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 five-dimensional deSitter space with metric

1. Introduction.

In this paper we propose and prove the following point:
what has traditionally been regarded as the "Dirac algebra®
in fact refers to three entirely distinct algebras,

In addition to the Dirac algebra D [1] , we have identi-
fied and named the other two algebras as (i) the "Majorana

algebra® M [2,3,4] , and (ii) the Clifford algebra [5,6,7]

"in Minkowski spacetime [3.4,8.9] . These three algebras have

long Leen regarded as isomorphic. We demonstrate that they are
iﬁ fact distinct; first by algebraic construction, and secondly
by comparing the actual matrix representations,

The Dirac algebra D is the well-known algebra defined by
all combinations of the complex 4x4 Dirac matrices [1] . The
Majorana algebra M is that algebra defined by all combinations
of the rcal 4x4 matrices given by Majorana [2] . We construct
both aigebras as Clifford algeﬁras, [5.6,7] utilising the nyeen
product of differential forms introduced previously in [3.4.8J .
We show that D is isomorphic to the Clifford algebra A2'3 in the
g(2,3) =
(-1,-1,-1;+1,+1). while M is isomorphic to the Clifford algedbra
A3’1 in a four-dimensional apace with metric g(3,1) =
(+1,+1,+1,-1). This construction explicitly demonstrates that
D and M are in fact entirely distinct algebras.

In addition, both the Dirac and Majorana algebras have
been assumed to be isomorphic to‘the Clifford algebra in Min-
kowski spacetime A1'3. since Dirac obtained his matrices after
factoring the four~-dimensional wave operator [1] + In fact,

the Clifford algebra A"s corresponding to spacetime with the

Minkowski metric g(1,3) = (-1,1,~1,41) is not well-known teo

physicists, and is entirely distinct from both the Dirac and

Majorana algebras. In this paper, we provide for the first

time a 4x4 complex matrix repreaentation of this algebra, and
directly contrast it with the matrix representations of the
Dirac and Majorana algebras,

The presentation is as follows: We begin by reviewing
our construction of Clifford algebras in terms of differential
forms, duality, and the vee product [3.4,8]'. We construct all
the algebras in spaces of four dimensions, and identify these
algebras with eithgr M, or N4, using the "vee group" atrﬁcture
of rcference [4] . Then, algebras in spaces of five dimensions
are constructed, among them the Dirac algebra D. Two new

algebras appear, which are isomorphic to N4 & N4 and M @ %,

respectively. ve show how the relationship betwes. i a i
D, ¥ and Nq canr he thought of as a compleniii «:ion:
DeM@ iMe N4 @ 1N4. where 1 is identified with .. . ..

of forms, and possesses the alpgebraic preperiics ¢F
unit iw {:T .

Following tﬁis, we construct the matrix representations of
these algebras, we review the determination [G]Of the represen~
tation space of each Clifford algebra. This fundamental wor?;
i8 not yet well-known to physicists, perhaps because the matrix
representations were not explicitly given. We review and
combine results on the construction of representation matrices
[13,14,15] » and give the explicit matrix representations of
N4. M and D. The matrix representation of N4 appears here for
the first time, It is intimately related to the matrix

representations of the deSitter group {16,17] .
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The C1ifford algebta A3 in Minkowski spacetime has heen
the subject of two more extensive studies [8,9] » where the
applications to physics in spacetime were presented. In that
work, a matrix representation was not introduced, since the
novelty and utility of the formalism is the representation-free
method of calculation. In reference [9] we show how anti-
symmetric fields in spacetime can be multiplied and divided

-associatively, using the notation of traditional vector algebra.
For related, but distinct studies of N, see [10,11] .
‘ There exists a related algebra constructed by Eddington
[121 in terms of his "E-numbers". This algebra has tradition-
ally been regarded as distinct from the Dirac algebra. We show
that they are in fact isomorphic.

In sumcary we show that the Dirac, Majorana, and the
Crifeard a1l . ws ip Minkowski spacetime which traditionally
have buen Tegertod as isomorghic, ar¢ in fact distinct. The
Bddington * ~numbers" traditionally regarded as distinct to the
Dirac aigebra, are shown to be isomorphic to it,

The ultimate aim of our study is to clarify precisely
that algevbraic structure which possesses an intrinsic relation-
ship to pnysics in spacetime [8,9,18'}. A necessary first step
is the clearing up of the relationship between the various
algebras traditionally used for the description of physics in
spacetime. We believe that this is accomplished in the ﬁreaent

conmunication,

2. <Construction of Clifford Algebras as ®Vee'-Groups.

