing 

in the representation space. Hence, the analysis ot this 

~aper is simply not possible with traditional methods. 

We h':-JI"_ t.hat this discussion bas cleared up the intricate 

!eJatlonship :>etween thp different matrix representations of the 

Dira(: algebr'a, and the Clitford algebra in Minkowski spacetime. 
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9. Conclusion. 

One of the historical problems of theoretical physics 

was in finding the appropriate algebraic structure corres­

ponding to spacetime with the Hinkowski metric. Por a long 

time, it bad been thought that the complete solution was pro­

v~ded by Dirac, but this is not so. The algebra sought for 1s 

tho Clitford algebra in Hinkowski spacetime, which is not well 

known in physics. This algebra has lacked up until now an 

explicit matrix representation that distinguishes it from the 

Dirac algebra. . 
We have identified the contusion between these algebras 

as arising from the fact that the original Dirac matrices 

defined a compact algebra (their squares were all +1), and 

could not directly describe physics in Minkowski spacetime. 

Two solutions to the problem of d.p.ser1h.in.g physicA in thE' !¥.. 

noncomnac~ frl1nkowski space wer~ (a> the u.s£' (if -+ ~,,~ I·'~t" 

metric, and (b) the construction of t.he \~i:j\:.91u:i/H'(;'" J:epre~en­

tat ion of the Dll"'ac matrices. (whIch differ- b..v factors ot .i. 

from the original ones). Both solutions doubled the origlnaJ. 

algebra from four dimensions to five dimensions~ The 

Clifford algebra in IUnJ{owski spacetime, which was in tact 

the algebra deSired, was thus overlooked. ~~jorana notlced A 
this paint, but hImself found not the C~ifford algebra in 

Minkowski spacetime, but the other distinct algebra in four 

dimenSions, which we have named in tribute to him. 

In this paper, we have constructed the Dirac algebra D, 

the Majorana algebra K, and the Clifford algebra in Minkowski 
•

spacetime N4, as separate and distinct algebras. The 

~. 
f 

.. 
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rela t ionRhj 11 lJetween these three alcebras is a complexi.t"ica­

tion. D = t·l ~ i1-1, and D - ..4 ~ ill4' but M I- 11•• 

Thu rC3ults obtained nave direct relevance to the 

desc.-.:-iption of physics in spacetime. sinee we are now able 

to geometrically identi1'y the physical f1elds 0'£ a given 

t\leo-.;rY with a particular e!!!Space and a particular metric. 

Thi..~ "geometrical" descri -ptlon ot fields has been u.tilised 

\. ' in _8,9,18J to obtain no-ntrivi~l physical resul.ts. 

In additio~ to the S!!!!!eometrical analysis, we have 

prc::::::avided t\-,O distinct pre:t,ctical methods of calculat1ng with 

tht:::::::::::se three algebras. Firat, the d1fferential torm reali ­

sa---tion using duality and- the divisible ·veen product provides 

a representation-free mE3ans ot calculation. It 1s th1s 

.f'c::=:::.rmalism, that ha~ been used in all our previous work. 

S~eond, ..tie hr-tvp. given 

o 'f thp t}11'd" ~!t.t'hraE 

t:::::-v~ ) . '":.. J (:(~ {) t ~PJwar~ 

......;JK·; t, "! W'(-~el 

":::=:':).·epr~,u t<:' to; (1fl 118 (;E~ • 

t=::he explicit 4x4 matrix representations 

a.. i' to1, aml W4' "f'iie rf'!prf!sentatlon of 

here /('It' ~\..}... :,i '{'.::.; ... .i,.1'llt- .' The 

~,-,p :. igt' :"".. 'f .. H· jee~ '1'. ~(·tly Il! the 

We have also ShOw-Tl that the "E-numberb" or Eddington are 

just anothC'!' representation ot the Dirac algebra. 

In conclusion, wee have shown that three algebras tradition­

ally regarded as isom-arphic are in fact dist~nctj and a tourth 

algebra that was thoUL-ght to be distinct i8 in tact isomorphic. 

We teel that the anaLysis ot this paper has cleared up a very' 

old confUSion, which has iBmediate consequences to the de8~ 

cr1 ption ot physics :::in spacetime. 
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