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Abstract: 

Starting with the SU(2)q ® SU (2)q basis and using q-C.G. coefficients the closest possible 

q - deformation of the classical canonical Gelfand-Zetlin formalism is constructed explicitly for 

SO (4)q. Simple introduction of q-brackets for each factor of the classical matrix elements, valid for 

SU (n)q , is shown to need significant and unexpected modifications for SO(n)q even when n = 4. 

Contraction to E(3)q and continuation to SO(3,1)q are studied, making explicit the possibilities and 
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1. Introduction 

For q=l, irreducible representations of the chain of algebras SO(n):::> SO (n-l):::> SO(n-2) :::>.. 

have, long ago, been explicitly constructed [1] in the canonical basis. With these as starting points, 

explicit representations were constructed [2] for Euclidean and generalized Lorentz groups, using 

specific contractions and defonnations, 

SO(n+l)contraction E(n) (or ISO (n)) deformation SO(n,l) 
--t --t 

What remains of such possibilities for q:l=l ? Here, we begin the exploration by studying, for 

the simplest non-trivial case SO(4)q' the status of the canonical generators. Already, at this livel, 

special features, with possibilities and problems, are encountered. These are recapitulated in the 

concluding remarks (Sec.7) after the necessary derivations. 

For unitary algebras, U(n+ l)q' IU(n)q' U(n, l)q' all were studied systematically in the 

canonical basis [3,4,5]. For other algebras only periodic representations were constructed [6] using 

special techniques for q a root of unity. 

For unitary algebras one can start (for q generic or root of unity) by replacing each factor in the 

numerators and the denominators of the classical Gelfand-Zetlin matrix elements by the 

corresponding q-bracket ( (x) --t [x] == (qX - q-X ) / (q- q-l ). This "minimal q-deformation" works 

because of the following crucial features. The Chevalley generators, in terms of which the Hopf 

algebra is formulated when q :1= 1, form directly, at the classical level, a subset of the canonical 

generators statisfying, for U(n), 

The generators At+1 (A~+l) are the familiar Chevalley generators ei (f), the Serre-relations 

being classical double commutators. Another important fact is that the Cartan generators Ai are all 

diagonalized in the Gelfand-Zetlin basis. So q:t{A\ A\tl) can be obtained directly. Then one 

proceeds to construct q-commutators and the Hopf algebra. Explicit matrix element for irreducible 

representations are obtained and the contraction and deformation prescriptions of [2] turn out to be 

------~-----~--------------------
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compatible with the Hopf structure. 

For SO(n), the canonical classical generators satisfy (with the hermitian convention), along 

with anti symmetry , 

[Jhjl' Ji~2] = i (Oi1i)jd2 + Ojd2Ji 1h - Oitj2Jjd2 - OjlhJhj) 

(iI' j} ; i2, j2 = 1,... ,n) 

These, even at the classical level, lack the simple correspondance with the Chevalley 

generators, typical of the unitary case. Moreover only one of the Cartan generators (J12) is 

diagonalized in the G-Z basis. Thus starting with the classical G-Z matrix elements no simple 

prescription (such as the minimal deformation (x) ~ [x] described for SU(n» is available. One has 

to face, among others, the problem of inverting non-diagonal matrices if one wants to make contact 

with the standard Hopf algebra for SO(n)q' 

For SO(4)q the direct product basis using 

SO(4)q == SU(2)~1) ® SU(2)~2) 

provides a starting point to construct the basis which is as close to the classical cononical basis as 

possible. Classically, one diagonalises the j 2 corresponding to 

j = j(1)+ ]<2) 

and then 

K= j<2) _ j<2) 

completes the set. The basic features of the generators K is that they change the j values 

(corresponding to 
-+ 

J) as 

j~G+l,j,j-l) 

The states G± 2, j ± 3, ... ) do not appear for linear combinations of (K±, Ko)' What are the 

operators (for q :;c 1), expressed in terms of j (1) and j (2) which have this spectrum? What exactly 

are their actions, namely, the explicit matrix elements? The answer depends on the properties of 

the q-C.O. coefficients as will be shown in the following sections. 

2. Recapitulation of the classical canonical basis for SO( 4). 

We summarize the relevant classical results for SO(4). This will introduce our notations and 

conventions and will provide ready comparison with the SO( 4)q results to follow. 

We start with the direct product states 
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with standard SU(2) matrix elements 

(2.1)J~) lh, mi> = m~ ji, mi > (i=1,2) 

J~) Ui, mi > = «(h+"mi) Oi± mi + 1))1/~ ji, mi ± 1) 

Introduce the basis, using C.O. coefficients, 

(2.2) 

and the generators 

(2.3) 

The matrix elements are (suppressing 01 j2) in the coupled states) 

Joljm>=mljm> (2.4) 

J± 1jm > = «j +" m) U ± m + 1))1121 jm ± 1 > 

and with 

Ko Ijm > = (O+m+ 1) U-m+ 1))112 a U) Ij+1, m> 

+ (U+m) (j_m))1/2 a U-l) Ij-l, m> (2.5) 

m b 0) Ij, m> 

~ Ijm > = +" (U± m+l) O± m+2))I/2 a U) Ij+l, m ± 1 > 

± (U +" m) O+" m-l)l/2 aU-I) Ij-l, m ± 1> (2.6) 

+ (U +" m) U±m+ 1))1/2 bU) I j, m± 1 > 

where 
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aG) = f«hI + 1)2 - G+1)2) (G+ 1)2 - hi) \ 1/2 
(2.7)t (2j+3) (2j+1) G+1)2 f 

bG) = /(hl + 1) h2) 
(2.8)\ j G+1) 

(Our Ko coressponds to - iI of [1] along with an extra phase factor (iY for the states. We have real 
43 

symmetric maxtrix for Ko and (K+)+ = KJ. 