In our analysis, we will employ the differential form
realisation of Clifford algebras introduced in references
[3,4,8]’. This enables us'to compare the structure of the
three algebras of immediate interest without resorting to
specific matrix representations, which will be introduced
later. We review here the basic definitions of the "“vee"-
structure necessary in the analysis of this paper.

o
Consider the differential basis oneforms 0 = dx*

. of
any flat space of dimension n. There are 2" vasis forms of

all ranks, which are construoted using the exterior,préduct A
[19] .
' n = .
{ 1,6 GéAGP,.N, W % a-“.HV\,f¢§
) : (1)
¢
We have labelled the volume element in n dimensions

as u)“

R P
w =G A8 A NG (2)

Define a metric scalar form %qﬁ, which is diagonal, and
has entries either +1 or -1 [19].
&
oyt < (59 0F)
3 ! (3),
*d
Define a multiplication v, called "vee", [3,4,8] between
2 basis r-form and a basis (s-r)-form as the sum of permutatlone

ot basis forms in (1) with successive contractions (3).

befinition: (O‘/A'A . 67‘() (O"AH‘A '/\625) -
, 118% ﬁs-r Ms
S AN e)
vi(s I‘)l e ﬂ; '; kZ-_*’

(.jl‘)a'..%ﬁzk'lﬂzk ?'th 6'}5 “




W

s
dere, (~1) 18 the sign of the permutation

U .-,{) .
(,?| Ar - )r S (5)

Definition (4) is in practice quite simple to use; see
the examples in references [3.4.9] . In references [3,4}
we have shown that the algebra of forms defined by (1) and (4)
is in fact isomorphic to the real Clifford algebra correspond-
ing to the space defined hy the metric (3).

By direct calculation, one can tabulate the vee product
between all the distinct basis forms in (1). Each basis form
in (1) possesses a unique inverse which is the form itsels,
up to a sign; hence the set of forms (1) form a finite group
under "vee"., This group is called the "vee®-group [3,4] N
and is of order 2"’ {since we must count the forms in (1)
ajong with thesr pegalives as geparate elemeants). We can

dner.ify cnc “eee® grouy of Lorms (i) in the space (3] with
& Mnow,. Tiviie group.  This as peen oone for all distanct
spaces (3) in {3,4} , and serves to provide a classification
of all Clifford algebras in terms of the corresponding “vee“-
groups. All the interesting properties of the Clifford
algebras follow essentially from this group structure,

A key result of our work is the following "duality
theorem", which reduces the notion of duality from the
traditional index operation [19] to a purely algebraic
manipulation. Duality in our framework is achieved by
multiplication by an element in the algebra. This is

exgressed in the "duality theorem" [3,4]

Theorem 1: The dual of any form f is the vee product of that

form with the volume element.

- 4
(x§)= tw'vf | (6)
The sign depends on r, on the signature and dimension n
of the base space, and on the rank of f. (Note that r £ n).
The r-dimensional dual is accomplished by vee multiplying a
form with the r-volume element.
What is novel in this formalism is the fact that we can

take duals of the same form in different dimensions, inter~

change them, combine them, and separate them into their
corresponding subspaces, Jjust by simple algebraic manipulation.
This utility is of particular impcrtance in separating tﬂe
space dual in three dimensions from the spacetime dual when
working in four-dimensional spabetime. For examples on the
application of the duality thecrem, see [3}4.9] .

As an applicatior of the <uality, we can label el the
higher rank forms in terms of tue duals of corresponcing
lower rank forms. For insiance, 6'ACt At Juni
four-dual of the form 6’3, which canr be wiitien vin Lheni.
(6) as & A6 AcM = whve?.

The algebraic manipulation of duals using the duality
theorem (equation 6) dependsvon the algebraic properties of
the volume elements. These were originally given by Cliffond
[5 ]. Ve recall them here as theorems? and 3.

Theorem 2: The volume element commutes with all the elements
of the vee-group in that space if the dimension of the space
n is odd; and anticommutes when n is even. If ¢ is any member
of (1), then

n4t

v =(-1) evw" .
WV (-1) v -



& ?
Qpzorum 3: The square of a volume element in the vee
w ‘
multiylication is giv#n by: }
) )r\(h—t)/;,, |
w) = wvw" = (-} eta =t .
) ( det o ®)

Here, g is the metric of the base space (3). The proofs
are direct,

The implications of theorem 2 are far reaching in terms
of representation theory, since that theorem can be utilised
to give the following structural result:

Iheorem 4: Clifford algebras in n dimensions are generated

by n mutually anticommuting elements when n is odd; and by

n+1 mutually anticommuting elements when n is even.

H

€ . ',h r
geraralors )t f\(}n=odd; {GJ,.,,G)'U)“k n=even, (9)

TRESCen G e s s s e fach that oy even-dimensional

Bl e e B30 fEE De Goonted among the generators.

Yol sentuiion theory the geowetrical information is
.out, the volume elemeni is indistinguishable from the one-
form gererators after they are represented as matrices, This
point has implications which are discussed at length in the

subsequent sections,

preceeding section.

b} Clifford Algebras_in Four Dimensions.

Py

e proceed to construct the Clifford algebras in four
dimensions using the differential form realisation of the

In four dimensions, the one~form basis is 1"10‘110",(“}
and from these, we construct all higher rank forms via the
exterior product. There are 24 . 16 such forms of ranke 0,1,<,
3, and 4 respectively [8,9,19} It is possible to display all
these forms in the following manner, which illustrates the

three-dimensional subalgebra explicitly.
{1‘O'i’ﬁ“’6"/\53,6’11\6‘1)0’3,0’&{\53[\0’“,N“k
1 =1,2,3; 14§, (10)
Here there are two volume elements distinctly labelled
as such; that in three space 0)3 , and that in four dimensions
wh,
By making use of the duality theorew 1, whion e prestes
igher rouk forms as trhe vee product o f dow pant oo
the two voiume elenents “}3 ang w s WE can o bhe oot
(10) more compactly in terms of tie vee produci as:
Sl1)S.\»G'“)Ws‘/ow»m\/gqmWj\W*VOA»W“j (1)
Each element of this set (11) is directly equivalent tc*g
*he corresponding element in the above set (10). ‘
T:ie underlying vee group structure éan be determined o= o
» :2m we choose a specific mewri. (3). In four dimensione,
~eTe are five distinct metrics, designated by their 8igretym
) !(p;q). These are explicitly g(4,0), g(3,1), g(2,2}, =’ *

7 3{9,4). 1In general,
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g(p,a) = (21,21,a1,11) (12)
where there are p positive and q negative entries, and
p+q=4. The order of the signs is immaterial.

There is no a priori reason that spaces of the same
dimension but with different metric signature g(p,q) should
h;vé isomorphic Clifford algebras. It turns out that there
are in fact isomorphisms among the Clifford algebras in a

base space of the same'dimension, but distinct signature.

. These isomorphisms have been determined in [3,4,6} .

The result is that there are only two nonisomorphic
algebras in a base space of four dimensions, and these are
the Majorana algebra M, and the Clifford algebra in Minkowski
spacetime 34 {3.4] . Their correspondence to the four-
dimensicnal spaces of distincet signature is as follows.

R

Derctyug ae the CLifford algerrs fn a space with metric

of wigouiv. ¢ ¢lu,u7, the algehras i four dimensinns ave:

4.0

51 ¢ .
P S A CLL PR =ng, A0 N,

(13)
This illustrates the isomorphisms between Clifford

algebras in four dimensional spaces with distinct signature.

For details on the determination of these isomorphisms, see

[3.4] .

4, Clifford Alpebras in Five Dimensions: Ihe Dirac Algebra.

In five dimensions, we follow essentially the same
construction of Clifford algebras employed in the case of four
dimensions,in the previous section. The number of basis
elements is now 25-32, which is double that in four dimensions.
The basis one-forms are § 6',61,0”, & 6’9} .Pollowing our general
construction, the complete set of basis forms can be explicitly

written as follows:

r Ve 65w
fl,ar‘,ﬁ,df',\c”',cmo‘ﬁ §FACAGA, TG W, aFaC AT A, W y

AV L% pEVER L (14)

This is a rather cumbersome set to deal with. However,
just as in the preceeding case, the duality theorem simplifies
the labelling considerably, since we can express the five-duals
of forms as the vee product with the five-dimensicnal volume

element. We obtain the following equivalent set to (14},

31'aﬁ)65,6’16v,6”A65)w“vﬁﬂpﬁﬁAﬁﬂés’w“)wsvﬁﬂ.mg}
(19)

The manipulations with the five-volume element W are
almost trivial, since from theorem (2), w® commutes with all
the basis forms in (15). Theorem (3) gives the aquare’of ws
in the vee multiplication as either +1, or -1, depending oN-the

particular signature of the base space, In the case of the
Dirac algebra A2'3 it is equal to =1, therefore the volume
element t»s can be manipulated just like the complex unit
im =1 . This is a very important point, whose consequencea

are examined further below.