The well-known algebra is (with upper or lower signs) 

[10' J±] =±J±, [1+, JJ = 2 Jo 

[Ko' K±] = ± J± ' [K+, KJ = 2 Jo (2.9) 

[Ko' J±] = ± K± ' [K±, J +" ] = 2 Ko 

[10' ~] = ± K± ' [J±, K± ] = 0 

The two Casimir operators are 

= (J+ J _ + J ~) + (K+ K_ + K ~) (2.10)C1 

C1 = t (J+ K_ + J_ K+) + (10 Ko) 

and C1 Ij,m > = «hI + 1)2 + h ~ - 1) I j,m > 

C2 Ij,m> = (hI + 1) h2 j,m > (2.11) 

3. Structures in SO(4)q 

Start again with a direct product basis, but this time of SU(2)~1) ® SU(2)~2) such that 

+,rli) 1 . +m· I . (. 1 2)q- 0 J} m· > =q- 1 J m· > 1 = , (3.1)
1 1 , 1 

li) 1J'. m· > = ([j. +" m.] [j. ± m· + 1])1/21 J'. ,m· ± 1 > ± 11 1 11 1 11 

where [x] == (qX q _x) / (q_q-l). 

In this section we consider generic q'¢ ei 2: (n = 1, 2, 3, .... ). 



6 

Let 
(3.2) 

where we have used q- C.O. coefficients [7]. (Substitute q-l for ql/20f [7] to fit with our 

conventions ). 
±J + (J(I) + J(2» (3.3)

q 0= q- 0 0Define 
- J (1) - J(2) J(2) q- J(1) (3.4)J±- ± q 0 + ± 0 

when (suppressing again (hj2) on the l.h.s. of (3.2)) 

q±Jo Ijm > =q±m Ijm > (3.5) 

J± IJm> = ([j +" m] [j±m+1])1/2 I j, m± 1 > (3.6) 

These, of course, satisfy, as is well-known 

qJo J± = J± qJo± 1 (3.7) 

(3.8) 

/ 

Now we come to the problem underlined at the end of Sec. 1. The key result is estabilshed in the 

Appendix. 


J (2)_ J(1)

Defining X =q 0 0 (3.9) 

it is shown it the Appendix that 

X Ijm > = - ~q_q-l~ ([j+m+l] [j-m+l])l/2 a (j) Ij+l,m > 
(qJ+l+q -J-l ) 

(q_q-l) ([j+m] [j_m])1/2 a (j-l) I j-l,m > 
(qj+q-j) 

(3.10) 


where 

aU) ={([h1+1]2 - [j+l])2 ([j+l]2 - [h2]2)}1/2 (3.11) 
[2j+3] [2j+l] [j+l]2 

(hI =jl + j2' h2 =jl - j2) 

and 
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(3.12) 


Note that aU) is obtained from aU) of (2.7) by 

(x) ~ [x] 

and 

f U) == RU) =[hI + 1] [h2] (3.13)
- P [j] [j+1] 

is obtained analogously from bU). 

A crucial feature is the appearence of f+ assuring 

q -71 

X ~ 11. 

The operator X-I is discussed in the Appendix. For q ~ q-I (3.4) the roles of X and X-I are 

interchanged. 

The other operators with the spectrum 

j ~ U+1,j,j-1) 

can now be obtained/rom X and (J±, Jo) 

Of particular interest are A+, B+ defined through 

J± X - q+I X J± =± (q_q-l) A± q -Jo+ 1 (3.14) 

J± X - q ± 1 X J± = + (q_q-I) B± q Jo± 1 

From (3.3), (3.4), (3.9) and (3.14) one obtains 

A± =J±(1) q Jo (2) 

B± = J±(2) q -Jo (1) (3.15) 
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The matrix elements of A±, B± are obtained from (3.5), (3.6) and (3.10). These, along with X, 

lead to a particularly simple algebra and coproducts. This will be presented later. Let us 

immediately note the matrix elements of 

(3.16)K±=A±-B± 
(3.17)

and L±=A±+B± 

One obtains (with a G) of(3.11) and f3 G) of (3.13» 

K± I jm > = +" ([j±m+1] [j±m+2])112 a (j) I j+1, m±1 > 

± ([j +"m] fj +" m-l])112 a G-1) I j-l, m±1 > (3.18) 

+ ([j +" m] [j ± m+1])112 f3 G) I j, m±1 > 


Thus 


(3.19) 

provide the "minimal q- deformation" of (2.6). They satisfy 

[K+, KJ = [2J ] (3.20)o

[K±, J±] = 0 (3.21) 

Also (with f+ of (3.12» 
qj+Lq-j-1

L± Ijm = - ([j±m+l] [j±m+2])1/2 (. . a (j» Ij+l, m±1 > 
qJ+l+qJ+1 

- ([j + m] [j +" m-l])112 (q~-q-~ a (j-l» Ij-l, m±1 > 
qJ+qJ 

- ([j +" m] [j ± m+1])1/2f+ G) I j, m±1 > (3.22) 

Note that for q = 1 

L± I jm > = J± I, j,m > (3.23) 

Along with (1+. J_. Jo )' (K+. K_. J )' (L+. L .. J ) form a third SU(2)q triplet satisfying o o 

[L+, LJ =[2Jo] (3.24) 

The q-commutators with q± 10 are evidently as usual. Note that each term on the right of (3.19) 

separately has the same type of spectrum (namely, under their action j~ j ± 1, j». In (3.4) the two 
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terms on the right taken separately involes X-I, an operator we want to introduce as late as possible 

in the formalism. 