11 , 12
1t appears that there are three dintinct algebras in ‘ the Lirac algcbra as the collection of two similar sets, as
five dimensions, one of which is isomorphic to the familiar follows:
. . 5 v
. Dirac algebra D (‘5,4] . The other two are isomorphic to a 31 ,GP\C"/\G\), hl”vO”“,“’"% + W \/z 170"', O""Af,qud'", W"f
T double copy of the Majorana algebra M, and a double copy of
: the Clifford algebra in Minkowski spacetime N, [3,4] . we MV = Lt j pivV. (18)
- can identify these algebras with each particular metric as ' The elements in each set of brackets are precisely the
% follows. In the five dimensional spaces with metric g(p,qa), -elements (11) of the algebra in four dimensions. We have
-
the corresponding Clifford algebras AP’ are: remarked that the properties of the volume element W~ are

o 1 2 v 1 analogous to the complex unit, hence this rewriting appears
St 4+lp, A%+2an @ M, 42930, 2V 14, @ W, 200%D.
(16)

Thus, the Dirac algebra is shown to be isomorphic to the

N, & N., .
Ny @ Ngo A as nothing more than a complexification. Since the algebras

in four dimensions are either 84 or M, the Dirac algebra can

therefore be thought of as a “complexification"® of either the

¢ t t
Clifford algebras in the spaces with metric g(4,1), g(2,3), algesra N4 or the algebra H.

. I
and £(0,5). This analysis has determined the relationship between

Orie can mwa. ¢ the ohservati that the Dir
B CAT fer e THE onservation tha irac algetra is the three algeuras to be the following:

identitie with precisely those spaces expected from theorem

. 5 u 5
5. The sirntification W2 1  is valid only when (W )2m=1, D=MHWVM = ¥, ®W’ VN, (19)
ancd 'y theovem 3, this is only true in the spaces (4,1), (2,3) whi~ cun ve written as a complexification:
s 1 7 £ h.
and {0,5). 1ln subsequent discussion, D will be geometrically DaMg il = “4 ® 1N4 (20)

identifiod with the algebra A2.3. Even though the other two

4.1 0.5 Note that, while M # N4, the “"complexification" of each
L 14

algebras A and A are isomorphic to A2’3, the multipli-

i1lgehra .»oduces new elements in such a way that the sets

g

cation rules for the individual forms (15) are distinct in v i ead N4 ® 1, arc cquivalent. . i
each case.

We now give the relationship of the Dirac algebra to the
Clifford algebras in four dimensions. That is achieved via

an identity easily verified with the vee-product rules in A2'3.

wivw® = -¢°
(17)

Using this identity, we can rewrite the. elements (15) of
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5. The Construction of Matrix Represcntations.

This section collects and extends certain general
results from representation theory needed to construct the
matrix representations of the algebras D, M and N4.

Ve begin by 1dentifying the smallest Clifford algebras

with known associative algebras. By direct construction

‘using the vee-groups [3,4] y it 18 easy to verify that the

first few Clifford algebras are isomorphic to the following

associative algebras, (see also f6,7] ). ——

29O, % 1c, 102k : (21)
These three algebras R (Reals), C (Complex) and H
Quaternions)} are all associative, normed, division algebras.

These properties identify these algebras as fields.

By vsing the ves-group structure, it is possidle to
verify the followoeng faenitties relay g difierent Clifford
Bigelas v Lo weee expdiciidy gives b reference [4] “

a‘r;"‘ ® A?‘O . Am-zgv
An,O ® AO'? - A0,n+2
(22)
Over any field K, we can define a matrix algebra,
denoting as K(n) the nxn matrices with values from the field
K. This matrix algebra can be used to construct matrix '
representations of some associative algebra. Since all '
Clifford algebras are associative, they possess matrix
representations.
A result of considerable importance is the determination

of the representation space of each Clifford algebra; i.e.

what matrix field K(n) (or combinations thereof) correspond$

o et it i o e <

_however given.

14

to the lowest irreducible representation of a glven Clifford
algebra. This has been done for the Clifford algebras A0

and A"’o in the classic paper of Atiyah, Bott and Shapiro [6] .

~ Their result indicates that one can construct all Clifford

algebras as matrix algebras over the fields R, C, and H. &
method of obtaining the representation matrices was not
By successive application of identities (22), and the
elementary properties of matrix algebraa, one can construct
all Clifford algebras as matrix algebras over R, C, aﬁd H [6].
The results are written as follows: ' ‘
211%1 g R, 42:%(2), 43'%c(2), a**Cui(2), A%%u(2) o H(2)

2%, 2020, 40305 o 1, A%4ai(2), 40%5ac(4)

(23)

It is possiule to use similar methods to determine ihe
specilal noncompact case

A2t e R(a). (24

This compleies the discvesior of the resuwiis «f 4v,yah,
Boti, and Shapirc L6;]. We stop at five dimensicns sirre
that is sufficient for this paper, but it should be pointed
out that this process can be extended indefinitely to derive
the periodicity of eight dimensions (see [4.6] Y.

By comparing the above results to the classification of
Ciifford algebras in references [3,4],, we obtain an !
identification between the Clifford algebras constructed as
vee-groups, and the present construction as matrix algebras
over R, C, and H, For the algebras of interest, compare (13)

and (16) with (23) and (24) to obtain the result:

M=R(4), N, =H(2), D=C(4) (25)
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The important point is that we have thus determined the
representation space of the Clifford algebras of interest,
From (25) we see that the Majorana algebra can be represented
by 4x4 real matrices; the Clifford algebra in Minkowaki space=-

time N, by 2x2 Quaternion-valued matrices, and the Dirac

4
algebra by 4x4 Complex matrices. The first and last cases

are confirmed by the representations that are well known in
Physics.

- Matrix representations of the Clifford al;ebraa An,O in
even-dimensional spaces were first discussed by Jordan and
wigner [14] . Pauli gave his celebrated theorems for the
special case of the Dirac matrices in {15] .« He utilized
earlier work of Schur [13] .

We present bere analogues of those Paull theorems that
are gors oal sl tooany Slifford algebra., The fundamental
CUTTURRINEEE
Cagerca Go any iwo sets of anticommuling matrices representing
a ciafier - ajgeLra in Uhe game space {and signature) are
reiated by a similarity transformation.

This statement is equivalent to the Universality theorem
of Clifford algebras [6] .

Theorem 7: All the representation matrices have zero trace,
except the unit.

The proof is given in Pauli [15] « See also Good [2Q}.
Theorem 8: (a) In spaces of even dimension, any matrix that
Vcommutes with all the representation matrices must be the unit
matrix (up to a constant),

(v) In spaces of odd dimension, there are two

inequivalent matrices that commute with all the other matrices;

16

these are the unit, and the matrix which represents the volume
elcment. ‘

This theorem is known under a variety of guises. In
reference [42 s we determined the center of each vee group
defining a Clifford algebra, using theorems 2 and 3. The

matrix representation of the center of each Clifford algebra

~gives a proof of theorem 8. It is interesting to note that

when a Lie algebra is constructed from a Clifford algebra,
theorem 8(a) survives in the celebrated Lemma of Schur. For
the connection between Clifford and Lie algebras, see [3,43 .
A distinct means of discussing the matrix fepresentations
is to use Kroenecker products of spinors. This method is due
to Cartan |[21,22] and Brauer and Weyl [ 23], who did not
however give a method for explicitly writiﬁg down the
representations. An alternate method was provided by Freuden-\
thal [24] . Por a discussion of these methods, sec {?5] ¢
The connectionr betweer these methoeds, and the methode dirvus.. ]

herein will be the subject of a separste communicailon.




17

6., Matrix Hepresentations of the Majorana Algebra.