We have suitable q - deformation of the classical K+ in (3.18). What about K ? 
- 0 

The operators (see Appendix) 

2 (1 - X) (3.25)(q_q-I) 

1 (X - X-I) = [J (1) - J (2)] (3.26](q_q-I) 0 0 

both have Ko of (2.5) as the classical (q = 1) limit. But of particular interest to us are the operators 

K (±) defined as o 

Ko(+) = (K~-»+ = (qJo (J+ ' K_ ] - q-Jo (K+ ' J_ ] ) (q2Jo_ q_2Jot i (3.27) 

= (J (1) - J (2)] - (q- q-I) J (1)J (2)
o 0 - + 

One obtains 

Ko(±) Ij,m > = q+ (j+l) ([j±m+1])[j-m+1])1/2 a 0) Ij+1, m> 

+ q+ j ([j+m])[j-m])1/2 a 0-1) Ij-l, m > 

+ [m] J3 0) I j,m > (3.28) 

(concerning the doubling of the classical Ko under q-deformation, see sec 7). These have evidently 

(2.5) as the classical limit. The operators Ko(+) and Ko(-) coincide for q=1. For q :;:. 1 they are related 

through hermitian conjugacy and also through q ~ q- 1. The q-factors in (3.28) can be eliminated 

by defining 

Ko =v+ 1(2 K~±) v± 1/2 (3.29) 

where v I j,m > =q-j (j+I) I j,m > (3.30) 

in an interesting operator appearing in Ribbon Hopf Algebra (8]. 1(0 is just the "minimal q

deformation" of Ko of (2.5). 

The operators K~±) are particularly suitable for making the structures of the q-Casqimirs 

transparent. 

Define 



10 

C1 = (q+q-1)-1 (K+ K. + K_ K+ + q K~+) K~) + q-1 K~) K~+) + (q2+q-2) D} (3.31) 

D I j,m > =} {(J+ J_ + J_ J+) + (q + q-1) [Jof} I jm > =U] U+l] I jm > (3.32)where 


and C2 = ~ (K+ J. + K. J+) + } [Jo](qK~+)+ q-1 K~») (3.32) 


Then 

(3.33)C11jm > = ([h1+1]2 + [h2f -1) I jm > 

(3.34)C2' jm > = [h1+ 1] [h2] 'jm > 

Comparison with (2.10) and 2.11) is direct. 

Since the matrix for X- 1 (see Appendix) is complicated, let us see first how far one can go 

without bringing it in. 

The classical system (Sec.2) can be obtained as a limit starting with (q± 10, A±, B± ,X) (3.35) 

noting particularly (3.18), (3.23) and (3.25). One has also following closed system of q

commutators and coproducts, obtainable fairly simply form (3.9) and (3.15) quite consistently with 

the matrix elements (3.10), (3.18) and (3.22). 

X A± = q+ 1 A± X, q10 A± = q± 1 A± q10 


X B± = q± 1 B± X, q10 B± = q± 1 B± q10 


[A+, AJ, = _1- (q 210 - X 2) 

(q_q- 1) 


[B+, BJ =_1_ (X 2 - q- 210) 

(q_q. 1) 

q- 1 A+ B+ - q B+ A+ = 0 

q A_ B_ - q-1 B_ A_ = 0 

[A+, BJ =0 =[A_, B+] (3.36) 

q10X =X q10 

From these the necessary relations can be obtained for K±, K~±). They exhibit correct classical 

limits. The coproducts are given by (3.9) and (3.15), using the standard ones for the generators of 

SU(2)~1) and SU(2)~2), as 
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L\ A± = A± ® X + q10 ® A± (3.37) 

L\ B± =B± ® q-10 + X ® B±' 

These can be directly verified to be consistent with (3.36). The counits are 

e A± = 0, e B± =0 

e q± 10 =1, eX =1 (3.38) 

The operator X-I appears if the status of a fully pseudo-triangular Hopf algebra is sought with 

antipodes. 

One can add to the proceeding the evident relations for X-I, namely 

X-I A± = q±l A± X-I 


X-I B± = q+ 1 B± x-I 


L\X - 1 = X-I ® X-I 


eX-I=l (3.39) 

Now the antipodes, satisfying all necessary constraints, can be written as 

S (q± 10) =q+ 10 

S (X ± 1) = X+ 1 

S (A±) = -q- 10 A± X-I 

S (B±) = - X-I B± q10 (3.40) 

One can write coproducts in tenns of 


q±10,X, X-I, K± =A± - B± and J± =(A± q- 10 + B± q10) X-I (3.41) 


But they are much more complicated than (3.37). 


Useful q-commutators for K~±) are 

q± 1 K(±) K - K K(±) =q± 10 J 
o + + 0 + 

K(±) J - q±l J K(±) = K q+ 10 (3.42)o + + 0 + 
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and their hennitian conjugates (interchanging + and - in J and K and the order in each product). 

Remarkably enough (compare (3.31) and (3.33) 

(3.43) 

The operators K~±) (or Ko and v) have close relations to the classical Ko' But they do not seem to be 

suitable (along with q± Jo, J± ' K±) for constructing coproducts. For this reason (3.36) and (3.37) 

were presented. Having used (3.37) and (3.39) one can then construct in their terms ~'s of J± ' K±, 

K~±) leading often to involved expressions. After constructing the product representation using (X, 

A±, B±) one can, of course, construct the other operators (K±, K~±)) directly and easily from them 

establishing again the closest correspondance with the classical picture. The J± operators can be 

obtained from the set used for coproduct but also very easily from the standard coproduct rules for 

the JIS• Thus a complete structure for the products is always thus obtained for such a q-canonical 

basis. 