The Majorana algebra M has been shown in section 3 to be
isomorphic to the Clifford algebra Al (13). Therefore, the
basis oneforms generating M are 6%...,6’", with squares equal
to (+1,+1,+1,-1). However, by theorem 4 , the total number of
mptually anticommuting generators is five, since we must also
.inélude the volume element ml‘(9). Hence, the generators of M
are:

{6355616”1““§ (26)

)2 « -1 in this case,

From theorem 3 we see. that (uﬁ

hence the generators (26) have corresponding squares,

3 +1,+41,+1,-1,~1 3 (27)

The structure of the Majorana algebra is known from its
underlying vee-group. In particular, there exists the volume
element £b3, which by theorem 3 has square equal to -1,

Bu tierunoc, from theorem 2 , WP commutes with G|)U>,5'3 .
A ree apblicafiun af ihe vee pfnduct {4) shows that bdsantlw
6" and 1%, This determines that part of the
-~ sieructure that needs to be reproduced by the
representation.

The matrix represcntations of the Majorana algebra can be
constructed by combining the results of preceeding sections.
From (25), we know that they must be 4x4 real matrices. .Further-
more, there must be five mutually anticommuting matrices, with
squares equal to (27), and in addition, a matrix which commutes
with those matrices corresponding to 6",0"', 6'3 and anti-

commutes with those corresponding to 6" and w" . Using

18

theorems 7 and 8 , it is not difficult to find sets of A
matrices which satisfy the above requirements. Any two such
sets are by theorem 6 related by a similarity transformation.

In displaying the matrix representations, use will be made

of the familiar Pauli matrices, which are denoted by:

’(1-'-(0 l) 7’51:(? -i) )Tsz(‘ o>
1o L 0 o -l
(28)

Use will also be made of the real symplectic matrix denoted
by J = 1’t2, which has square equal to -1. The unit matrix in
two dimensions will be denoted as 7]. '

Two equivalent matrix representations of the Majorana
algebra are displayed in table I, Representation (a) is the one
originally given by Majorana in [2']. Representation {b)
appears here for the first time, and is included for comparieoﬁ
purposes. We have specifically indicaled the correspondence
between the generatois (26) and the seprerenia: ton matvives
The matrix corresponding to the ciewment u{‘nas o jdentifies
for compleleness,

The representation space R(4) of the Majorana algsbra (25)
is precisely the real part of (and exactly one-half as large
as) C(4), the representation space of the Dirac algebra. "
This provides an independent corroboration of the geometricé
relationship between the Dirac and MaJ;rana algebras D=M @ iM
(20), derived in section 4. Note, however, that one cannot
8imply split the Dirac matrices into real and complex parts to

obtain representations of the Majorana algebra.




\,p

TABLY T,

Generators
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¥atrix Representations of the Majorana Algebra.

Representation (a) Representation (b)
o 1
R 1 Ty o ( )
¢ ( 0 'r,) 1 oo
PR 0 -—J 0 -J’)
¢ < J o) ( J o
3 S 1 o
° ( ° ‘T') (° ‘1>
ot °o 3 “fo T
( J o =Ty O
3 o 1 Y o
w ! (—-1 0 ) ( 0 T)
* \f.)" ‘ J o 0 't|
| o -J o)

=T,

‘e Matrix itepresentations of the Dirac Algebra.

The matrix representations of the Dirac algebra D are
too well known to need comment. llowever, it is only by
constructing these representations using the formalism of
this paper that we can display the geometric structure of
the Dirac algebra. And in this manner we can clear up the
relationship between the three algebfas D, M and N4:

In section 4 we derived the result that the Dirac algebra

D is isomorphic to the Clifford algebra A%’'>, This algebra

is generated by the set of five anticommuting elements

{o',6%0% 6" 6%} . (29)
which have squares in the vee multiplication respectively
equal to:

{-1,-1,-1,+1,*1§ (30)

The volume element W° in this case computes with all
the elements of the algebra. The algebraic properties of the
volume elements in D have been discussed in detail jin section
4.

From (25), we know that the matrix representations of
ti:e Dirac almebra are 4x4 complex matrices (25). Two such
equivalent sets are well known, and are listed in Tablg I11.
The generators G‘f) P = 1,...,5 correspond directly to the LE
usual Yf . Representation (a) is the standard one in use

[26} , while representation (b) is due to Kramers [27] and
18 known as the "spinor" representation [28] .
In particular, we have identified the matrices represent-

Yy

3
»ng the volume clements W, w , and qu, thereby

:.arifying the geometrical structure. We have identified ] K

L

S

&




as the gencrator associated with the fifth coordinate xﬁ, and
not as the volume elcment bd“ or uJS {pseudoscalar), with
which it has traditionally been associated. This is a very
important distinction which has consequences discussed in the
follewing section. ’
Another m trix representation of the Dirac algebra was

given by Sir A. S. Eddington, which he called the “é-numbere“

[j?] . - Zddington apparently did not realise that his #E-
numbers" were isomorphic té the Dirac algebra. The Eddington
matrices were given as a representation of the Clifford
algebra AO'S. We know that AO’S is isomorphic to A2’3. the
usual Dirac algebra (16); hence, the 9"E® matrices can be
utilised to give a representation of the Dirac algebra D.