4. q a root of unity 

In previous papers [4] it was shown how G-Z matrix elements for SU(n) adapted to SU(n)q 

contain in them periodic representations for 

·21t 
q = e1 n ( n = 3,4, ... ) (4.1) 

For the representations to be well defined the domains of the parameters (ordered integers for 

generic q) had to be altered introducing "fractional parts", the term being used in a broad sense 

for both real, proper fractions and imaginary parts. There fractional parts had to be unequal for 

parameters of the same or adjacent rows in a G-Z basis state [4]. A sriking feature for qn = 1 is that 

the n-th power of all the generators belong to a suddenly inflated centre. The eigenvalues of these 

new invariant operators acting on a G-Z state depend on the invariant fractional parts introduced. 

The fractional parts are invariant since only the real integer parts of the parameters change under the 

action of the generators. 

Here the corresponding picture for SO(4)q will be briefly indicated. The study will be quite 

incomplete. We hope to present a more thorough investigation for SO(n)q elsewhere. 
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First we note from (3.36), 

xn A± = q±n A± xn 


[~, AJ = - 1 ~-1 {q2Jo (1 +q-2 + q-4 + ... + q-2(n-l»

(q_q-l ) 

- X2 (1 + q2 + q4 + ... q2(n-l»} 

and so on. 

Hence it is easy to show that 

(4.2) 

(4.3) 

all belong to the centre. 

In [4] periodicity was introduced by identifying states that lead to identical matrix elements for 

the generators. Under the action of the n-th power of a generator only such states survived, leading 

to a consistant situation. We indicate an analogous mechanism here for a particularly simple case. 

Let q3 = 1 

Now, 
3 

Ki Ijm > = L Mi I j + i, m + 3 > (4.4) 
i=-3 

where the matrix elements Mi can be obtained by iterating (3.18). One can show that M+2 = 0 due 

to the identity (with ~ of (3.13» 

(4.5)~ G) + ~ G+1) + ~ G+2) = 0 

for q3 = 1. 

Also M+l =0 due to the identity (using (3.11), (3.13) and q3 = 1) 

~ 0+ 1) ~ 0+1) + ~ 0) ~ G+1) + ~ 0) ~ G) 

+ a G+1) a G+1) + a G) a G) + a G-l) a G-1) = 0 (4.6) 

Similarly M_2 and M_l can also be shown to vanish. 

Hence for q3 = 1 
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(4.7)141 jm > =M3 1j+3, m+3 > + Mo 1j, m+3 > + M-3 I j-3, m+3 > 
(4.8)~Ijm> 

since each state on the right in (4.7) is equivalent to I jm > in the sense previously mentioned, 

namely each respond to the action of the generators like I jm > giving the same matrix elements. The 

matrix elements M3 ,M ' M_3 can be shown to depend finally only on invariant parameters (hI' h2o 
and fractional parts of j and m). The fractional parts of j,m are to be chosen such that the generators 

are not nilpotent to achieve full periodicity [4], Otherwise one can have partial periodicity [4].A full 

investigation of periodic and partially periodic representation will not be undertaken here. 

Periodicity can be investigated also by using the direct product (SU(2)q ® SU(2)q) basis. But 

we explored directly the canonical parametrization which may show the way for SO(p}q (p>4) 

where certain special tricks possible for SO(4)q are no longer available. 

5. Contraction to E(3l{l. 

Explicit, irreducible representations were constructed [2] for non-semisimple, inhomogeneous 

classical algebras starting both form SU(n) and SO(n). For the unitary case, the construction was 

generalized to q '# 1 giving I SU(n)q representations [3, 4, 5]. Here we study the structure that 

emerges when an anologous contraction is applied to the canonical formalism for SO(4)q' For the 

non-compact case the representations will of course be infinite dimensional for generic q. Let 

hl-7°O, h2 remaining finite and let us define from (3.18) 

. lim 
P± I Jm > =hl-7°O (A. [hI + 1]-1 ~ ) Ij,m > (5.1) 

where A. is some arbitrary real constant. 

Then 

· _ - '\ {U±m+1] U±m+2] (U+ 1]2_[h2]2) \1/2 .
P± IJm > - + fIw 1J+ 1 m±1 > 

[2j+3] [2j+ 1] U+1]2 I ' 
± A. {u+m] fj+m-l] (U]2-[h2]2) \112,. 1 +1J+, m_ > 

[2j+1] [2j-1] U]2 .f 

+ A. (Ij+mj [j±m+l])lf2 [j/~~1] ij, m ± 1 > (5.2) 
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For q=l, one gets P ±' translations of classical E(3)[2]. The states can be fully parametrized as 

I(Ah2) jm >. But as before we use a simpler notation. The 1's remain, of course, as before, namely, 

q±10 Ijm > = mum> (5.3) 

J± Ijm > = «(j+m] (j±m+ 1])1/2 'j,m ± 1 > 

Defining, from (3.28), 

(5.4) 


one obtains 

p~±) I j,ll1 > = q~(j+l) A{[j+m+1] [j-m+1] ([j+1]2_[h2]2) \ 1121 j+1, m > 
[2j+3] [2j+1] [j+1]2 I 

2 
+q±j A /(j+m] [j-m] ([j]2_[h2]2)}1I , j-1, m > 

\ [2j+1] [2j-1] [j]2 

'1 [m] [h2] . 
(5.5)+ I\. 0] [j+1] G,m> 

p~±) are hermitian conjugates and are also related through q ~ q~l coinciding for q = 1 to the 

classical Po of E(3) [2]. 