A It is instructive tc show precisely how the Dirac
métrlnes orvig:nally constructed to describe an algebra in

i
fovr diwer:.o.e. artaally rcepresent an algebra in five

v

Giawe s fea origieal metrices of Dirae ;,2] are Known as
tho g aae i representation i:&a}, ant all have squares
eguusi te 1. Those matrices provide a representation of the

algebra 34'0 . Prom (13) we see that this algebra is in fact

isomorphic to N4; however we cannot utilise A"o to describe

vector fields in Minkowskl space, since it does not have the

correct metric., This follows because the group isomorphies

(13) do not preserve the geometric properties of each individual

algebra.
The traditional method of describing vector fields in

Minkowski spacetime is to complexify the algebra A"o

of the
original Dirac matrices in order to accomodate the Minkowski

metric, 'This is done in two different ways.

Car et

2¢

TABLE II. The Matrix Representations of the Diraec Algebra.

Generators Representation (a) Representation (b)
6"‘ o T (s] -Tk .
k=421,? (..'[,_ o) (M’rg 0
1 ° o 1 ]
o o -1 1 o
~5 (o 1 W(n 0)
i - \1L o o -1/.
Y o -i1 o 1Y
W Nz o 41 o
y ° 1 id o x
w . ((1 O) ( o '—-i'ﬂ) '
o 1 © 11 o
o 1 \\0 ,
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First, one can 1ntrodﬁce a pure imaginary time component
for each vector, to realise the (complexified) algebra
A3'1 Y 1A3". The resulting algebra is just the Dirac
algebra, since 13’1-M (13); and M @ iM=D (20). This method
corresponds to the "Dirac-Pauli-ict method® CZQ] .

A seécond method is to use imaginary space components,

which is equivalent to inserting a factor of i in the space

bases. This procedure results in the complexified algebra
413 @ ia'*3, which is also equal to the Dirac algebra. In
= is

this case, A'*3=N, (13), and N, @ iN,=D (20). This
precisely how the ngtandard representation® [26] is related
to the original Dirac matrices [1,29] .

In the following section, we discuss how it is possible
to describe vector flelds in Minkowski spacetime without

ive~
. s tne four-dimensional algebra into the b4
icomplexi.fymO 12

rimenslona: nirvac algebra.

8, Matrix Representationsof the Clifford Algebra in
Minkowski Spacetime.

In this section, we isolate for the first time the 4x4
complex matrix representations of this algebra, which has been
traditionally confused with the Dirac algebra.

The Clifford algebra in Minkowski spacetime A'*’aN, is
c;nstructed in a similar manner as the Majorana algebra
(section 3). N4 is generated by the five anticommuting
elements (26), with the important difference that the squares

of the corresponding elements are equal to

{-10-1,-1,41,11 (3
The volume element W> retaine the same algebraic
properties as in the Majorana algebra, exbept that in this

case, its square is equal to +1.

In section 5, we determined that the matrix repreaentationa¢

of the algebra N, inhabit the space of 2x2 quaternion matricea
(25). We have constructed two (equivalent) representations
of N4 in terms of quaternions. Recall the definition of the
quaternion units i .j ,]( , 8atisfying the cyclic identity
ij= —81} + iajf—-k
(32)

It is well known that we can represent the quaternidns P
F]
as 2x2 complex matrices. A complex representation of the

>

quaternions can be given in terms of the Fauli matrices Ty ,
ke1,2,3 as:

[0 1) % STE R PR A
i :.ﬂ’..-‘—(; o)).] = =lTl-(_: 0))1‘- t‘t,-(o i)

(33)

N
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Hlence, our quaternion representations may be presented
in a more practical manner as 4x4 complex matrices, These
are dencted in Table 11l as representations (a) and (b).