The contraction procedure along with (3.20), (3.21), (3.42) leads to 

[P+, P_] =0, 

±1 p(±) P _P p(±) = 0q o + + 0 


P J - J P = q-Jo p(+) + qJop(-) 

+ - - + 0 0 

P+J+-J+P+=o 

p(±) J - q±l J p(±) = P q+ J (5.6)o + + 0 + 0 

The second relation shows the non-commutativity of p~) with P + and similary with P_ from 

the conjugate. (See also (5.9) below). 

Other relations of interest can be obtained from these using conjugation, as from (3.42) for the K's. 

The results for J± ' q+ Jo (namely (3.7), (3.8») remain inchanged. 

For the Casimirs one now has the following generalizations of the classical results [2], 
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C 1J'm > == 1 i P J + P J + [J ] (qP(o+) + q-1 p~)) rum> = A [h2] I jm > (5.8)
2 2 +- -+ 0 

Corresponding to (3.43) one now has 

which, from (5.7), implies the further non-commutativity 

p(+) p(-) _p(-) p(+) = (q_q-1) P P (5.9)
o 0 0 0 + 

This vanishes trivially for q = 1. One can verify (5.9) directly from (5.2) and (5.5). One can 

introduce, as in (3.29) and (3.30), Po through 

.....p _ "+.L p(±) ±.L (5.10)o-v2 0 v2 

where v Ij,m > =q-jU+1) I j,m > 

Defining, using (3.10), 

Y Ijm > =h lim (A[h1 +1]-1 X) I jm > (5.11) 
I-t oo 

one has 

(q_q-1) {[j+m+1] [j-m+1] ([j+1]2_[h2]2)}1/2 
•

Y I jm > = - A 1J+ 1, m > 
(qJ+l+q-J~I) [2j+3] [2j+1] [j+1]2 

_A (~_q-l ~ {[j+m] [j-m] ([j]2-[h2]2)}1/21 '-1, m > 
(qJ+q-J) [2j+l] [2j-l] [j]2 J 

A ( -1) I [h2] [m] (qh2 + q-h2) (qm+q-m) 1 ' 
- - q-q " + E IJ m > (5.12)

2 [j] u+1] (qj + q-j) (qj+1+q-j-1) , 

with E =± 1 for q > 1. 
< 

Before one had 

lim XI'Jm> = I'J,m> (5.13) 
q-t1 

now 
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lim 
Y Ijm > =0 (5.14)q-t1 

Hence without detailed study it is already evident that y-l cannot be defined consistently for all 

values of generic q. (For q a root of unity, when moreover all the matrices are finite, the situation 

will be studied elsewhere). 

We have thus the following situation. The matrix elements of the set of operators, forming a closed 

system, 

(5.15) 

lead to the correct classical limit giving general irreducible representations ofE(3). But the Hopf 

algebra «3.36) to (3.40) ) does not survive the contraction due to y-I not being well defined among 

other things. Suitable coproducts have not been obtained directly terms of (5.15), though the 

relations (5.6) and (5.9) are relatively simple. Thus the formalism does not contain all the desirable 

properties. Contructing product representations at the level of SO(4)q' then constructing the Kls and 

then contracting them to the pIS one obtains a prescription for products of E(3)q' which is evidently 

not an intrinsic one. Here we have attempted to construct representations of E(3)q for all values of 

q. This should be compared to the case where an algebra is proposed for q -t 1, the ratio of q and 

e, the contraction parameter, remaining finite [9]. There it has been found that, choosing the basis 

adequately, the generators can be expressed as fairly simple non-linear functions of the classical 

ones. This will be shown elsewhere. 

6. Continuation to 80(3,1)q 

It is known that classical SOC4) and SO(3, 1) irreducible representations are related through 

(hI + 1) -t iv (6.1) 

and (K±, Ko) -t i (K±, Ko) 

in (2.5) to (2.8). One has now from (2.7) and (2.8) (writing Jl for h2 and suitably defining square 

roots) 
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. . f(V2 + G+1))2 (G+1)2 - J.l2) \1/2 (6.2) 
1 a G) -7 \ (2j+3) (2j+ 1) G+ 1)2 J 

. b G) VJ.l (6.3) 
1 -7 j G+1) 

A different phase convention is diplayed in [2]. The unitary representations of SO(3,1) are infinite 

dimensional and the change in (2.9) are 

(6.4) 

The casimirs are now (for states I (VJ.l), jm > denoted as I jm » 

For v2 ;::: 0 one has the principal series representations. For J.l = 0, 0 < - v2 < lone has the 

supplementary series. The spectrum of J.l (or h2) is given by integers or half integers. 

For q '* 1, if one sets in a G) of (3.11) and ~G) of (3.13), 

(6.7) 


and, multiplying the matrix elements of the K's as before by i to make them real, then from (3.18) 

(writing again J.l for h2), 

([V]2 + [j+ 1])2 ([j+ 1]2 _ [11]2) \1/2
K+ Ijm > =+" ([j±m+1] [j±m+2])1/2 / ,... I j+1, m±1 > 

- \ [2j+3] [2j+ 1] [j+1]2 J 

± ([j +" m] [j +" m-1])1!2 {([V]2 + [j]2) ([j]2_[Jl]2 \1/2 I '-1, m±1 > 
[2j+1] [2j-1] [j]2 f J 

+ ([j +" m] [j ± m+1])1/2 [V][Jl] (6.8)[j][j+1] Ij,m±l> 
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and one has 

(6.9) 

with a change of sign in (3.20). 