L An examination of either representation (a) or (b) (Table

T II1) will confirm the fact that they do not span the repre-

f;' « sentation space C(4), 4x4 complex matrices. This follows

B because H(2), the representation space of N4, is only one-

;fQ half as large as C(4). Quite independently, we have shown

= using geometrical methods that the algebra N, 1is one-half

' the size of the Dirac algebra D (20). Since D spans C(4) (25)’
we thus have an independent justification of relationship {20)

in representation space. |

We note that representation (b) (Table III) can be
?elated to a representation of the Clifford algebra A0’4 given
in [}6,1??}, via the isomorphism A0'4-A1'3-N4 (13).

( " An observation worth making is the fact that the represen-
tations of N4 in Table II1 can be obtained from the represen-
tations of the algebra A4’O:N4 in terms of the well-known

* A and {, matrices®, in & way such that one does not complex-
ify N4 inte . {Onmpare the discussion in the preceeding
section.) In this context, representation (a) can be derived
from the Kramers representation [27,28:}, and representation
(b) from the Dirac-Pauli representation [1,29] .

In this-paper, a total of four representations of the
algebra A1'3=H4 will be given (and these are by no means all
the possible representations). By Universality, all the
representations are related by similarity transformations, and

are therefore equivalent,

26 .

PABLE III. Matrix Representation thg‘
Clifford Algebra in Minkowski Spacetim

Generators Representation (a) Representation (b)

Gk (Vtk (o]
k=41) o -iTk

4 ° 1
° (1 o)
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Two mere representations of N4 can be obtained from the re-
presentations ot the Dirac algebra given in Table II, as
follows. Since the differential form realisation of A2'3=D
preserves the geometric structure of the four-dimensional sub-
algebra A1'3=N4, then the set %G',GI,G‘,G“,NQ} in either
représentation (a) or (v) of Table I1 provides a representation
of N,. This identification has been utilised in reference

{8] to obtain a complete set of trace identities from the
algébraic structure, which are useful in perturbation theory.

Comparing Tables II and III, we can make the following
simple, ycu vital observation: When one treats tﬁe i and the

XS in tue expression for the volume element uf‘:ijg (Table
II) as sepurate elements, then one necessarily obtains the

complexification of N, (which is the Dirac algebra D). By

using the representations of Table III, one cannot effect such
a separstior.

TR af{;nen? underiines the fundamental point of our
rhd v S e Lh;z s 4he tact that we have isolated and
sdentifred . u i as a aistinet element of the algebra. This
result foliows exclusively from the use of the differential
form basis, which singles out the volume element w? as the 1
in tne Dirac algebra. In the traditional use of complex

matrix representations, one cannot distinguish between ap i

which is an element of the algebra, and any other i appearing
in the representation space. Hence, the analysis of this
~aper is simply not possible with traditional methods.
We hope that this discussion has cleared up the intricate
rejationship hetween the different matrix representations of the

Dirac aigebra, and the Clifford algebra in Minkowski spacetine,

28

9. Conclusion.

One of the historical problems of theoretical physics
wasg in finding the appropriate algebraic structure corres~
ponding to spacetime with fhe Minkowski metriec. Por a long
time, it had been thought that the complete solution was pro-
vided by Dirac, but this is not so. The algebra sought for is
the Clifford algebra in Minkowski spacetime, which is not well
known in physics. This algebra has lacked up until now an
explicit matrix representation that distinguishes it from the
Dirac algebra.

We have identified the confusion between these algeb}aa
as arising from the fact that the original Dirac matrices
defined a compact algebra (their squares were all +1), and
could not directly describe physics in Minkowski spacetime,
Two solutions to the problem of describing physics in the
noncompact Minkowski space were {a) the uge of 1o Nicts
metric, and {(b) the construction of the “sigudarvi®™ epresen-~
tation of the ﬁirac matrices, (which differ by factors of .
from the original ones)., Both solutions doubled the original
algebra from four dimensions to five dimensions. The
Clifford algebra in Minkowski spacetime, which was in fact
the algebra desired, was thus overlooked. Majorana nottcedaé
this point, but himself found not the Clifford algebra in »
Minkowski spacetime, but the other distinct algebra in f;ur
dimensions, which we have named 4n tribute to him.

In this paper, we have constructed the Dirac algebra D,
the Majorana algebra M, and the Clifford algebra in Minkowski

[

spacetime N4, as separate and distinct algebras. The

‘ TR :
TR

™
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