For K~±) the (l and ~ factors are altered in (3.28) as above and the changes in the q-commutators 


(3.42) are evident, such as 

q± K(±) K - K K(±) = -q±Io J 
o + + 0 + (6.10) 

and so on. 

But where f+, given by (3.12), appears (as for X and L±) the situation is different. One has 

f _ (qhl+1+q-hl-l) (qh2+q-h2) _ V< hl+1>2 + 4 (qh2+q-h2) 
(6.11)

+ - (qj+l+q-jl-l ) (qj+q-j1 ) - (qj+l+q+ 1,) (qj+q-j) 

where (6.12) 

Following the prescription leading to (6.8) and (6.9) one should substitute using 

f ~ V<V>2- 4 (qJl+q-Jl) (6.13)
+ (qj+l+q-j-l) (qj+q-j) 

Thus for <v >2 <4 f+ is imaginary and f+ =i for q =1 . (6.14) 

This range cannot be excluded for a satisfactory formulation. Thus the set (X±I, A±, B±) leads to 

complex representations of SO(3,1). A simplification occurs for the very special case <v >2 =4 

where f+ =o. 

The structure of the coproducts (3.37), it taken over as it is, also induces complexity when 

(X,A±, B±) are multiplied by i after (6.7). On the otherland (q±Jo , J±, K±, K~±» constructed 

according to our prescription do give a q-deformation of the classical unitary SO(3,1) 

representations, with 
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C I jm > == 1 i (K K + K -K + qK(+)K(-) + q-1 K~» K~+) - (q2 + q-2) Dr tim > 
1 (q +q -1) + - - + 0 0 

= ([v]2 - [JlJ2 + 1) Ijm > (6.14) 

C IJ"m > == 1 i (K J + K J + [J ] (qK(o+) + q- 1K~» rIjm > =[v] [Jl] Ijm > (6.15)
2 2 +- - + 0 

The incompatibility of the reality constraints with the Hopf algebra leading from (3.36) to (3.40) 

remains the unsatisfactory feature. Several studies of quantum Lorentz algebras exist [10, 11, 12, 

13]. Here our aim has been to construct explicitly irreducible representations and to study the 

consequences of directly q-deforming the canonical classical matrix elements for the principal and 

the supplementary series and correspondingly the algebra of the Lorentz generators, (leading to 

K~±), K±). 

7. Remarks 

For SO(n)q' and if possible for E (n-1)q and SO(n-l,l)q our aim is to go beyond writing 

relations among a set of generators to explicit construction of irreducible representations. The 

matrix elements on a space of properly parametrized states can themselves be taken to define the q

deformed algebra, yielding all the necessary properties including the spectrum of each Casimir 

operator. For the unitary algebras this aim has been fairly completely realized [3,4,5]. For the 

orthogonal case the classical G-Z states and the matrix elements [1] and contraction and deformation 

of SO(n) to E(n-1) and SO(n-l, 1) respectiveley [2] are already available for q = 1. For reasons 

indicated in Sec. 1 they cannot be directly adapted to q 'i:. 1 using (as for the unitary case) what we 

have called the tlminimal q-deformation" namely, direct insertion of q-brackets in the classical 

matrix elements. 

Exploiting the availability of the direct product basis (SU(2)~1) ® (SU(2)~2» for SO(4)q and 

using the properties of the q-C.G. coefficients we have explicitly constructed on the q-canonical 

basis (diagonalizing the q-analogue of (j(1)+~2»2) the matrix elements of 
8 

K± = J~l) qJ~2)_ J~) q- fal) 


K~±) = [f02)- J~2)] - (q_q-l) J¥) J~2) (= v±l/2 Ko v+l/2 ) (7.1) 
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where (with the convention (3.4) for J±) they are given by (3.10), (3.18), (3.28), (3.29) and 

(3.30). (They key result is derived in the Appendix for X). This is the closest one can come to a 

minimal q-deformation of the classical results mentioned above. The basic feature we have tried to 

preserve is that, under the action of the K's 

j~j+1,j,j-1 

as for the classical case. (In general all states, from j1+j2 to Ij1 - j21 appear). The differences that 

arise are imposed by the starting point, namely the direct product basis, and are presumably 

unavoidable for ultimate consistency. 

In the direct product basis on has four diagonal operators 

(7.2) 

In the q-canonical basis one has correspondingly 

q±Jo and the non-diagonal pair K~±). (7.3) 

In (7.2) inversion and q ~ q-1coincide. In (7.3) for the non-diagonal pair K~±) only the aspect 

q ~ q-l has been carried over.This is the basic reason for doubling of the classical Ko to K~±) 

(which can be then replaced by Ko and v as in (3.29)). The K's in (7.1) are the closest to the 

canonical K's, (K =]<1)_]<2»). For a satisfactory formulation of the Hopf algebra we had however to 

consider the operators 

X±1,A±,B± 

corresponding to q±(Jo(2) _ J~2») , J~l) qJ~2), J~2) q-J~l) (7.4) 

respectively «3;36) to (3.40)). 

In these (apart from the complications in inverting X) the most striking departure from the "minimal 

q-deformation" is the appearence of the term f + of (3.12), not directly a ratio of products of q

brackets. This again is imposed by the properties of the q-C.G. coefficients. This has consequences 

throughout afterwards. For E(3)q and for SO(3,1)q the associated features (see (5.14) and (6.13) 
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and the remarks that follow them) have been discussed in Sec 5 and Sec 6 respectively. Such 

features have prevented us from carrying over the Hopf algebra structure of Sec. 3 (with suitable 

evident modifications) to these cases. Having thus pointed out the difficulties, we would like to 

emphasize that a quite interesting structure for non-commutative translations was obtained for 

E(3)q (the piS of (5.6) and (5.9)) for arbitrary q with explicit matrix elements. This was the aim 

announced for our general program [3,4,5] concerning contact with non-commutative geometries. 

(The doubling of the classical Po to p~±) (or the appearence of the operator v) corresponds to the 

remarks following (7.3)). 

One particularly interesting possibility of canonical aproach is a unified freatment ofgeneric 

and root ofunity q's as illustrated for unitary algebras [4,5] by constructing ,periodic and partially 

periodic representations. Here we have only briefly indicated this possibility (Sec.4) for SO(4) 
q 
. 

The next desirable step would be to carry out this program for canonical SO(5) q and to compare the 

results with those of [6]. 

It is a pleasure to thank Enrico Celeghini for many discussions throughout this work. I thank 

Daniel Arnaudon for helpful remarks. 
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Appendix 

Matrix elements of q±(~2)_J~1» in the canonical basis. 

Start with the basis state (3.2). Using the orthogonality of the q-C.G. coefficients 

j I ])m q I (j d2) j'm > (AI) 

(For the convention with q ~ q-1 in (3.4) we start with q- (~2)_ J~1) ). 


For m = j, j' = j + p (p=o, 1, 2, ... ). From [7] (with q1/12 ~ q-1 to fit with our conventions) 


.) '1' I .rl2) J(1) I (j .) ,.< (j1J2 JJ q 0 - 0 1J2 JJ > 

[2j+1] ! [j1+j2-j] ! [j'+j] ! 01 +j2-j'] [2j'+ 1] )112 
(x [j1-j2+j] ! [-j1+j2+j]! ] [j1+j2+j+1] ![j1-j2+j] ! ] [j1-j2+j'] ! 01+j2+j'+1] ! 

~ (_l)Z q-zU'+j+1) -2m U+2) [j1+m1+Z] ! [j2+j'-m1-Z] !)
X £oJ , .,. ,q 1. . .' (A2)

( z, m1 [z] . [j -J-Z] . U1-m1-Z] ! [j2-J +m1+Z] ! 

where [n] ! = [n] [n-l] ". [2] [1], [0] ! == 1 and only non-negative values of n are considered, 

Setting 

j1 - m1 - Z = s, j' =j +p 

a = 2jl' = (j1+ j2) + (j1-j2) 

b = j - (j1 - j2) + p (A3) 

c = (j1+ j2) - j - p 
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the double sum in (A.2) becomes 

(A4)L ( ) =q-jl (2j-t4) S Fml,z ... p p 


S = p (-I)Z qz(3-p) (AS)
where 
p L [z] ! [p-z] ! 

z=o 

F = L s(a+h-c+4-2p) [a-s] ! [b+s] ! (A6),and p s q [s] ! [c-s] ! 

The range of s being over non-negative values of the argunlents of the factorials. 

The key result is 

(A7) 

i,e, Sp = 0 for p =2,3, ... 

For eventual use let us note the recursion relations for the two parameter case 

p (_I)Z qz(m-p)
S - (A8)

(m.p) - L [z] ! [p-z] ! 
z=o 

One can show that 

(1_qm-1-2p) S(m,p) = [p+1] S(m,p+l) (A9) 

(1_qm+1-2p) S(m+2,p) = (l_qm+l) [S(m,p) (AIO) 

Setting m =3, one see from (A9) 

(All)S(3.2) = S(3,3) ... = 0 

leading to (A7). 
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Hence from (A4) and (A 7), 

Now 

m~,z ( ... ) = q-jl(2j+4) (Po +(1-q2) PI) 

P = L s (a+b-c+2) [a-s] ! [b+s] ! 
I s q [s] ! [c-s] ! 

(A12) 

= (b+l)c [a-c] ! [b] ! [a+b+1] ! 
q [c] ! [a+b-c+1] ! (A13) 

This corresponds to the identity A.5 of [14] or to (the corrected version) of A.6 of [15]. 

Using recursion relations between P p and P p+I ' and simplifying one can show 

Po = q(b+l)c {qa+c+l [b+1] + q-b-I[a-c+ I]} [a-c] ! [b] ![a+b+ 1] ! 
[c] ! [a+b-c+2] ! 

(A14) 

Prom these results, substituting for a,b,c and simplifying, 

G .). l' I (j(2) .(1»< 1,]2 J+ J q 0 -Jo I G .) ..I'J2 JJ > 

(A.15) 


(A16) 

In the above derivation, for simplicity, we set m=j. But the fact that the matrix elements of 

(A.17) 

are zero for j'~ j+2 cannot depend on m. Moreover the operator X on space of the states I jm > is a 

real symmetric matrix given by (Ai). The symmetry between j and j' implies that non-zero matrix 

elements correspond to 

j' = J+1, j, j-1 (A18) 



26 


The explicit m-depence is obtained in a compact form (rather than from A1) from the relations 

X2 J±+ J± X2 - (q+q-1) X J± X:::; 0 (A19) 

J; X + X J; - (q+q-l) J± X J± = 0 (A20) 

Using, however, the result (A18). 

One obtains (suppressing the symbols (j1 j2) in the states) the non-zero elements 

<j+1, m I X Ij,m >:::; <j,m I Xj+1, m > 

= ([j+m+1] [j-m+ 1])1/2 f (it, j2' j) (A21) 

(A22)< j,m I X I j,m > =f1 (j1' j2' j) qrn + f2 (j1' j2' j) q_rn 

where f 1 ,f2 ' f must satisfy 

(q_q-1)2 f1(j) f2(j) = [2j-1] f2 (j-1) - [2j+3] f2(j) (A23) 

qj (f1(j) - q2 f1(j+1)) + q-j (f2 0) - q-2f2U+1)) = 0 (A24) 

Comparing (A15) and (A21) one gets, immediately, 

f(j) ~ _ (q_q-I) j([hl+lf - U+1)2) (U+l)2 - [h2)2) \1/2+ (A25) 
\ [2j+1] [2j+ 3] [20+1)]2 J 

Comparing (A 16) and (A22) 

(A26) 

where hI == j 1 + j2 ' h2 == j 1 - j2 

Al == q2h+1 + q-2j l-l, A2 == q2j2+1 + q-2j2-1 

so that Al "+ A2 :::; (qhl +1 + q-hI-I) qhl "+ q_h2) 

Starting with m = - j one gets, quite analogously to (A16), the combination 

(A27) 

(A28) 



27 

and finally 

It has been verified that our f, f I, f2 indeed satisfy (A23) and (A24). 

We have now the result 

X I (hh) jm > = q(J(;)~J~I» IGlh) jm > 


= ([j+m+1] [j-m+ 1 ])1/2 f G l' j2' j) I Gl' j2) j+1 m > 


+ ([j+m] [j_m])I/2 fG 1,j2,j-1) IGl'j2)j-1 m> 

+ (fl GI' j2' j) qffi + f2 01' j2' j) q_ffi) I 01 j2) jm > (A31) 

where f, fI' f2 are given by (A25), (A2S) and (A29) respectively. 

More generally one obtains the matrix elements of q(CI~I)+C2~2» by replacing in (AI) the factor 

q-ffil+ffi2 by qCI ffil +C2ffi2. For c i = - 1, c2 = 1, we have shown that the values of j' are truncated as in 

(A1S) through (A7). 

For CI = 1, c2 = - 1, i,e, X-I = q(J~l)_ ~2», (A32) 

in the double sum (A15) the Sp (which is, more explicitly S (3,p) according to (AS) is replaced by 

(A33) 


Thus the matrix elements no longer vanish due to this factor for jl ::;:. j, j ± I, The matrix elements 

are, of course, explicitly given by 

'I IX-I I . 1: [JI j' 1(A34)<Jm Jm>=ml+ml=m mi m q 

This is a well-defined real, symmetric matrix. But it is useful to express X-I in another way. Define 

(with q ~ q-l in (3.4» 
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(A35) 


and the corresponding O,m) states as 

(A36) 

Then < 01' j2) j+p, m I X-II 01' j2) jm > q 

= .~" <(j1'j2) j+p,m 1(j1'j2) j"m»«(j1'j2)j"nl I X-1I01' j2) fm »q« (jl'j2)j 'm I (jl,j2)jm > (A37) 
JJ 

But 

(A38) 

Hence defining (as in [14] with u =0 in (3.6) and (3.7) there) 

(A39) 


(Such a relation holds trivially when instead of X±1 one has q±Jo). The states (A36) and the 

interchange of jl and j2 associated with the R-matrix are related through 

~l (A40) 

The consitency of the definitions, concerning the presence or absence of q-factors, can be 

checked with 

J1 =h, arbitrary and j2 =} or 1, when X-I can be easily constructed directly. One 

should note, in direct construction of the inverse of X, that (for a given m) 

det X I~ n q-(ffi l-ffi2) (A41)
ffil+ffi2 =ffi 
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This value, evident in the I j,m1, j2 m2 > basis, is not altered in the I U1 ,j2) jm > basis, the 

transformation being orthogonal. Thus for 

j2 =t, det X I m= n q-(m-2m2) =q-2m (A42) 
m2=±.l 

2 

More generally, when ~ can take all the values from j2 to - j2 

det X Im = q-(2h2+1) m (A43) 

Thus explicit expressions for the matrix elements of X-I are also obtained by multiphying the 

corresponding cafactors in X by (det X)-1 for a fixed m, namely 

(det X)-1 = n qm l-m2 (A44) 
ml+m2=m 

As a particularly simple example let us give X for the case 

. h b' . 1J 1 = ,ar 1trary an J2 = "2 
Then (for a given m) 

(qffi+[2b]q-m) _(q_q-l ([h+m~] [h_m~])1/2) 
2 2 

(A45)X= [2h+ 1] - (q_q-l ([h+m+}] [h_m+}])I/2) (- qffi+[2h+2]q-m) 

det X = q-2m (A46)and 



qJ+t_q-J-l
L+ Ijm = - (u±m+1] u±m+2])1/2 (. . aU)) Ij+1, m±1 > 

- qJ+I+q-J-I 

- (U +m] [j +" m-I])1f2 ( q.j-q-j. a U-1)) I j-I, m±1 > 
qJ+q-J 

+ (U +" m] U ± m+ 1])112f+ U) I j, m±I > (3.22) 

K (±) I j,m > =q+ U+l) (U±m+ l])U-m+I ])112 a U) I j+ 1, m> o

+ q± j (U+mDU-m])l!2 aU-I) Ij-1, m > 

+ [m] ~ U) I j,m > (3.28) 
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